Experiments with Spectral Learning of Latent-Variable PCFGs

Shay Cohen

Department of Computer Science
Columbia University

Joint work with Karl Stratos1, Michael Collins1, Dean P. Foster2 and Lyle Ungar2

1Columbia University
2University of Pennsylvania

June 10, 2013
Spectral algorithms

Broadly construed:
Algorithms that make use of spectral decomposition

Recent work:
Spectral algorithms with latent-variables (statistically consistent):

- Gaussian mixtures (Vempala and Wang, 2004)
- Hidden Markov models (Hsu et al., 2009; Siddiqi et al., 2010)
- Latent-variable models (Kakade and Foster, 2007)
- Grammars (Bailly et al., 2010; Luque et al., 2012; Cohen et al., 2012; Dhillon et al., 2012)

Prior work: mostly theoretical
This talk in a nutshell

Experiments on spectral estimation of latent-variable PCFGs

Accuracy is the same as EM, but order of magnitude more efficient

The algorithm has PAC-style guarantees
Outline of this talk

Latent-variable PCFGs (Matsuzaki et al., 2005; Petrov et al., 2006)

Spectral algorithm for L-PCFGs (Cohen et al., 2012)

Experiments

Conclusion
L-PCFGs (Matsuzaki et al., 2005; Petrov et al., 2006)

NP VP
D N V P

the dog saw him

NP VP
D N V P

the dog saw him
The probability of a tree

\[p(\text{tree}, 1\ 3\ 1\ 2\ 2\ 4\ 1) = \pi(S^1) \times \]
\[t(S^1 \rightarrow NP^3\ VP^2|S^1) \times \]
\[t(NP^3 \rightarrow D^1\ N^2|NP^3) \times \]
\[t(VP^2 \rightarrow V^4\ P^1|VP^2) \times \]
\[q(D^1 \rightarrow \text{the}|D^1) \times \]
\[q(N^2 \rightarrow \text{dog}|N^2) \times \]
\[q(V^4 \rightarrow \text{saw}|V^4) \times \]
\[q(P^1 \rightarrow \text{him}|P^1) \]

\[p(\text{tree}) = \sum_{h_1...h_7} p(\text{tree}, h_1\ h_2\ h_3\ h_4\ h_5\ h_6\ h_7) \]
The EM algorithm

Goal: estimate π, t and q from labeled data

EM is a remarkable algorithm for learning from incomplete data

It has been used for L-PCFG parsing, among other things

It has two flaws:

- Requires careful initialization
- Does not give consistent parameter estimates

More generally, it {	extit{locally}} maximizes the objective function
Outline of this talk

Latent-variable PCFGs (Matsuzaki et al., 2005; Petrov et al., 2006)

Spectral algorithm for L-PCFGs (Cohen et al., 2012)

Experiments

Conclusion
Inside and outside trees

At node \textit{VP}:

Outside tree $o =$

```
S
   /\  \\
NP / \ VP
  /   \   \\
D  N   V  P
the dog saw him
```

Inside tree $t =$

```
S
   /\  \\
NP / \ VP
  /   \   \\
    D  N
     the dog

VP
   /\  \\
V  P
   saw him
```

Conditionally independent given the label and the hidden state

$$p(o, t|\textit{VP}, h) = p(o|\textit{VP}, h) \times p(t|\textit{VP}, h)$$
Spectral algorithm

Design functions ψ and ϕ:

ψ maps any outside tree to a vector of length d'

ϕ maps any inside tree to a vector of length d

Outside tree $o \Rightarrow$

$\psi(o) = [0, 1, 0, 0, \ldots, 0, 1] \in \mathbb{R}^{d'}$

Inside tree $t \Rightarrow$

$\phi(t) = [1, 0, 0, 0, \ldots, 1, 0] \in \mathbb{R}^{d}$
Spectral algorithm

Project the feature vectors to m-dimensional space ($m << d$)

- Use singular value decomposition

The result of the projection is two functions Z and Y:

- Z maps any outside tree to a vector of length m
- Y maps any inside tree to a vector of length m

Outside tree $o \Rightarrow$

$$Z(o) = [1, 0.4, -5.3, \ldots, 72] \in \mathbb{R}^m$$

Inside tree $t \Rightarrow$

$$Y(t) = [-3, 17, 2, \ldots, 3.5] \in \mathbb{R}^m$$
Parameter estimation for binary rules

Take M samples of nodes with rule $VP \rightarrow V \ NP$.

At sample i

- $o^{(i)} = \text{outside tree at } VP$
- $t_2^{(i)} = \text{inside tree at } V$
- $t_3^{(i)} = \text{inside tree at } NP$

$$
\hat{i}(VP^{h_1} \rightarrow V^{h_2} \ NP^{h_3} | VP^{h_1}) = \frac{\text{count}(VP \rightarrow V \ NP)}{\text{count}(VP)} \times \frac{1}{M} \sum_{i=1}^{M} \left(Z_{h_1}(o^{(i)}) \times Y_{h_2}(t_2^{(i)}) \times Y_{h_3}(t_3^{(i)}) \right)
$$
Parameter estimation for unary rules

Take M samples of nodes with rule $N \rightarrow \text{dog}$.

At sample i

- $o^{(i)} = \text{outside tree at } N$

\[
\hat{q}(N^h \rightarrow \text{dog}|N^h) = \frac{\text{count}(N \rightarrow \text{dog})}{\text{count}(N)} \times \frac{1}{M} \sum_{i=1}^{M} Z_h(o^{(i)})
\]
Parameter estimation for the root

Take M samples of the root S.

At sample i

- $t^{(i)} = \text{inside tree at } S$

\[
\hat{\pi}(S^h) = \frac{\text{count}(\text{root}=S)}{\text{count}(\text{root})} \times \frac{1}{M} \sum_{i=1}^{M} Y_h(t^{(i)})
\]
Outline of this talk

Latent-variable PCFGs (Matsuzaki et al., 2005; Petrov et al., 2006)

Spectral algorithm for L-PCFGs (Cohen et al., 2012)

Experiments

Conclusion
Performance with expectation-maximization ($m = 32$): 88.56%

Vanilla PCFG maximum likelihood estimation performance: 68.62%

For the rest of the talk, we will focus on $m = 32$
Key ingredients for accurate spectral learning

Feature functions

Handling negative marginals

Scaling of features

Smoothing
Inside features used

Consider the VP node in the following tree:

```
S
  NP  VP
    D       
    N       
  the    saw
       
NP
  D       
  N
    the   dog
```

The inside features consist of:

- The pairs \((\text{VP}, \text{V})\) and \((\text{VP}, \text{NP})\)
- The rule \(\text{VP} \rightarrow \text{V} \ \text{NP}\)
- The tree fragment \((\text{VP} \ (\text{V} \ \text{saw}) \ \text{NP})\)
- The tree fragment \((\text{VP} \ \text{V} \ (\text{NP} \ \text{D} \ \text{N}))\)
- The pair of head part-of-speech tag with VP: \((\text{VP}, \text{V})\)
- The width of the subtree spanned by VP: \((\text{VP}, 2)\)
Outside features used

Consider the D node in the following tree:

```
S
   NP          VP
     D          V  NP
        N   the  saw  D
       cat  the  N  dog
```

The outside features consist of:

- The fragments

```
  NP
   D*
   N
```

- The pair \((D, \text{NP})\) and triplet \((D, \text{NP}, \text{VP})\)

- The pair of head part-of-speech tag with D: \((D, \text{N})\)

- The widths of the spans left and right to D: \((D, 3)\) and \((D, 1)\)
Accuracy (section 22 of the Penn treebank)

The accuracy out-of-the-box with these features is:

55.09%

EM’s accuracy: 88.56%
Negative marginals

Sampling error can lead to negative marginals

Signs of marginals are flipped

On certain sentences, this gives the world’s worst parser:

$$t^* = \arg\max_t -\text{score}(t) = \arg\min_t \text{score}(t)$$

Taking the absolute value of the marginals fixes it

Likely to be caused by sampling error
Accuracy (section 22 of the Penn treebank)

The accuracy with absolute-value marginals is:

80.23%

EM’s accuracy: 88.56%
Scaling of features by inverse variance

Features are mostly binary. Replace $\phi_i(t)$ by

$$\phi_i(t) \times \sqrt{\frac{1}{\text{count}(i) + \kappa}}$$

where $\kappa = 5$

This is an approximation to replacing $\phi(t)$ by

$$(C)^{-1/2}\phi(t)$$

where $C = E[\phi\phi^T]$

Closely related to canonical correlation analysis (e.g. Dhillon et al., 2011)
Accuracy (section 22 of the Penn treebank)

The accuracy with scaling is:

86.47%

EM’s accuracy: 88.56%
Smoothing

Estimates required:

\[
\hat{E}(VP^{h_1} \rightarrow V^{h_2} \ NP^{h_3} | VP^{h_1}) = \frac{1}{M} \sum_{i=1}^{M} \left(Z_{h_1}(o^{(i)}) \times Y_{h_2}(t_{2}^{(i)}) \times Y_{h_3}(t_{3}^{(i)}) \right)
\]

Smooth using “backed-off” estimates, e.g.:

\[
\lambda \hat{E}(VP^{h_1} \rightarrow V^{h_2} \ NP^{h_3} | VP^{h_1}) + (1 - \lambda) \hat{F}(VP^{h_1} \rightarrow V^{h_2} \ NP^{h_3} | VP^{h_1})
\]

where

\[
\hat{F}(VP^{h_1} \rightarrow V^{h_2} \ NP^{h_3} | VP^{h_1})
\]

\[
= \left(\frac{1}{M} \sum_{i=1}^{M} \left(Z_{h_1}(o^{(i)}) \times Y_{h_2}(t_{2}^{(i)}) \right) \right) \times \left(\frac{1}{M} \sum_{i=1}^{M} Y_{h_3}(t_{3}^{(i)}) \right)
\]
The accuracy with smoothing is:

88.82%

EM's accuracy: 88.56%
Final results

Final results on the Penn treebank

<table>
<thead>
<tr>
<th></th>
<th>section 22</th>
<th></th>
<th>section 23</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EM</td>
<td>spectral</td>
<td>EM</td>
<td>spectral</td>
</tr>
<tr>
<td>$m = 8$</td>
<td>86.87</td>
<td>85.60</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$m = 16$</td>
<td>88.32</td>
<td>87.77</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$m = 24$</td>
<td>88.35</td>
<td>88.53</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$m = 32$</td>
<td>88.56</td>
<td>88.82</td>
<td>87.76</td>
<td>88.05</td>
</tr>
</tbody>
</table>
Simple feature functions

Use rule above (for outside) and rule below (for inside)

Corresponds to parent annotation and sibling annotation

Accuracy:

88.07%

Accuracy of parent and sibling annotation: 82.59%

The spectral algorithm distills latent states

Avoids overfitting caused by Markovization
Training time ($m = 32$)

EM runs for 9 hours and 21 minutes per iteration

Spectral algorithm runs for less than 10 hours beginning to end

EM requires about 20 iterations to converge (187h12m)
Outline of this talk

Latent-variable PCFGs \textit{(Matsuzaki et al., 2005; Petrov et al., 2006)}

Spectral algorithm for L-PCFGs \textit{(Cohen et al., 2012)}

Experiments

Conclusion
Conclusion

Presented spectral algorithms as a method for estimating latent-variable models

Formal guarantees:
- Statistical consistency
- No problem of local maxima

Complexity:
- Most time is spent on aggregating statistics
- Much faster than EM (20x faster)

Future work:
- Promising direction for hybrid EM-spectral algorithm (89.85%)