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Latent-variable Models

Latent-variable models are used in many areas of NLP, speech, etc.:

I Latent-variable PCFGs (Matsuzaki et al.; Petrov et al.)

I Hidden Markov Models

I Naive Bayes for clustering

I Lexical representations: Brown clustering, Saul and Pereira,
etc.

I Alignments in statistical machine translation

I Topic modeling

I etc. etc.

The Expectation-maximization (EM) algorithm is generally used
for estimation in these models (Depmster et al., 1977)

Other relevant algorithms: cotraining, clustering methods
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Example 1: Latent-Variable PCFGs (Matsuzaki et al., 2005; Petrov

et al., 2006)
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Example 2: Hidden Markov Models

S1 S2 S3 S4

the dog saw him

Parameterized by π(s), t(s|s′) and o(w|s)

EM is used for learning the parameters
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Example 3: Näıve Bayes

H

X Y

p(h, x, y) = p(h)× p(x|h)× p(y|h)

(the, dog)
(I, saw)
(ran, to)

(John, was)
...

I EM can be used to estimate parameters
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Example 4: Brown Clustering and Related Models

w1

C(w1) C(w2)

w2

p(w2|w1) = p(C(w2)|C(w1))× p(w2|C(w2)) (Brown et al., 1992)

h

w1 w2

p(w2|w1) =
∑

h p(h|w1)× p(w2|h) (Saul and Pereira, 1997)
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Example 5: IBM Translation Models

null Por favor , desearia reservar una habitacion .

Please , I would like to book a room .

Hidden variables are alignments

EM used to estimate parameters
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Example 6: HMMs for Speech

Phoneme boundaries are hidden variables
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Co-training (Blum and Mitchell, 1998)

Examples come in pairs

Each view is assumed to be sufficient for classification

E.g. Collins and Singer (1999):

. . . , says Mr. Cooper, a vice president of . . .

I View 1. Spelling features: “Mr.”, “Cooper”

I View 2. Contextual features: appositive=president
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Spectral Methods

Basic idea: replace EM (or co-training) with methods based on
matrix decompositions, in particular singular value decomposition
(SVD)

SVD: given matrix A with m rows, n columns, approximate as

Ajk ≈
d∑

h=1

σhUjhVjh

where σh are “singular values”

U and V are m× d and n× d matrices

Remarkably, can find the optimal rank-d approximation efficiently
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Similarity of SVD to Näıve Bayes

H

X Y

P (X = x, Y = y) =

d∑

h=1

p(h)p(x|h)p(y|h)

Ajk ≈
d∑

h=1

σhUjhVjh

I SVD approximation minimizes squared loss, not log-loss
I σh not interpretable as probabilities
I Ujh, Vjh may be positive or negative, not probabilities

BUT we can still do a lot with SVD (and higher-order,
tensor-based decompositions)
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CCA vs. Co-training

I Co-training assumption: 2 views, each sufficient for
classification

I Several heuristic algorithms developed for this setting

I Canonical correlation analysis:

I Take paired examples x(i),1, x(i),2

I Transform to z(i),1, z(i),2

I z’s are linear projections of the x’s
I Projections are chosen to maximize correlation between z1 and
z2

I Solvable using SVD!
I Strong guarantees in several settings
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One Example of CCA: Lexical Representations

I x ∈ Rd is a word

dog = (0, 0, . . . , 0, 1, 0, . . . , 0, 0) ∈ R200,000

I y ∈ Rd′ is its context information

dog-context = (11, 0, . . . 0, 917, 3, 0, . . . 0) ∈ R400,000

I Use CCA on x and y to derive x ∈ Rk

dog = (0.03,−1.2, . . . 1.5) ∈ R100
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Spectral Learning of HMMs and L-PCFGs

Simple algorithms: require SVD, then method of moments in
low-dimensional space

Close connection to CCA

Guaranteed to learn (unlike EM) under assumptions on singular
values in the SVD
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Spectral Methods in NLP

I Balle, Quattoni, Carreras, ECML 2011 (learning of finite-state
transducers)

I Luque, Quattoni, Balle, Carreras, EACL 2012 (dependency
parsing)

I Dhillon et al, 2012 (dependency parsing)

I Cohen et al 2012, 2013 (latent-variable PCFGs)
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Overview

Basic concepts
Linear Algebra Refresher
Singular Value Decomposition
Canonical Correlation Analysis: Algorithm
Canonical Correlation Analysis: Justification

Lexical representations

Hidden Markov models

Latent-variable PCFGs

Conclusion
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Matrices

A ∈ Rm×n







m

n

A =

[
3 1 4
0 2 5

]

“matrix of dimensions m by n” A ∈ R2×3
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Vectors

u ∈ Rn







n

u =




0
2
1




“vector of dimension n” u ∈ R3
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Matrix Transpose

I A> ∈ Rn×m is the transpose of A ∈ Rm×n

A =

[
3 1 4
0 2 5

]
=⇒ A> =




3 0
1 2
4 5



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Matrix Multiplication

Matrices B ∈ Rm×d and C ∈ Rd×n

A︸︷︷︸
m×n

= B︸︷︷︸
m×d

C︸︷︷︸
d×n
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Singular Value Decomposition (SVD)

A︸︷︷︸
m×n

SVD

=

d∑

i=1

σi︸︷︷︸
scalar

ui︸︷︷︸
m×1

(vi)>︸︷︷︸
1×n︸ ︷︷ ︸

m×n
I d = min(m,n)

I σ1 ≥ . . . ≥ σd ≥ 0

I u1 . . . ud ∈ Rm are orthonormal:
∣∣∣∣ui
∣∣∣∣
2

= 1 ui · uj = 0 ∀i 6= j

I v1 . . . vd ∈ Rn are orthonormal:
∣∣∣∣vi
∣∣∣∣
2

= 1 vi · vj = 0 ∀i 6= j
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SVD in Matrix Form

A︸︷︷︸
m×n

SVD

= U︸︷︷︸
m×d

Σ︸︷︷︸
d×d

V >︸︷︷︸
d×n

U =



| |
u1 . . . ud

| |


 ∈ Rm×d Σ =



σ1 0

. . .

0 σd


 ∈ Rd×d

V =



| |
v1 . . . vd

| |


 ∈ Rn×d
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Matrix Rank

A ∈ Rm×n

rank(A) ≤ min(m,n)

I rank(A) := number of linearly independent columns in A




1 1 2
1 2 2
1 1 2







1 1 2
1 2 2
1 1 3




rank 2 rank 3
(full-rank)
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Matrix Rank: Alternative Definition

I rank(A) := number of positive singular values of A




1 1 2
1 2 2
1 1 2







1 1 2
1 2 2
1 1 3




Σ =




4.53 0 0
0 0.7 0
0 0 0


 Σ =




5 0 0
0 0.98 0
0 0 0.2




rank 2 rank 3
(full-rank)
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SVD and Low-Rank Matrix Approximation

I Suppose we want to find B∗ such that

B∗ = argmin
B: rank(B)=r

∑

jk

(Ajk −Bjk)
2

I Solution:

B∗ =
r∑

i=1

σiui(vi)>
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SVD in Practice

I Black box, e.g., in Matlab

I Input: matrix A, output: scalars σ1 . . . σd, vectors u1 . . . ud

and v1 . . . vd

I Efficient implementations

I Approximate, randomized approaches also available

I Can be used to solve a variety of optimization problems

I For instance, Canonical Correlation Analysis (CCA)
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Canonical Correlation Analysis (CCA)

I Data consists of paired samples: (x(i), y(i)) for i = 1 . . . n

I As in co-training, x(i) ∈ Rd and y(i) ∈ Rd′ are two “views” of
a sample point

View 1 View 2

x(1) = (1, 0, 0, 0) y(1) = (1, 0, 0, 1, 0, 1, 0)

x(2) = (0, 0, 1, 0) y(2) = (0, 1, 0, 0, 0, 0, 1)

...
...

x(100000) = (0, 1, 0, 0) y(100000) = (0, 0, 1, 0, 1, 1, 1)
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Example of Paired Data: Webpage Classification (Blum
and Mitchell, 98)

I Determine if a webpage is an course home page

course 1

↓

instructor’s
home
page

−→
course home page
· · ·Announcements· · ·
Lectures· · ·TAs
· · · Information· · ·

←−
TA’s
home
page

↑
course 2

I View 1. Words on the page: “Announcements”, “Lectures”
I View 2. Identities of pages pointing to the page: instructror’s

home page, related course home pages

I Each view is sufficient for the classification!

Spectral Learning for NLP 30



Example of Paired Data: Named Entity Recognition
(Collins and Singer, 99)

I Identify an entity’s type as either Organization, Person, or
Location

. . . , says Mr. Cooper, a vice president of . . .

I View 1. Spelling features: “Mr.”, “Cooper”

I View 2. Contextual features: appositive=president

I Each view is sufficient to determine the entity’s type!
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Example of Paired Data: Bigram Model

H

X Y

p(h, x, y) = p(h)× p(x|h)× p(y|h)

(the, dog)
(I, saw)
(ran, to)

(John, was)
...

I EM can be used to estimate the parameters of the model

I Alternatively, CCA can be used to derive vectors which can be
used in a predictor

the =⇒




0.3
...

1.1


 dog =⇒



−1.5

...
−0.4



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Projection Matrices

I Project samples to lower dimensional space

x ∈ Rd =⇒ x′ ∈ Rp

I If p is small, we can learn with far fewer samples!

I CCA finds projection matrices A ∈ Rd×p, B ∈ Rd′×p

I The new data points are a(i) ∈ Rp, b(i) ∈ Rp where

a(i)︸︷︷︸
p×1

= A>︸︷︷︸
p×d

x(i)︸︷︷︸
d×1

b(i)︸︷︷︸
p×1

= B>︸︷︷︸
p×d′

y(i)︸︷︷︸
d′×1
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Mechanics of CCA: Step 1

I Compute ĈXY ∈ Rd×d′ , ĈXX ∈ Rd×d, and ĈY Y ∈ Rd′×d′

[ĈXY ]jk =
1

n

n∑

i=1

(x
(i)
j − x̄j)(y

(i)
k − ȳk)

[ĈXX ]jk=
1

n

n∑

i=1

(x
(i)
j − x̄j)(x

(i)
k − x̄k)

[ĈY Y ]jk=
1

n

n∑

i=1

(y
(i)
j − ȳj)(y

(i)
k − ȳk)

where x̄ =
∑

i x
(i)/n and ȳ =

∑
i y

(i)/n
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∑
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Mechanics of CCA: Step 2

I Do SVD on Ĉ
−1/2
XX ĈXY Ĉ

−1/2
Y Y ∈ Rd×d′

Ĉ
−1/2
XX ĈXY Ĉ

−1/2
Y Y

SVD

= UΣV >

Let Up ∈ Rd×p be the top p left singular vectors. Let
Vp ∈ Rd′×p be the top p right singular vectors.
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Mechanics of CCA: Step 3

I Define projection matrices A ∈ Rd×p and B ∈ Rd′×p

A = Ĉ
−1/2
XX Up B = Ĉ

−1/2
Y Y Vp

I Use A and B to project each (x(i), y(i)) for i = 1 . . . n:

x(i) ∈ Rd =⇒ A>x(i) ∈ Rp

y(i) ∈ Rd
′

=⇒ B>y(i) ∈ Rp
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Input and Output of CCA

x(i) = (0, 0, 0, 1, 0, 0,0, 0, 0, . . . , 0) ∈ R50,000

↓
a(i) = (−0.3 . . . 0.1) ∈ R100

y(i) = (497, 0, 1, 12, 0, 0, 0, 7,0, 0, 0, 0, . . . , 0, 58, 0) ∈ R120,000

↓
b(i) = (−0.7 . . .− 0.2) ∈ R100
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Justification of CCA: Correlation Coefficients

I Sample correlation coefficient for a1 . . . an ∈ R and
b1 . . . bn ∈ R is

Corr({ai}ni=1, {bi}ni=1) =

∑n
i=1(ai − ā)(bi − b̄)

√∑n
i=1(ai − ā)2

√∑n
i=1(bi − b̄)2

where ā =
∑

i ai/n, b̄ =
∑

i bi/n

a

b

Correlation ≈ 1
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Simple Case: p = 1

I CCA projection matrices are vectors u1 ∈ Rd, v1 ∈ Rd′

I Project x(i) and y(i) to scalars u1 · x(i) and v1 · y(i)

I What vectors does CCA find? Answer:

u1, v1 = arg max
u,v

Corr
(
{u · x(i)}ni=1, {v · y(i)}ni=1

)
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Finding the Next Projections

I After finding u1 and v1, what vectors u2 and v2 does CCA

find? Answer:

u2, v2 = arg max
u,v

Corr
(
{u · x(i)}ni=1, {v · y(i)}ni=1

)

subject to the constraints

Corr
(
{u2 · x(i)}ni=1, {u1 · x(i)}ni=1

)
= 0

Corr
(
{v2 · y(i)}ni=1, {v1 · y(i)}ni=1

)
= 0
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CCA as an Optimization Problem

I CCA finds for j = 1 . . . p (each column of A and B)

uj, vj = arg max
u,v

Corr
(
{u · x(i)}ni=1, {v · y(i)}ni=1

)

subject to the constraints

Corr
(
{uj · x(i)}ni=1, {uk · x(i)}ni=1

)
= 0

Corr
(
{vj · y(i)}ni=1, {vk · y(i)}ni=1

)
= 0

for k < j
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Guarantees for CCA

H

X Y

I Assume data is generated from a Naive Bayes model

I Latent-variable H is of dimension k, variables X and Y are of
dimension d and d′ (typically k � d and k � d′)

I Use CCA to project X and Y down to k dimensions (needs
(x, y) pairs only!)

I Theorem: the projected samples are as good as the original
samples for prediction of H
(Foster, Johnson, Kakade, Zhang, 2009)

I Because k � d and k � d′ we can learn to predict H with far
fewer labeled examples
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Guarantees for CCA (continued)

Kakade and Foster, 2007 - cotraining-style setting:

I Assume that we have a regression problem: predict some
value z given two “views” x and y

I Assumption: either view x or y is sufficient for prediction

I Use CCA to project x and y down to a low-dimensional space

I Theorem: if correlation coefficients drop off to zero quickly,
we will need far fewer samples to learn when using the
projected representation

I Very similar setting to cotraining, but:

I No assumption of independence between the two views
I CCA is an exact algorithm - no need for heuristics
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Summary of the Section

I SVD is an efficient optimization technique
I Low-rank matrix approximation

I CCA derives a new representation of paired data that
maximizes correlation

I SVD as a subroutine

I Next: use of CCA in deriving vector representations of words
(“eigenwords”)
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Overview

Basic concepts

Lexical representations
I Eigenwords found using the thin SVD between words and

context

capture distributional similarity
contain POS and semantic information about words
are useful features for supervised learning

Hidden Markov Models

Latent-variable PCFGs

Conclusion
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Uses of Spectral Methods in NLP

I Word sequence labeling
I Part of Speech tagging (POS)
I Named Entity Recognition (NER)
I Word Sense Disambiguation (WSD)
I Chunking, prepositional phrase attachment, ...

I Language modeling
I What is the most likely next word given a sequence of words

(or of sounds)?
I What is the most likely parse given a sequence of words?
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Uses of Spectral Methods in NLP

I Word sequence labeling: semi-supervised learning
I Use CCA to learn vector representation of words (eigenwords)

on a large unlabeled corpus.
I Eigenwords map from words to vectors, which are used as

features for supervised learning.

I Language modeling: spectral estimation of probabilistic
models

I Use eigenwords to reduce the dimensionality of generative
models (HMMs,...)

I Use those models to compute the probability of an observed
word sequence
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The Eigenword Matrix U

I U contains the singular vectors from the thin SVD of the
bigram count matrix

ate cheese ham I You

ate 0 1 1 0 0
cheese 0 0 0 0 0
ham 0 0 0 0 0
I 1 0 0 0 0
You 2 0 0 0 0

I ate ham
You ate cheese
You ate
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The Eigenword Matrix U

I U contains the singular vectors from the thin SVD of the
bigram matrix (wt−1 ∗wt) analogous to LSA, but uses context
instead of documents

I Context can be multiple neighboring words (we often use the
words before and after the target)

I Context can be neighbors in a parse tree
I Eigenwords can also be computed using the CCA between

words and their contexts

I Words close in the transformed space are distributionally,
semantically and syntactically similar

I We will later use U in HMMs and parse trees to project words
to low dimensional vectors.

Spectral Learning for NLP 52



Two Kinds of Spectral Models

I Context oblivious (eigenwords)
I learn a vector representation of each word type based on its

average context

I Context sensitive (eigentokens or state)
I estimate a vector representation of each word token based on

its particular context using an HMM or parse tree
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Eigenwords in Practice

I Work well with corpora of 100 million words

I We often use trigrams from the Google n-gram collection

I We generally use 30-50 dimensions

I Compute using fast randomized SVD methods
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How Big Should Eigenwords Be?

I A 40-D cube has 240 (about a trillion) vertices.

I More precisely, in a 40-D space about 1.540 ∼ 11 million
vectors can all be approximately orthogonal.

I So 40 dimensions gives plenty of space for a vocabulary of a
million words
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Fast SVD: Basic Method

problem Find a low rank approximation to a n×m matrix M .

solution Find an n× k matrix A such that M ≈ AA>M

Construction A is constructed by:

1. create a random m× k matrix Ω (iid normals)
2. compute MΩ
3. Compute thin SVD of result: UDV > = MΩ
4. A = U

better: iterate a couple times

“Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix
decompositions” by N. Halko, P. G. Martinsson, and J.
A. Tropp.
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Eigenwords for ’Similar’ Words are Close
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Eigenwords Capture Part of Speech
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Eigenwords: Pronouns
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Eigenwords: Numbers
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Eigenwords: Names
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CCA has Nice Properties for Computing Eigenwords

I When computing the SVD of a word× context matrix (as
above) we need to decide how to scale the counts

I Using raw counts gives more emphasis to common words
I Better: rescale

I Divide each row by the square root of the total count of the
word in that row

I Rescale the columns to account for the redundancy

I CCA between words and their contexts does this
automatically and optimally

I CCA ’whitens’ the word-context covariance matrix
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Semi-supervised Learning Problems

I Sequence labeleing (Named Entity Recognition, POS,
WSD...)

I X = target word
I Z = context of the target word
I label = person / place / organization ...

I Topic identification
I X = words in title
I Z = words in abstract
I label = topic category

I Speaker identification:
I X = video
I Z = audio
I label = which character is speaking
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Semi-supervised Learning using CCA

I Find CCA between X and Z
I Recall: CCA finds projection matrices A and B such that

x︸︷︷︸
k×1

= A>︸︷︷︸
k×d

x︸︷︷︸
d×1

z︸︷︷︸
k×1

= B>︸︷︷︸
k×d′

z︸︷︷︸
d′×1

I Project X and Z to estimate hidden state: (x, z)
I Note: if x is the word and z is its context, then A is the

matrix of eigenwords, x is the (context oblivious) eigenword
corresponding to work x, and z gives a context-sensitive
“eigentoken”

I Use supervised learning to predict label from hidden state
I and from hidden state of neighboring words
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Theory: CCA has Nice Properties

I If one uses CCA to map from target word and context (two
views, X and Z) to reduced dimension hidden state and then
uses that hidden state as features in a linear regression to
predict a y, then we have provably almost as good a fit in the
reduced dimsion (e.g. 40) as in the original dimension (e.g.
million word vocabulary).

I In contrast, Principal Components Regression (PCR:
regression based on PCA, which does not “whiten” the
covariance matrix) can miss all the signal

[Foster and Kakade, ’06]
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Semi-supervised Results

I Find spectral features on unlabeled data
I RCV-1 corpus: Newswire
I 63 million tokens in 3.3 million sentences.
I Vocabulary size: 300k
I Size of embeddings: k = 50

I Use in discriminative model
I CRF for NER
I Averaged perceptron for chunking

I Compare against state-of-the-art embeddings
I C&W, HLBL, Brown, ASO and Semi-Sup CRF
I Baseline features based on identity of word and its neighbors

I Benefit
I Named Entity Recognition (NER): 8% error reduction
I Chunking: 29% error reduction
I Add spectral features to discriminative parser: 2.6% error

reduction
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Section Summary

I Eigenwords found using thin SVD between words and context
I capture distributional similarity
I contain POS and semantic information about words
I perform competitively to a wide range of other embeddings
I CCA version provides provable guarantees when used as

features in supervised learning

I Next: eigenwords form the basis for fast estimation of HMMs
and parse trees
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A Spectral Learning Algorithm for HMMs

I Algorithm due to Hsu, Kakade and Zhang (COLT 2009; JCSS
2012)

I Algorithm relies on singular value decomposition followed by
very simple matrix operations

I Close connections to CCA

I Under assumptions on singular values arising from the model,
has PAC-learning style guarantees (contrast with EM, which
has problems with local optima)

I It is a very different algorithm from EM
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Hidden Markov Models (HMMs)

H1 H2 H3 H4

the dog saw him

p(the dog saw him︸ ︷︷ ︸
x1...x4

, 1 2 1 3︸ ︷︷ ︸
h1...h4

)

= π(1)× t(2|1)× t(1|2)× t(3|1)

×o(the|1)× o(dog|2)× o(saw|1)× o(him|3)

I Initial parameters: π(h) for each latent state h

I Transition parameters: t(h′|h) for each pair of states h′, h

I Observation parameters: o(x|h) for each state h, obs. x
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Hidden Markov Models (HMMs)

H1 H2 H3 H4

the dog saw him

Throughout this section:

I We use m to refer to the number of hidden states

I We use n to refer to the number of possible words
(observations)

I Typically, m� n (e.g., m = 20, n = 50, 000)
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HMMs: the forward algorithm

H1 H2 H3 H4

the dog saw him

p(the dog saw him) =
∑

h1,h2,h3,h4

p(the dog saw him, h1 h2 h3 h4)

The forward algorithm:

f0h = π(h) f1h =
∑

h′

t(h|h′)o(the|h′)f0h′

f2h =
∑

h′

t(h|h′)o(dog|h′)f1h′ f3h =
∑

h′

t(h|h′)o(saw|h′)f2h′

f4h =
∑

h′

t(h|h′)o(him|h′)f3h′ p(. . .) =
∑

h

f4h
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HMMs: the forward algorithm in matrix form

H1 H2 H3 H4

the dog saw him

I For each word x, define the matrix Ax ∈ Rm×m as

[Ax]h′,h = t(h′|h)o(x|h) e.g., [Athe]h′,h = t(h′|h)o(the|h)

I Define π as vector with elements πh, 1 as vector of all ones

I Then

p(the dog saw him) = 1>×Ahim×Asaw×Adog×Athe× π

Forward algorithm through matrix multiplication!
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The Spectral Algorithm: definitions

H1 H2 H3 H4

the dog saw him

Define the following matrix P2,1 ∈ Rn×n:

[P2,1]i,j = P(X2 = i,X1 = j)

Easy to derive an estimate:

[P̂2,1]i,j =
Count(X2 = i,X1 = j)

N
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The Spectral Algorithm: definitions

H1 H2 H3 H4

the dog saw him

For each word x, define the following matrix P3,x,1 ∈ Rn×n:

[P3,x,1]i,j = P(X3 = i,X2 = x,X1 = j)

Easy to derive an estimate, e.g.,:

[P̂3,dog,1]i,j =
Count(X3 = i,X2 = dog, X1 = j)

N
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Main Result Underlying the Spectral Algorithm
I Define the following matrix P2,1 ∈ Rn×n:

[P2,1]i,j = P(X2 = i,X1 = j)

I For each word x, define the following matrix P3,x,1 ∈ Rn×n:

[P3,x,1]i,j = P(X3 = i,X2 = x,X1 = j)

I SVD(P2,1)⇒ U ∈ Rn×m,Σ ∈ Rm×m, V ∈ Rn×m

I Definition:
Bx = U> × P3,x,1 × V︸ ︷︷ ︸

m×m

× Σ−1︸︷︷︸
m×m

I Theorem: if P2,1 is of rank m, then

Bx = GAxG
−1

where G ∈ Rm×m is invertible
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Why does this matter?

I Theorem: if P2,1 is of rank m, then

Bx = GAxG
−1

where G ∈ Rm×m is invertible

I Recall p(the dog saw him) = 1>AhimAsawAdogAtheπ.

Forward algorithm through matrix multiplication!

I Now note that

Bhim ×Bsaw ×Bdog ×Bthe

= GAhimG
−1 ×GAsawG

−1 ×GAdogG
−1 ×GAtheG

−1

= GAhim ×Asaw ×Adog ×AtheG
−1

The G’s cancel!!

I Follows that if we have b∞ = 1>G−1 and b0 = Gπ then

b∞ ×Bhim ×Bsaw ×Bdog ×Bthe × b
0

= 1> ×Ahim ×Asaw ×Adog ×Athe × π
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b∞ ×Bhim ×Bsaw ×Bdog ×Bthe × b
0

= 1> ×Ahim ×Asaw ×Adog ×Athe × π
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The Spectral Learning Algorithm

1. Derive estimates

[P̂2,1]i,j =
Count(X2 = i,X1 = j)

N

For all words x,

[P̂3,x,1]i,j =
Count(X3 = i,X2 = x,X1 = j)

N

2. SVD(P̂2,1)⇒ U ∈ Rn×m,Σ ∈ Rm×m, V ∈ Rn×m

3. For all words x, define Bx = U> × P̂3,x,1 × V︸ ︷︷ ︸
m×m

× Σ−1︸︷︷︸
m×m

.

(similar definitions for b0, b∞, details omitted)

4. For a new sentence x1 . . . xn, can calculate its probability, e.g.,

p̂(the dog saw him)

= b∞ ×Bhim ×Bsaw ×Bdog ×Bthe × b
0
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Guarantees
I Throughout the algorithm we’ve used estimates P̂2,1 and
P̂3,x,1 in place of P2,1 and P3,x,1

I If P̂2,1 = P2,1 and P̂3,x,1 = P3,x,1 then the method is exact.
But we will always have estimation errors

I A PAC-Style Theorem: Fix some length T . To have
∑

x1...xT

|p(x1 . . . xT )− p̂(x1 . . . xT )|

︸ ︷︷ ︸
L1 distance between p and p̂

≤ ε

with probability at least 1− δ, then number of samples
required is polynomial in

n,m, 1/ε, 1/δ, 1/σ, T

where σ is m’th largest singular value of P2,1
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Intuition behind the Theorem
I Define

||Â−A||2 =

√∑

j,k

(Âj,k −Aj,k)2

I With N samples, with probability at least 1− δ

||P̂2,1 − P2,1||2 ≤ ε

||P̂3,x,1 − P3,x,1||2 ≤ ε
where

ε =

√
1

N
log

1

δ
+

√
1

N

I Then need to carefully bound how the error ε propagates
through the SVD step, the various matrix multiplications, etc
etc. The “rate” at which ε propagates depends on T , m, n,
1/σ
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Summary

I The problem solved by EM: estimate HMM parameters π(h),
t(h′|h), o(x|h) from observation sequences x1 . . . xn

I The spectral algorithm:

I Calculate estimates P̂2,1 (bigram counts) and P̂3,x,1 (trigram
counts)

I Run an SVD on P̂2,1

I Calculate parameter estimates using simple matrix operations
I Guarantee: we recover the parameters up to linear transforms

that cancel
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Probabilistic Context-free Grammars

I Used for natural language parsing and other structured models

I Induce probability distributions over phrase-structure trees
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The Probability of a Tree

S

NP

D

the

N

dog

VP

V

saw

P

him

p(tree)

= π(S)×
t(S→ NP VP|S)×
t(NP→ D N|NP)×
t(VP→ V P|VP)×
q(D→ the|D)×
q(N→ dog|N)×
q(V→ saw|V)×
q(P→ him|P)

We assume PCFGs in Chomsky normal form
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PCFGs - Advantage

“Context-freeness” leads to generalization (“NP” - noun phrase):

Seen in data: Unseen in data (grammatical):
S

NP

D

the

N

dog

VP

V

saw

NP

D

the

N

cat

S

NP

D

the

N

cat

VP

V

saw

NP

D

the

N

dog

An NP subtree can be combined anywhere an NP is expected
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PCFGs - Disadvantage

“Context-freeness” can lead to over-generalization:

Seen in data: Unseen in data (ungrammatical):
S

NP

D

the

N

dog

VP

V

saw

NP

P

him

S

NP

N

him

VP

V

saw

NP

D

the

N

dog

Spectral Learning for NLP 85



PCFGs - a Fix

Adding context to the nonterminals fixes that:

Seen in data: Low likelihood:
S

NPsbj

D

the

N

dog

VP

V

saw

NPobj

P

him

S

NPobj

N

him

VP

V

saw

NPsbj

D

the

N

dog

Spectral Learning for NLP 86



Idea: Latent-Variable PCFGs (Matsuzaki et al., 2005; Petrov et al.,

2006)

S

NP

D

the

N

dog

VP

V

saw

P

him

=⇒

S1

NP3

D1

the

N2

dog

VP2

V4

saw

P1

him

The latent states for each node are never observed
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The Probability of a Tree

S1

NP3

D1

the

N2

dog

VP2

V4

saw

P1

him

p(tree, 1 3 1 2 2 4 1)

= π(S1)×
t(S1 → NP3 VP2|S1)×
t(NP3 → D1 N2|NP3)×
t(VP2 → V4 P1|VP2)×
q(D1 → the|D1)×
q(N2 → dog|N2)×
q(V4 → saw|V4)×
q(P1 → him|P1)

p(tree) =
∑

h1...h7

p(tree, h1 h2 h3 h4 h5 h6 h7)
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Learning L-PCFGs

I Expectation-maximization (Matsuzaki et al., 2005)

I Split-merge techniques (Petrov et al., 2006)

Neither solves the issue of local maxima or statistical consistency
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Inside and Outside Trees

At node VP:

S

NP

D

the

N

dog

VP

V

saw

P

him

Outside tree o = S

NP

D

the

N

dog

VP

Inside tree t = VP

V

saw

P

him

Conditionally independent given the label and the hidden state

p(o, t|VP, h) = p(o|VP, h)× p(t|VP, h)
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Vector Representation of Inside and Outside Trees
Assume functions Z and Y :

Z maps any outside tree to a vector of length m.

Y maps any inside tree to a vector of length m.

Convention: m is the number of hidden states under the L-PCFG.

S

NP

D

the

N

dog

VP

VP

V

saw

P

him

Outside tree o⇒ Inside tree t⇒
Z(o) = [1, 0.4,−5.3, . . . , 72] ∈ Rm Y (t) = [−3, 17, 2, . . . , 3.5] ∈ Rm
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Parameter Estimation for Binary Rules
Take M samples of nodes with rule VP→ V NP.

At sample i

I o(i) = outside tree at VP

I t
(i)
2 = inside tree at V

I t
(i)
3 = inside tree at NP

t̂(VPh1 → Vh2 NPh3 |VPh1)

=
count(VP →V NP)

count(VP)
× 1

M

M∑

i=1

(
Zh1(o(i))× Yh2(t

(i)
2 )× Yh3(t

(i)
3 )

)
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Parameter Estimation for Unary Rules

Take M samples of nodes with rule N→ dog.

At sample i

I o(i) = outside tree at N

q̂(Nh → dog|Nh) =
count(N →dog)

count(N)
× 1

M

M∑

i=1

Zh(o(i))
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Parameter Estimation for the Root

Take M samples of the root S.

At sample i

I t(i) = inside tree at S

π̂(Sh) =
count(root=S)

count(root)
× 1

M

M∑

i=1

Yh(t(i))
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Deriving Z and Y

Design functions ψ and φ:

ψ maps any outside tree to a vector of length d′

φ maps any inside tree to a vector of length d

S

NP

D

the

N

dog

VP

VP

V

saw

P

him

Outside tree o⇒ Inside tree t⇒
ψ(o) = [0, 1, 0, 0, . . . , 0, 1] ∈ Rd′ φ(t) = [1, 0, 0, 0, . . . , 1, 0] ∈ Rd

Z and Y will be reduced dimensional representations of ψ and φ.
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Reducing Dimensions via a Singular Value Decomposition
Have M samples of a node with non-terminal a. At sample i, o(i)

is the outside tree rooted at a and t(i) is the inside tree rooted at a.

I Compute a matrix Ω̂a ∈ Rd×d′ with entries

[Ω̂a]j,k =
1

M

M∑

i=1

φj(t
(i))ψk(o

(i))

I An SVD:
Ω̂a
︸︷︷︸
d×d′

≈ Ua︸︷︷︸
d×m

Σa
︸︷︷︸
m×m

(V a)T︸ ︷︷ ︸
m×d′

I Projection:

Y (t(i)) = (Ua)T︸ ︷︷ ︸
m×d

φ(t(i))︸ ︷︷ ︸
d×1

∈ Rm

Z(o(i)) = (Σa)−1︸ ︷︷ ︸
m×m

(V a)T︸ ︷︷ ︸
m×d′

ψ(o(i))︸ ︷︷ ︸
d′×1

∈ Rm
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A Summary of the Algorithm

1. Design feature functions φ and ψ for inside and outside trees.

2. Use SVD to compute vectors

Y (t) ∈ Rm for inside trees
Z(o) ∈ Rm for outside trees

3. Estimate the parameters t̂, q̂, and π̂ from the training data.
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Justification of the Algorithm: Roadmap

How do we marginalize latent states? Dynamic programming

Succinct tensor form of representing the DP algorithm

Estimation guarantees explained through the tensor form

How do we parse? Dynamic programming again
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Calculating Tree Probability with Dynamic Programming:
Revisited

S

NP

D

the

N

dog

VP

V

saw

P

him

b̂1h =
∑

h2,h3

t̂(NPh → Dh2 Nh3 |NPh)× q̂(Dh2 → the|Dh2)× q̂(Nh3 → dog|Nh3)

b̂2h =
∑

h2,h3

t̂(VPh → Vh2 Ph3 |VPh)× q̂(Vh2 → saw|Vh2)× q̂(Ph3 → him|Ph3)

b̂3h =
∑

h2,h3

t̂(Sh → NPh2 VPh3 |Sh)× b̂1h2
× b̂2h3

p(tree) =
∑

h

π̂(Sh)× b̂3h
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Tensor Form of the Parameters

For each non-terminal a, define a vector πa ∈ Rm with entries

[πa]h = π(ah)

For each rule a→ x, define a vector qa→x ∈ Rm with entries

[qa→x]h = qa→x(ah → x|ah)

For each rule a→ b c, define a tensor T a→b c ∈ Rm×m×m with entries

[T a→b c]h1,h2,h3
= t(ah1 → bh2 ch3 |ah1)
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Tensor Formulation of Dynamic Programming

I The dynamic programming algorithm can be represented much
more compactly based on basic tensor-matrix-vector products

Sh

NPh2

D

the

N

dog

VPh3

V

saw

P

him

Regular form:

b3h =
∑

h2,h3

t(Sh → NPh2 VPh3 |Sh)×b1h2×b
2
h3

Equivalent tensor form:

b3 = T S→NPVP(b1, b2)

where T S→NPVP ∈ Rm×m×m and

T S→NPVP
h,h2,h3 = t(Sh → NPh2 VPh3 |Sh)

b1 b2
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Dynamic Programming in Tensor Form

S

NP

D

the

N

dog

VP

V

saw

P

him

T S→NPVP(TNP→DN(qD→the, qN→dog), TVP→VP(qV→saw, qP→him)) πS

|||

p(tree) =
∑

h1...h7

p(tree, h1 h2 h3 h4 h5 h6 h7)

Spectral Learning for NLP 105



Thought Experiment

I We want the parameters (in tensor form)

πa ∈ Rm

qa→x ∈ Rm

T a→b c(y2, y3) ∈ Rm

I What if we had an invertible matrix Ga ∈ Rm×m for every
non-terminal a?

I And what if we had instead

ca = Gaπa

ca→x = qa→x(Ga)−1

Ca→b c(y2, y3) = T a→b c(y2G
b, y3G

c)(Ga)−1
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Cancellation of the Linear Operators

S

NP

D

the

N

dog

VP

V

saw

P

him

CS→NPVP(CNP→DN(cD→the, cN→dog), CVP→VP(cV→saw, cP→him)) cS

|||

TS→NPVP(TNP→DN(qD→the(G
D)−1GD, qN→dog(G

N)−1GN)(GNP)−1GNP,

TVP→VP(qV→saw(GV)−1GV, qP→him(GP)−1GP)(GVP)−1GVP)(GS)−1GSπS

|||

T S→NPVP(TNP→DN(qD→the, qN→dog), TVP→VP(qV→saw, qP→him)) πS

|||

p(tree) =
∑

h1...h7

p(tree, h1 h2 h3 h4 h5 h6 h7)
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Estimation Guarantees

I Basic argument: If Ωa has rank m, parameters Ĉa→b c, ĉa→x,
and ĉa converge to

Ca→b c(y2, y3) = T a→b c(y2G
b, y3G

c)(Ga)−1

ca→x = qa→x(Ga)−1

ca = Gaπa

for some Ga that is invertible.

I Ga are unknown, but they are there, canceling out perfectly
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Implications of Guarantees

I The dynamic programming algorithm calculates p̂(tree)

I As we have more data, p̂(tree) converges to p(tree)

But we are interested in parsing – trees are unobserved
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Cancellation of Linear Operators

Can compute any quantity that marginalizes out latent states

E.g.: the inside-outside algorithm can compute “marginals”

µ(a, i, j) : the probability that a spans words i through j

No latent states involved! They are marginalized out

They are used as auxiliary variables in the model
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Minimum Bayes Risk Decoding

Parsing algorithm:

I Find marginas µ(a, i, j) for each nonterminal a and span (i, j)
in a sentence

I Compute using CKY the best tree t:

arg max
t

∑

(a,i,j)∈t

µ(a, i, j)

Minimum Bayes risk decoding (Goodman, 1996)
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Results with EM (section 22 of Penn treebank)

m = 8 86.87
m = 16 88.32
m = 24 88.35
m = 32 88.56

Vanilla PCFG maximum likelihood estimation performance:
68.62%

We focus on m = 32
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Key Ingredients for Accurate Spectral Learning

Feature functions

Handling negative marginals

Scaling of features

Smoothing

Spectral Learning for NLP 114



Inside Features Used
Consider the VP node in the following tree:

S

NP

D

the

N

cat

VP

V

saw

NP

D

the

N

dog
The inside features consist of:

I The pairs (VP, V) and (VP, NP)

I The rule VP → V NP

I The tree fragment (VP (V saw) NP)

I The tree fragment (VP V (NP D N))

I The pair of head part-of-speech tag with VP: (VP, V)

I The width of the subtree spanned by VP: (VP, 2)
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Outside Features Used
Consider the D node in
the following tree:

S

NP

D

the

N

cat

VP

V

saw

NP

D

the

N

dog
The outside features consist of:

I The fragments NP

D∗ N

, VP

V NP

D∗ N

and S

NP VP

V NP

D∗ N

I The pair (D, NP) and triplet (D, NP, VP)
I The pair of head part-of-speech tag with D: (D, N)
I The widths of the spans left and right to D: (D, 3) and (D,

1)
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Accuracy (section 22 of the Penn treebank)

The accuracy out-of-the-box with these features is:

55.09%
EM’s accuracy: 88.56%
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Negative Marginals

Sampling error can lead to negative marginals

Signs of marginals are flipped

On certain sentences, this gives the world’s worst parser:

t∗ = arg max
t
−score(t) = arg min

t
score(t)

Taking the absolute value of the marginals fixes it

Likely to be caused by sampling error
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Accuracy (section 22 of the Penn treebank)

The accuracy with absolute-value marginals is:

80.23%

EM’s accuracy: 88.56%
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Scaling of Features by Inverse Variance

Features are mostly binary. Replace φi(t) by

φi(t)×

√
1

count(i) + κ

where κ = 5

This is an approximation to replacing φ(t) by

(C)−1/2φ(t)

where C = E[φφ>]

Closely related to canonical correlation analysis
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Accuracy (section 22 of the Penn treebank)

The accuracy with scaling is:

86.47%
EM’s accuracy: 88.56%
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Smoothing
Estimates required:

Ê(VPh1 → Vh2 NPh3 |VPh1) =
1

M

M∑

i=1

(
Zh1(o(i))× Yh2(t

(i)
2 )× Yh3(t

(i)
3 )

)

Smooth using “backed-off” estimates, e.g.:

λÊ(VPh1 → Vh2 NPh3 |VPh1) + (1− λ)F̂ ( VPh1 → Vh2 NPh3 |VPh1)

where

F̂ (VPh1 → Vh2 NPh3 |VPh1)

=

(
1

M

M∑

i=1

(
Zh1(o(i))× Yh2(t

(i)
2 )

))
×

(
1

M

M∑

i=1

Yh3(t
(i)
3 )

)
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Accuracy (section 22 of the Penn treebank)

The accuracy with smoothing is:

88.82%

EM’s accuracy: 88.56%
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Final Results

Final results on the Penn treebank

section 22 section 23
EM spectral EM spectral

m = 8 86.87 85.60 — —
m = 16 88.32 87.77 — —
m = 24 88.35 88.53 — —
m = 32 88.56 88.82 87.76 88.05
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Simple Feature Functions

Use rule above (for outside) and rule below (for inside)

Corresponds to parent annotation and sibling annotation

Accuracy:

88.07%
Accuracy of parent and sibling annotation: 82.59%

The spectral algorithm distills latent states

Avoids overfitting caused by Markovization
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Running Time

EM and the spectral algorithm are cubic in the number of latent
states

But EM requires a few iterations

m single EM spectral algorithm
EM iter. best model total SVD a→ b c a→ x

8 6m 3h 3h32m 36m 1h34m 10m
16 52m 26h6m 5h19m 34m 3h13m 19m
24 3h7m 93h36m 7h15m 36m 4h54m 28m
32 9h21m 187h12m 9h52m 35m 7h16m 41m

SVD with sparse matrices is very efficient
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Related Work

Spectral algorithms have been used for parsing in other settings:

I Dependency parsing (Dhillon et al., 2012)

I Split head automaton grammars (Luque et al., 2012)

I Probabilistic grammars (Bailly et al., 2010)
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Summary
Presented spectral algorithms as a method for estimating
latent-variable models

Formal guarantees:

I Statistical consistency
I No issue with local maxima

Complexity:

I Most time is spent on aggregating statistics
I Much faster than the alternative, expectation-maximization
I Singular value decomposition step is fast

Widely applicable for latent-variable models:

I Lexical representations
I HMMs, L-PCFGs (and R-HMMs)
I Topic modeling
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Addendum: Spectral Learning for
Topic Modeling



Spectral Topic Modeling: Bag-of-Words

I Bag-of-words model with K topics and d words

I Model parameters: for i = 1 . . .K,

wi ∈ R :probability of topic i

µi ∈ Rd :word distribution of topic i

I Task: recover wi and µi for all topic i = 1 . . .K
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Spectral Topic Modeling: Bag-of-Words

I Estimate a matrix A ∈ Rd×d and a tensor T ∈ Rd×d×d
defined by

A = E
[
x1x

>
2

]
(expectation over bigrams)

T = E
[
x1x

>
2 x
>
3

]
(expectation over trigrams)

I Claim: these are symmetric tensors in wi and µi

A =

K∑

i=1

wiµiµ
>
i

T =

K∑

i=1

wiµiµ
>
i µ
>
i

I We can decompose T using A to recover wi and µi
(Anandkumar et al. 2012)
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Spectral Topic Modeling: LDA

I Latent Dirichlet Allocation model with K topics and d words
I Parameter vector α = (α1 . . . αK) ∈ RK
I Define α0 =

∑
i αi

I Dirichlet distribution over probability simplex h ∈ 4K−1

pα(h) =
Γ(α0)∏
i Γ(αi)

∏

i

hαi−1
i

I A document can be a mixture of topics:

1. Draw topic distribution h = (h1 . . . hK) from Dir(α)
2. Draw words x1 . . . xl from the word distribution

h1µ1 + · · ·+ hKµK ∈ Rd

I Task: assume α0 is known, recover αi and µi for all topic
i = 1 . . .K
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Spectral Topic Modeling: LDA

I Estimate a vector v ∈ Rd, a matrix A ∈ Rd×d and a tensor
T ∈ Rd×d×d defined by

v = E[x1]

A = E
[
x1x

>
2

]
− α0

α0 + 1
vv>

T = E
[
x1x

>
2 x
>
3

]

− α0

α0 + 2

(
E
[
x1x

>
2 v
>
]

+ E
[
x1v
>x>2

]
+ E

[
vx>1 x

>
2

])

+
2α2

0

(α0 + 2)(α0 + 1)
(vv>v>)
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Spectral Topic Modeling: LDA

I Claim: these are symmetric tensors in αi and µi

A =

K∑

i=1

αi
(α0 + 1)α0

µiµ
>
i

T =

K∑

i=1

2αi
(α0 + 2)(α0 + 1)α0

µiµ
>
i µ
>
i

I We can decompose T using A to recover αi and µi
(Anandkumar et al. 2012)
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