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Introduction: Lexical Event Ordering

Temporal lexical knowledge is useful for:

• Textual entailment

• Information extraction

• Tense and modality analysis

• Knowledgebase induction

• Question answering

We study a simple problem: lexical event ordering



Related Work

Temporal relations between predicates (Chklovski and Pantel, 2004;
Talukdar et al., 2012; Modi and Titov, 2014)

Binary classification of permutations (Chambers and Jurfasky, 2008;
Manshadi et al., 2008)

Temporal lexicons (Regneri et al., 2010)

Finding stereotypical event order (Modi and Titov, 2014)

This paper:

• Conceptually simple model and inference

• Can include rich features in the learning problem

• General model – can be used for other ordering problems (causality)

• Mostly relies on lexical information
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Lexical Event Ordering

Problem definition: Given a bag of events, predict a full temporal
order for them

What is an event? predicate ( arguments )

Example of bag of events:

• turned ( John , keys ) • turnedOn ( John , airCond )

• checked ( John , rear-window ) • entered ( John , car )

Example of temporal ordering:

entered ( John , car ) turned ( John , keys )

turnedOn ( John , airCond ) checked ( John , rear-window )
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Getting the Data

Wanted to avoid annotating data

Needed text where temporal order extraction is easy
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Preparing Recipes

Downloaded 73K recipes from the web

Parsed them using the Stanford parser

Verb with its arguments is an event

The devil is in the details. See paper

The dataset is available online: http://bit.ly/1Ge8wjj

Example:

“you should begin to chop the onion”: chop ( you , onion )

http://bit.ly/1Ge8wjj


Example Recipe

Butter a deep baking dish butter ( dish )
Put apples, water, flour, sugar
and cinnamon in it

put ( apples , water , flour ,

cinnamon , it )
Mix with spoon mix ( with spoon )
... and spread butter and salt
over the apple mix

spread ( butter , salt ,

over mix )
Bake at 350 degrees F until the
apples are tender and the crust
brown, about 30 minutes

bake ( F )

Serve with cream or whipped
cream

serve ( cream , cream )

A recipe for “Apple Crisp Ala [sic] Brigitte”



Cooking Recipes and Temporal Order

Examined 20 recipes (353 events)

13 events did not have a clear temporal ordering

Cases of mismatch mostly covered by:

• Disjunction:
“roll Springerle pin over dough, or press mold into top”

• Reverse order:
“place on greased and floured cookie sheet”

Average Kendall Tau between temporal ordering and linear one: 0.92



An Ordering Edge-Factored Model

Represent all events in a recipe as a weighted complete graph

Each edge (e1, e2) is scored with a weight w(e1, e2)

The larger the weight w(e1, e2), the more likely event e1 to precede e2

A temporal ordering is a Hamiltonian path p in that graph

The score of a path:

score(p) =
∑

(ei,ej)∈p

w(ei, ej)



An Ordering Edge-Factored Model

The edge weights are parametrized by θ ∈ Rm:

w(e1, e2) =

m∑
i=1

θifi(e1, e2)

Features:

• Combinations of predicates and arguments of e1 and e2

• Combinations of their Brown clusters

• Point-wise mutual information between predicates and arguments



Learning the Model

To do learning, we need

An inference algorithm

• Find the highest scoring Hamiltonian path

• An NP-hard problem

• No triangle inequality – even approximation is hard

• Used Integer Linear Programming

An estimation algorithm for θ

• Used the Perceptron algorithm



Integer Linear Programming Inference

max
ui∈Z,zij∈{0,1}

∑n
i 6=j w(ei, ej)zij

such that
n∑

i=1

zij = 1 ∀i

n∑
j=1

zij = 1 ∀j

uj − ui ≥ 1− n(1− zij) ∀(i, j)

Interpretation:

• zij – is (ei, ej) ∈ p?

• ui – number of edges between start to ei in p



Edge-Factored Estimation

Also experimented with a conditional log-linear model

It scores the probability p(e2|e1)

Induces a Markovian model over Hamiltonian paths

Trained using log-likelihood maximization

Greedy decoding is better than global decoding



Features and Evaluation

Features:

Frequency features - estimated from “unlabeled” corpus

Lexical features

Brown cluster features

Linkage frequency: joint occurence with temporal discourse connective

Evaluation: To compare two Hamiltonian paths:

• Count the number of “concordant pairs” (or tuples)

• Divide by the total number of pairs

In addition, we also checked the fraction of exact match



Feature Inspection

We used two ILP time budgets: 5 seconds and 30 seconds

4K training data

Results on dev set with perceptron:

Budget Features Pair-accuracy Exact

Frequency 68.7 31.7
30 secs Frequency + Lexical 68.9 32.1

Frequency + Lexical + Brown 68.4 31.8

Frequency 65.9 30.4
5 secs Frequency + Lexical 66.2 30.7

Frequency + Lexical + Brown 66.3 30.4



Final Results

Random baseline: 50% (0.5% exact)

Train size Method Pair-accuracy Exact

Perceptron (30 secs) 71.2 35.1
4K Greedy Perceptron 60.8 20.4

Greedy Log-linear 65.6 21.0

Perceptron (5 secs) 68.9 34.4
58K Greedy Perceptron 60.7 20.5

Greedy Log-linear 66.3 21.3

Global model better than local log-linear model

Budget is more important than train size

PMI features were trained on 58K instances



Summary and Future Work

Summary:

• Showed what the lexcial event temporal ordering problem is

• Described a domain in which data is easy to get

• Used structured prediction to solve the problem

• Method can be used for general ordering problems (causality, etc.)

Future Work:

• Future work: improved inference

• Different domains


