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Abstract

Abstract Meaning Representation (AMR)
parsing aims at abstracting away from the syn-
tactic realization of a sentence, and denoting
only its meaning in a canonical form. As such,
it is ideal for paraphrase detection, a problem
in which one is required to specify whether
two sentences have the same meaning. We
show that naı̈ve use of AMR in paraphrase de-
tection is not necessarily useful, and turn to
describe a technique based on latent seman-
tic analysis in combination with AMR parsing
that significantly advances state-of-the-art re-
sults in paraphrase detection for the Microsoft
Research Paraphrase Corpus. Our best results
in the transductive setting are 86.6% for accu-
racy and 90.0% for F1 measure.

1 Introduction

Abstract Meaning Representation (AMR) parsing
focuses on the conversion of natural language sen-
tences into AMR graphs, aimed at abstracting
away from the surface realizations of the sentences
while preserving their meaning.

We make a first step towards showing that AMR
can be used in practice for a task that requires
identifying the canonicalization of language: para-
phrase detection. In a “perfect world” using AMR
to test for paraphrasing relation of two sentences
should be simple. It would require finding the two
AMR parses for each of the sentences, and then
checking whether they are identical. Since AMR
is aimed at abstracting away from the surface form
which is used to express meaning, two sentences
should be paraphrases only if they have identical
AMRs. For instance, the three sentences:

1. He described her as a curmudgeon,

2. His description of her: curmudgeon,

3. She was a curmudgeon, according to his de-
scription.

describe-01

he curmudgeon she

ARG0 ARG2 ARG1

Figure 1: AMR graph for “He described her as a cur-
mudgeon”, “His description of her: curmudgeon” and
“She was a curmudgeon, according to his description”

should result in the same AMR graph as shown
in Figure 1.

However, in practice, things are different. First,
there are no known AMR parsers that really distil
only the meaning in text. For example, predicates
which have interchangeable meaning use differ-
ent AMR concepts, and there are errors that exist
because of the machine learning techniques that
are used for learning the parsers from data. Fi-
nally, even human annotations do not yield per-
fect AMRs, as the interannotator agreement re-
ported in the literature for AMR is around 80%
(Banarescu et al., 2013).

Second, meaning is often contextual, and it is
not fully possible to determine the corresponding
AMR parse just by looking at a given sentence.
Entity mentions denote different entities in differ-
ent contexts, and similarly predicates and nouns
are ambiguous and depend on context. As such,
one cannot expect to use AMR in the transparent
way mentioned above to identify paraphrase rela-
tions. However, we demonstrate in this paper that
AMR can be used in a “softer” way to detect such
relations.

Evaluation of AMR parsers is traditionally per-
formed using the Smatch score (Cai and Knight,
2013). However, Damonte et al. (2017) argue that
more ad-hoc metrics can be useful for advancing
AMR research. Paraphrase detection can be seen



as a further benchmark for AMR parsers, high-
lighting their ability of abstracting away from syn-
tax and representing the core concepts expressed
in the sentence. In order to advance research in
AMR and its applications, it is important to have
metrics that reflect on the ability of AMR graphs
to have impact on subsequent tasks. In this work
we therefore use two different AMR parsers, com-
paring them throughout all experiments.

2 Background

AMRs are rooted, edge labeled, node labeled, di-
rected graphs. They are biased towards the En-
glish language and rely on PropBank (Kingsbury
and Palmer, 2002) for the definition of the main
events in the sentence. Nodes in an AMR graph
represent events and concepts, while edges repre-
sent the relationships between them. Banarescu
et al. (2013) state that AMR are aimed at canon-
icalizing multiple ways of expressing the same
idea, which could be of great assistance to solve
the problem of paraphrase detection. However,
this goal is not entirely achieved in practice, and
it will take long for AMR parsers to mature and
achieve such canonicalization. At the moment, for
example, even a simple pair of sentences such as
“the boy desires the cake” and the “the boy wants
the cake” would not have the same canonical form
by state-of-the-art AMR parsers.

While some researchers (Fodor, 1975) have
doubted the practical possibility of canonicalizing
language or finding identical paraphrases in En-
glish or otherwise, much work in NLP has been
devoted to the problem of paraphrase identifica-
tion (Mitchell and Lapata, 2010; Baroni and Lenci,
2010; Socher et al., 2011; Guo and Diab, 2012;
Ji and Eisenstein, 2013) and more weakly, finding
entailment between sentences and phrases (Dagan
et al., 2006; Bos and Markert, 2005; Harabagiu
and Hickl, 2006; Lewis and Steedman, 2013). In
this work, we use the AMRs parsed for given
sentences as a mean to extract useful information
and train paraphrase detection classifiers on top of
them.

2.1 Latent Semantic Analysis

Our work falls under the category of distribu-
tional methods for paraphrase detection (Turney
and Pantel, 2010; Mihalcea et al., 2006; Mitchell
and Lapata, 2010; Guo and Diab, 2012; Ji and
Eisenstein, 2013) such as with latent semantic

analysis (LSA, Landauer et al., 1998). The main
principle behind this approach is to detect se-
mantic similarity through distributional represen-
tations for a given sentence and its potential para-
phrase, where these representations are compared
against each other according to some similarity
metric or used as features with a discriminative
classification method (Mihalcea et al., 2006; Guo
and Diab, 2012; Ji and Eisenstein, 2013).

LSA is indeed one of the main tools in ob-
taining such distributional representations for the
problem of paraphrase detection. Most often, TF-
IDF weighting has been used for building the
sentence-term matrix, but Ji and Eisenstein (2013)
have shown that a significant improvement can be
achieved in detecting similarity if one re-weights
the sentence-term matrix differently. Indeed, this
is one of our main contributions: we build on
previous work on LSA for paraphrase detection
and propose a technique to re-weight a sentence-
concept matrix based on the AMR graphs for the
given sentences. More details on the use of LSA
for paraphrase detection appear in Section 4.

2.2 AMR Parsing

AMR parsing is the task of converting natural lan-
guage sentences into AMR graphs, which are Di-
rected Acyclic Graphs (DAGs) in all cases except
a few rare controversial cases. This task embeds
several common NLP problems together, such as
named entity recognition, sentential-level corefer-
ence resolution, semantic role labeling and word-
sense disambiguation. Several parsers for AMR
have been recently developed (Flanigan et al.,
2014; Wang et al., 2015; Peng et al., 2015; Pust
et al., 2015; Goodman et al., 2016; Rao et al.,
2015; Vanderwende et al., 2015; Artzi et al., 2015;
Barzdins and Gosko, 2016a; Zhou et al., 2016; Da-
monte et al., 2017; Barzdins and Gosko, 2016b;
Konstas et al., 2017). Shared tasks were also orga-
nized in order to push forward the state-of-the-art
(May, 2016; May and Priyadarshi, 2017).

Meaning representations are usually evaluated
based on their compositionality (construction of a
representation based on parts of the text in a con-
sistent way), verifiability (ability to check whether
a meaning representation is true in a given model
of the world), unambiguity (ability to full disam-
biguate text into the representation in a way that
does not leave any ambiguity lingering), inference
(the existence of a calculus that can be used to



infer whether one meaning representation is log-
ically implied by others) and canonicalization (the
ability to map several surface forms, such as para-
phrases, into a single unique meaning representa-
tion). In this paper, we evaluate AMR on its ability
to canonicalize language through its assistance in
deciding whether two sentences are paraphrases.

We note that this test is masked by the accuracy
of the AMR parsers we use, which indeed do not
give always fully correct predictions. These errors
in our paraphrase detection due to the accuracy
of the AMR parser are different than those which
originate in an inherent difficulty of representing
paraphrases using AMR because of the limitations
of the formalism and the annotation guidelines that
AMR follows.

We experiment with two AMR parsers for
which a public version is available. The first is
JAMR (Flanigan et al., 2014), which is a graph-
based approach to AMR parsing. It works by per-
forming two steps on the input sentence: concept
identification and relation identification. The for-
mer discovers the concept fragments correspond-
ing to span of words in the sentence, while the
latter finds the optimal spanning connected sub-
graph from the concepts identified in the first
step. The concept identification step has quadratic
complexity and the relation identification step is
O(|V |2 log |V |), with |V | being the set of nodes in
the AMR graph.

The second is AMREager (Damonte et al.,
2017), which is a transition-based parser that
works by scanning the string left-to-right and
building the graph as the scan proceeds. This
transition-based system is akin to the depen-
dency parsing transition-system ArcEager of
Nivre (2004), only without constraints that ensure
that the resulting structure is a tree. In addition,
there are operations that make the system create
additional non-projective structures by checking
after transition step whether siblings should be
connected together with an edge. The complex-
ity of AMREager is linear in the length of the
sentence. AMREager was extended to other lan-
guages (Damonte and Cohen, 2018), and we leave
it for future work to test the utility of AMR for
paraphrase detection in these languages.

3 Problem Formulation

Let S be a set of sentences. We are given input
data in the form of (x

(i)
1 , x

(i)
2 , b(i)) for i ∈ [n]

where n is the number of training examples, x(i)j ∈
S, j ∈ {1, 2} and b(i) ∈ {0, 1} is a binary indica-
tor that tells whether x(i)1 is a paraphrase of x(i)2 .

The goal is to learn a classifier

c : S × S → {0, 1}

that tells for unseen instances whether the pair
of sentences given as input are paraphrases of each
other. We denote by [n] the set {1, . . . , n}.

4 Latent Semantic Analysis for
Paraphrase Detection

The first step in our approach is the construction
of lower-dimensional representations for the sen-
tences in the training data. We use latent semantic
analysis to get the sentence representations, which
are then used to detect paraphrases using a classi-
fier. More specifically, given a set of sentences
S = {x(i)j | j ∈ {1, 2}, i ∈ [n]}, we build a
sentence-term matrix T such that Tk` indicates the
use of the `th word in the kth sentence in S. The
number of rows is the number of sentences in the
dataset and the number of columns is the vocabu-
lary size. This follows previous work with the use
of LSA for paraphrasing (Guo and Diab, 2012; Ji
and Eisenstein, 2013).

As a baseline, we experiment with two ways of
assigning the values to the matrix:

• Tk` is the count of the `th word in the kth
sentence:

Tk` = count(`, k)

• Tk` is the term frequency-inverse document
frequency (TF-IDF) for the kth sentence with
respect to the `th word. TF-IDF is commonly
used in Information Retrieval to score words
in a document and combines the frequency
of the words in a document with the rarity of
the term across documents. With TF-IDF, in
order to have a high score, concepts must ap-
pear in this sentence and not in many others.
In that case, we define:

Tk` = count(`, k)× n

csent(`, k)

where count(`, k) gives the count of the `th
word in the kth sentence and csent is the



number of sentences which contain the `th
word:

csent(`, k) = |{k ∈ [|S|] : count(k, `) > 0}|.

The AMR-based systems of Section 5 build
upon this by re-weighting Tk` with terms depend-
ing on the AMRs of the sentences.

For paraphrasing, previous work (Ji and Eisen-
stein, 2013) has also considered the transductive
setting (Gammerman et al., 1998), which we also
use in our experiments. In the transductive setting,
S also includes the sentences on which we expect
to perform the final evaluation for the purpose of
learning the latent representations. Note that, in
this case, the labels b(i) are not used in the pro-
cess of constructing word representations. In the
inductive setting, on the other hand, the sentences
in the testing set are not included in training and
we project them instead using the LSA projection
matrices onto the latent space learned to find their
representations.

Once we constructed the matrix T , we perform
truncated singular value decomposition (SVD) on
it, such that:

T ≈ UΣV >

where U ∈ Rk×m, V ∈ R`×m and Σ ∈ Rm×m

is a diagonal matrix of singular values. The final
sentence representations are the rows of the U ma-
trix which range over the sentences and have m
dimensions.

The output of this process is a function f : S →
Rm which attaches to each sentence a representa-
tion. The idea behind LSA is that this matrix de-
composition will make semantically similar sen-
tences to appear close in the latent space, hence
alleviating the problem of data sparsity and mak-
ing it easier to detect when two sentences are para-
phrases of each other.

Once we construct the sentence representations
from the training data (either in the inductive or
the transductive setting) we use the function f to
map each pair of sentences from the training data
(x

(i)
1 , x

(i)
2 ) to two vectors f(x

(i)
1 ) + f(x

(i)
2 ) and

|f(x
(i)
1 ) − f(x

(i)
2 )| (where the absolute value is

taken coordinate-wise) and then concatenate them
into a feature vector φ(x

(i)
1 , x

(i)
2 ), which is then

used as input to a support vector machine (SVM)
classifier (Ji and Eisenstein, 2013).1

5 Abstract Meaning Representation
Features

The main hypothesis tested in this work is that
AMR can be useful in deciding whether two sen-
tences are paraphrases of each other. We investi-
gate two ways to use AMR information to better
inform the classifier: similarity-based and LSA-
based.

5.1 Graph Similarity and Bag of AMR
Concepts

An obvious way to use AMR information is to
just compute the similarity between the two graphs
and use the score as an additional feature. As a
score we use Smatch, which computes the overlap
in terms of recall, precision and F-score between
two unaligned graphs by finding the alignments
between the graphs that maximizes the overlap.
The alignment step is necessary because in AMR
multiple nodes can have the same labels and ar-
bitrary variable names are used to distinguish be-
tween them. Smatch is the standard metric to eval-
uate the overlap between AMR graphs. The score
returned by Smatch is used as a single additional
feature for the SVM.

The amount of overlap in the AMR nodes of
the two graphs can be a good indicator of whether
the sentences are paraphrases of each other. To
test this hypothesis, we extract the unordered sets
of AMR nodes and use the Jaccard similarity co-
efficient as a feature. This is directly related to
the concept identification step of the AMR parsing
process, which is concerned with generating and
labeling the nodes of the AMR graph. Concept
identification is arguably one of the most challeng-
ing part of AMR parsing as the mapping between
word spans and AMR nodes is not trivial (Wer-
ling et al., 2015). It is often considered as the first
stage in the AMR parsing pipeline and it is there-
fore reasonable to attempt using its intermediate
results. We choose Jaccard as a metric for bag of
concepts overlap following previous work in para-
phrase detection (Achananuparp et al., 2008; Be-

1We note that while the NLP community has largely
switched to the use of neural networks for classification prob-
lems, in our case support vector machines prove to be a sim-
pler and more efficient solution. They also tend to generalize
better than neural networks, as the number of features we use
is not large.



rant and Liang, 2014).
We note that while this approach of using AMR

to detect paraphrase may sound plausible, it does
not perform very well. As such, we compare and
contrast this as an AMR baseline with the ap-
proach that makes use of PageRank with TF-IDF
reweighting for LSA, as described next.

5.2 PageRank and TF-IDF Reweighting for
LSA

The main idea is to re-weight the LSA sentence-
term matrix T (Section 4) according to a proba-
bility distribution over the AMR nodes, which we
accomplish by means of PageRank (Page et al.,
1999). The utility of re-weighting terms in the
sentence-term matrix has been previously proved
(Turney and Pantel, 2010). PageRank is a method,
originally developed for web pages, for ranking
nodes in a graph according to their impact on other
nodes. The algorithm works iteratively by adjust-
ing at each iteration the score of each node based
on the number and scores of nearby nodes that is
connected to it, until convergence. Prior to apply-
ing PageRank, we merge the two graphs by col-
lapsing the concepts in the two graphs that have
the same labels, similarly to Liu et al. (2015),
as shown in Figure 2. We then compute the
PageRank score for each node in the merged graph
and multiply them by the corresponding frequency
count of that concept in the sentence-term matrix.
The graph merging step is necessary in order to en-
sure that overlapping concepts obtain high PageR-
ank scores. The PageRank step applied to the
merged graph ensures that this importance prop-
agates to nearby nodes.

For a given graph G = (V,E), PageRank takes
as input a list of edges between nodes:

E = {(ni,mi)}, ∀i = 0, . . . , n

n = |E|
and outputs a PageRank score for each node by
solving the following equations with respect to
PG(·):

PG(n) =
∑

m∈I(n)

PG(m)

l(m)

where I(n) are the input edges to node n and
l(m) is the number of edges coming out of m.

For each concept of the merged AMR graph, we
compute Tk`, the weight for the LSA matrix intro-
duced in Section 4, as follows:

Tk` = PG(l, k)× count(l, k)

where PG(l, k) is the PageRank of `th concept for
the kth sentence.

As a baseline for the PageRank system, the TF-
IDF re-weighting scheme, as described in Sec-
tion 4, is also used to re-weight the AMR concepts.

6 Experiments

We now describe the experiments that we devised
to discover whether AMR is useful for paraphrase
detection. For AMR parsing, we used the JAMR2

version published for SemEval 2016 (Flanigan
et al., 2016), reporting 0.67 Smatch score on
LDC2015E86 and the first and only version avail-
able for AMREager,3 obtaining 0.64 Smatch score
on the same dataset. First, we discuss experi-
ments where the AMRs are used as a mean to ex-
tract additional sparse features for a SVM classi-
fier. Then we turn to LSA to construct a represen-
tation of the sentence based on the reweighting on
the AMR nodes achieved through either PageR-
ank or TF-IDF. Results show how the latter, which
builds on state-of-the-art systems for this task, is
a much more promising approach. Finally, we an-
alyze how performance changes as a function of
the number of dimensions used in the truncated
matrix.

For evaluation, we use the Microsoft Research
Paraphrase Corpus (Dolan et al., 2004). We use
70% of the dataset as training data and 30% as a
test set. The total number of sentence pairs in the
corpus is 5,801.

6.1 Graph Similarity and Bag of AMR
Concepts

The Bag of words (BOW) baseline consists of a
SVM that takes into account one single feature:
the Jaccard score between the BOW representa-
tions for the two sentences, i.e., one-hot vectors
indicating whether each word in the vocabulary is
used or not. The use of the single Jaccard fea-
ture means that for the linear kernel we just learn
a threshold on the score.

We note that the addition of the similarity-based
features does not suffice to outperform the BOW
baseline, as described in Table 1. Unlike Smatch,
the bag of concepts feature does not need to find a,
possibly wrong, alignment between the two graphs

2JAMR is available from https://github.com/
jflanigan/jamr.

3AMREager is available from http://cohort.inf.
ed.ac.uk/amreager.html.

https://github.com/jflanigan/jamr
https://github.com/jflanigan/jamr
http://cohort.inf.ed.ac.uk/amreager.html
http://cohort.inf.ed.ac.uk/amreager.html
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Figure 2: Visualization of the graph merging procedure for the sentence Yucaipa owned Dominick’s before selling
the chain to Safeway in 1998 for $2.5 billion. (above) and Yucaipa bought Dominick’s in 1995 for $693 million
and sold it to Safeway for $1.8 billion in 1998. (below). The “date-entity”, “sell-01” and “1998” nodes in the two
AMR graphs on the left are merged in the resulting graph on the right.

because it considers the node labels only. Inter-
estingly, the addition of the bag of concepts fea-
ture is beneficial only for AMREager. It is indeed
worth noting the different behaviors of the two
parsers: when using the Smatch score only, JAMR
reports slightly higher numbers than AMREager.
However, when using the bag of concepts features
too, AMREager is considerably better than JAMR,
which is unexpected as the concept identification
performance of the two parsers is reported to be
identical (Damonte et al., 2017).

There is also some variability with the kernel
used for the SVM classifier. The polynomial ker-
nel does consistently better than the RBF and lin-
ear kernel. This means that a low-level interaction
between the sentence representations does exist
(when trying to determine whether they are para-
phrases), but a higher order interaction, such as
implied with RBF, is not necessary to be modeled.

6.2 PageRank and TF-IDF Reweighting for
LSA

We now turn to experiments involving LSA as a
mean to represent the candidate paraphrases. In

this set of experiments, the baseline consists of
using TF-IDF to weight the bag of words in the
sentence-term matrix.

We first try to replace the bag of words with
the bag of concepts from the AMR graphs, also
re-weighted by TF-IDF. Then, we also replace the
TF-IDF with PageRank as it is more appropriate to
re-weight graph structures than TF-IDF. We report
experiments for both inductive setting and trans-
ductive setting (Table 3). Our first finding is that,
regardless of the parser, AMR is very helpful in
the tranductive setting while it is harmful in the
inductive setting. When using bag of words, it is
easy to project sentences of the test set into the
latent space learned on the training set only. How-
ever, our experiments indicate that this is not as
easy with the AMR concepts produced by the two
parsers. On the other hand, when the latent space
is learned using also the sentences in the test set,
the abstractive power of AMRs is helpful for this
task. In the inductive setting, PageRank fails to
improve over the TF-IDF scheme and neither of
them outperform the BOW baseline. AMREager
outperforms JAMR in this case. In the transduc-



kernel acc. P R F1

Sm
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A
M
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ag
er linear 65.8 81.8 62.9 71.1

poly 68.5 75.4 78.3 76.8
rbf 65.0 84.0 58.8 69.2

JA
M

R linear 63.4 79.4 61.0 69.0
poly 64.9 76.0 69.3 72.5
rbf 61.8 82.0 55.3 65.9

Sm
at

ch

A
M

R
E

ag
er linear 63.8 79.4 61.7 69.5

poly 67.8 72.0 84.7 77.8
rbf 61.6 81.2 55.3 65.8

JA
M

R linear 63.5 77.8 63.5 69.9
poly 68.1 71.6 86.5 78.3
rbf 62.0 0.80 57.4 66.9

B
O

W

linear 68.1 84.1 64.3 72.9
poly 72.7 77.8 82.7 80.2
rbf 68.1 84.1 64.3 72.9

Table 1: Baseline results for paraphrase detection with
AMR and with bag-of-words (BOW). “linear,” “poly”
and “rbf” denote the kernel which is used with a
support vector machine classifier. “Smatch” denotes
the use of the additional graph similarity feature and
“BOC” the use of the additional Jaccard score on the
bag of concept. Best result in each column is in bold.

tive case, the AMRs provided by JAMR are help-
ful with both TF-IDF and PageRank, while the
graphs provided by AMREager give good results
only for the PageRank scheme. The best result is
achieved with JAMR, PageRank and a linear ker-
nel for the SVM classifier.

We wanted to test in our experiments whether
the same gains that are achieved with AMR pars-
ing can also be achieved with just a syntactic
parser. To test that, we parsed the paraphrase
dataset with a dependency parser and reduced the
syntactic parse trees to AMR graphs (meaning, we
represented the dependency trees as graphs by rep-
resenting each word as a node and labeled depen-
dency relations as edges). Figure 3 gives an exam-
ple of such conversion. As can be see, the AMR-
like representation for the dependency trees retains
words such as determiners (“the”). It also uses a
different set of relations, as reflected by the edge
labels that the dependency parser returns.

We chose to do this reduction instead of directly
building a classifier that makes use of the depen-
dency trees to ensure we are conducting a con-
trolled experiment in which we precisely compare
the use of syntax for paraphrase against the use of
semantics. Once the syntactic trees are converted

(a)

The mouse chased the cat

root

nsubj
dobj

det det

(b)

( c / chased
nsubj ( m / mouse

det ( t1 / The ) )
dobj ( c / cat

det ( t2 / the ) )
)

Figure 3: An example of a dependency tree (a) con-
verted to an AMR graph (b).

to AMR graphs, the same code is used to run the
experiments as in the case of AMR parsing, with
both the PageRank and TF-IDF reweighting set-
tings. We used the dependency parser from the
Stanford CoreNLP (Manning et al., 2014). The
results are given in Table 3, under “dep.” As can
be seen, these results lag behind the bag-of-words
model in the inductive case and the AMR models
in the transductive case. This could be attributed
to AMR parsers better abstracting away from the
surface form than dependency parsers.

System acc. F1

Most common class 66.5 79.9
Mitchell and Lapata (2010) 73.0 82.3
Baroni and Lenci (2010) 73.5 82.2
Socher et al. (2011) 76.8 83.6
Guo and Diab (2012) 71.5 NR
Ji and Eisenstein (2013) (ind.) 80.0 85.4
Ji and Eisenstein (2013) (trans.) 80.4 86.0
Our paper (inductive) 68.7 80.9
Our paper (transductive) 86.6 90.0

Table 2: Comparison of our results with previous work
(“NR” stands for “not reported”). All work mentioned
above was done in the inductive setting, except for Ji
and Eisenstein (2013), which, like us, was done in both
settings.

6.3 Dimensionality of the Truncated Matrix
Figure 4 shows how performance changes as a
function of the number of dimensions used in the



inductive transductive
kernel acc. P R F1 acc. P R F1
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ge

R
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AM

REag
er linear 68.7 73.1 84.0 78.2 79.4 79.9 92.6 85.7

poly 67.6 67.9 97.6 80.1 67.0 67.3 98.6 80.0
rbf 68.0 75.0 78.1 76.5 79.6 84.8 84.5 84.7

JA
M

R
linear 59.3 70.4 67.4 68.9 86.6 88.3 92.0 90.0
poly 66.9 67.6 96.7 79.6 80.0 69.6 98.1 81.5
rbf 67.4 73.5 79.9 76.6 86.6 90.4 89.5 89.9

de
p.

linear 62.4 71.6 72.5 72.1 79.0 83.2 85.0 84.1
poly 68.3 69.0 95.3 80.1 74.0 77.6 85.1 81.2
rbf 68.8 71.0 90.0 79.4 77.0 89.4 73.9 80.9

T
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D
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REag

er linear 68.9 73.4 83.7 78.2 73.0 75.8 87.1 81.1
poly 68.7 68.7 98.2 80.9 68.0 68.2 98.5 80.6
rbf 68.3 77.9 73.4 75.6 72.0 81.2 75.6 78.3

JA
M

R
linear 57.6 68.8 66.8 67.8 82.0 84.7 88.5 86.5
poly 67.4 67.8 97.4 79.9 82.0 84.7 88.5 86.5
rbf 69.1 76.7 77.2 76.8 85.0 88.0 88.9 88.4

de
p.

linear 70.3 74.2 85.1 79.3 69.0 73.8 82.8 78.1
poly 68.8 68.7 97.8 80.7 68.0 68.2 98.2 80.5
rbf 70.6 79.1 76.0 77.5 70.0 79.3 75.5 77.4

BOW
linear 71.9 75.4 86.0 80.4 73.0 75.8 87.7 81.3
poly 70.5 69.8 98.3 81.6 71.0 69.9 98.1 81.7
rbf 70.5 81.3 72.5 76.6 73.0 82.5 75.7 79.0

Table 3: LSA experiments in the inductive and transductive settings, with two different reweighting schema:
“PageRank” and “TF-IDF”. “linear,” “poly” and “rbf” denote the kernel for the SVM. “dep.” denotes the use of
syntactic parsing instead of semantic parsing.

truncated matrix U (Section 4). More specifically,
on the x axis of the plots we have m/l, where m
is the number of columns in the truncated matrix
and l the number of words in the vocabulary. The
plot shows that the performance stays stable for
inductive inference. With transductive inference,
however, performance peaks whenm is very close
to the vocabulary size. This shows that, in order
to achieve good results, it is not necessary to re-
move a large number of columns from the origi-
nal sentence-term matrix. The plot gives us more
evidence on how the inductive setting is not ideal
for the AMR-based approach. For the TF-IDF re-
weighting, the systems that show a considerably
different behavior are JAMR with linear and RBF
kernels, where we show clear peaks for the trans-
ductive case. For PageRank also the AMREager
systems with linear and RBF kernel follow this
trend. In general the polynomial kernel is the one
less affected by this variable.

Table 2 shows that our best result for the trans-
ductive case, which we obtain with JAMR and
PageRank, outperforms the current state of the art

for paraphrase detection in the transductive set-
ting. This is not true for the inductive case, prov-
ing the preference of the AMR-based LSA ap-
proach for the former setting.

7 Conclusion

We described an approach to incorporate an AMR
parser output into the detection of paraphrases.
Our method works by merging two graphs that
need to be tested for a paraphrase relation, and
then re-weighting a sentence-term matrix by the
PageRank values of the nodes in the merged graph.
We find that our method gives significant improve-
ments over state of the art in paraphrase detection
in the transductive setting, showing that AMR is
indeed helpful for this task. We further show that
the inductive settings is instead not ideal for this
type of approach.

We are encouraged by the results, and believe
that paraphrase detection can also be used as a
proxy test for the performance of an AMR parser:
if an AMR parser is close to canonicalizing lan-
guage, it should be of significant help in detecting
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Figure 4: Plots of F1 measure as a function of m/l, where m is the number of columns in the truncated matrix and
l the number of words in the vocabulary. The top plots are in the transductive setting (with the left using PageRank
and the right using TF-IDF weighting) while the bottom plots are in the inductive setting.

paraphrase relations. In our experiments, the over-
all best result was achieved by JAMR. More gen-
erally, our results show that JAMR has been more
helpful in the transductive setting and in the first
set of experiment when using the Smatch score
only, while AMREager wins the comparison in the
inductive case as well as in the first set of experi-
ments when using both the Smatch score and the
bag of concepts score as additional features.
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