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A Supplementary Material

A longer version of the paper should be available soon [2]; we anticipate it will include:

1. Discussion of the relationship of our framework to Dirichlet smoothing.
2. Discussion of the relationship of our distributional assumptions to Tsybakov noise condi-

tion.
3. An explanation about the derivation of simpler complexity bounds in the supervised case.
4. An empirical exploration of the distributional assumptions.
5. A description of NP-hardness results for empirical risk minimization in the unsupervised

setting.
6. A description of the variants of MLE algorithms needed to be used in our framework.

A.1 The Nk = 2 Assumption

When approximating a family of probabilistic grammars, it is convenient to assume the degree of
the grammar is limited. We limit the degree of the grammar by making the assumption that Nk ≤
2. This assumption may seem, at first glance, somewhat restrictive, but we show next that for
probabilistic context-free grammars (and as a consequence, other formalisms), this assumption does
not restrict generative capacity.

We first show that any context-free grammar with arbitrary degree can be mapped to a new grammar
that generates derivations that can be transformed back to derivations in the original grammar. Such
a grammar is also called a “covering grammar.” Let G be a CFG. Let A be the kth nonterminal.
Consider the rules A → αi for i ≤ Nk where A appears on the left side. For each rule A → αi,
i < Nk, we create a new nonterminal in G′ such that Ai has two rewrite rules: Ai → αi and
Ai → Ai+1. In addition, we create a rule A→ A1 and ANk

→ αNk
.

It is easy to verify that the resulting grammarG′ has an equivalent capacity to the original CFG,G.
A simple transformation that converts each derivation in the new grammar to a derivation in the old
grammar would be to collapse any path of nonterminals that were added to G′ (i.e. all Ai for non-
terminal A) such that we end up with nonterminals from the original grammar only. Similarly, any
derivation in G can be converted to a derivation in G′, by adding new nonterminals through unary
application of rules of the formAi → Ai+1. Given a derivation z inG, we denote by ΥG 7→G′(z) the
corresponding derivation in G′ after adding the new non-terminals Ai to z. Throughout the paper,
we will refer to the normalized form ofG′ as “binary normal form.”1

1This notion of binarization is different from previous types of binarization for grammars. In most cases,
previous work binarized grammars to have at most two nonterminals on the right side (i.e., Chomsky normal
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Note thatK ′, the number of multinomials in the binary normal form is a function of both the number
of nonterminals in the original grammar and the number of rules in that grammar. More specifically,
we have that K ′ =

∑K
k=1Nk + K. To make the equivalence complete, we need to show that any

probabilistic context-free grammar can be translated to a PCFG with maxkNk ≤ 2 such that the
two PCFGs induce equivalent distributions over derivations.

Lemma A.1. Let ai ∈ [0, 1], i ∈ {1, . . . , N} such that
∑
i ai = 1. Define b1 = a1, c1 = 1 − a1,

bi =

(
ai
ai−1

)(
bi−1
ci−1

)
and ci = 1− bi for i ≥ 2. Then ai =

i−1∏
j=1

cj

 bi.

Proof. See [2].

Theorem A.2. Let 〈G,θ〉 be a probabilistic context-free grammar. Let G′ be the transformation
of G as defined above. Then, there exists θ′ for G′ such that for any z ∈ D(G) we have Q(z |
θ,G) = Q(ΥG7→G′(z) | θ′,G′) where Q(· | θ,G) (or Q(· | θ′,G′)) is the probability distribution
for 〈G,θ〉 (or 〈G′,θ′〉).

Proof. For the grammar G, index the set {1, ...,K} with nonterminals ranging from A1 to AK .
Define G′ as above. We need to define θ′. Index the multinomials in G′ by (k, i), each having
two events. Let µ(k,i),1 = θk,i, µ(k,i),2 = 1 − θk,i for i = 1 and set µk,i,1 = θk,i/µ(k,i−1),2, and
µ(k,i−1),2 = 1− µ(k,i−1),2.

〈G′,µ〉 is a weighted context-free grammar such that the µ(k,i),1 corresponds to the ith event in the
k multinomial of the original grammar. Let z be a derivation inG and z′ = ΥG7→G′(z). Then, from
Utility Lemma A.3 and the construction of g′, we have that:

Q(z | θ,G) =

K∏
k=1

Nk∏
i=1

θ
ψk,i(z)
k,i (A1)

=

K∏
k=1

Nk∏
i=1

ψk,i(z)∏
l=1

θk,i (A2)

=

K∏
k=1

Nk∏
i=1

ψk,i(z)∏
l=1

i−1∏
j=1

µ(k,j),2

µk,i,1 (A3)

=

K∏
k=1

Nk∏
i=1

i−1∏
j=1

µ
ψk,i(z)

(k,j),2

µ
ψk,i(z)
k,i,1 (A4)

=

K∏
k=1

Nk∏
j=1

2∏
i=1

µ
ψk,j(z

′)

(k,j),i (A5)

= Q(z′ | µ,G′) (A6)

From [1], we know that the weighted grammar 〈G′,µ〉 can be converted to a probabilistic context-
free grammar 〈G′,θ′〉, through a construction of θ′ based on µ, such that Q(z′ | µ,G′) = Q(z′ |
θ′,G′).

The proof for Lemma A.2 gives a construction the parameters θ′ ofG′ such that 〈G,θ〉 is equivalent
to 〈G′,θ′〉. The construction of θ′ can also be reversed: given θ′ for G′, we can construct θ for G
so that again we have equivalence between 〈G,θ〉 and 〈G′,θ′〉.

form). Another form of binarization for linear context-free rewriting systems is limiting the fan-out of the rules
to two [5, 4]. We limit the number of rules for each nonterminal (or more generally, the number of elements in
each multinomial).
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A.2 Proof of Proposition 4.2

Proposition 4.2. There exists an M such that for any m > M we have:

P
(⋃

f∈F{z | Cm(f)(z)− f(z) ≥ εtail(m)}
)
≤ εtail(m) for εtail(m) =

N log2m

mp − 1
and Cm(f) =

T (f,m−p).

Utility Lemma A.3. (From [3].) Let a ∈ [0, 1] and let b = a if a ∈ [γ, 1 − γ], b = γ if a ≤ γ and
b = 1− γ if a ≥ 1− γ. Then for any ε ≤ 1/2 such that γ ≤ ε/(1 + ε) we have log a/b ≤ ε.

Proof of Proposition 4.2. Let Z(m) be the set of derivations of size bigger than log2m. Let f ∈ F.
Define f ′ = T (f,m−p). For any z /∈ Z(m) we have that:

f ′(z)− f(z) = −
K∑
k=1

(
φk,1(z) log θk,1 + φk,2(z) log θk,2 − φk,1(z) log θ′k,1 − φk,1(z) log θ′k,2

)
≤

K∑
k=1

log2m
(
max{0, log(θ′k,1/θk,1)}+ max{0, log(θ′k,2/θk,2)}

)
(A7)

Without loss of generality, assume εtail(n)/N log2m ≤ 1/2. Let γ =
εtail(m)/N log2m

1 + εtail(m)/N log2m
=

1/mp. From Utility Lemma A.3 we have that log(θ′k,i/θk,i) ≤ εtail(m)/N logm. Plug this in into
Eq. A7 (N = 2K) to get that for all z /∈ Z(m) we have f ′(z) − f(z) ≤ εtail(m). It remains to
show that the measure P(Z(m)) ≤ εtail(m). Note that

∑
z∈Z(m) P(z) ≤

∑
k>log2m LΛ(k)rk ≤

L
∑
k>log2m q

k = Lqlog
2m/(1− q) < εtail(m) for m > M where M is fixed.

A.3 Proof of Lemma 4.5

Lemma 4.5. Denote by Zε,n the set
⋃
f∈F{z | Cn(f)(z) − f(z) ≥ ε}. Denote by Aε,n the event

“one of zi ∈ D is in Zε,n.” Then if Fn properly approximates F then:

E [Remp,n(gn)−Remp,n(f∗n)] (A8)

≤
∣∣E [Remp,n(Cn(f∗n)) | Aε,n

]∣∣P(Aε,n) +
∣∣E [Remp,n(f∗n) | Aε,n

]∣∣P(Aε,n) + εtail(n)

where the expectations are taken with respect to the dataset D.

Proof. Consider the following:

E[Remp,n(gn)−Remp,n(f∗n)] (A9)
= E[Remp,n(gn)−Remp,n(Cn(f∗n)) +Remp,n(Cn(f∗n))−Remp,n(f∗n)] (A10)
= E[Remp,n(gn)−Remp,n(Cn(f∗n))] + E[Remp,n(Cn(f∗n))−Remp,n(f∗n)] (A11)

Note first that E[Remp,n(gn) − Remp,n(Cn(f∗n))] ≤ 0, by the definition of gn as the minimizer of
Remp,n. We next bound E[Remp,n(Cn(f∗n))−Remp,n(f∗n)]. We know that from the requirement of
proper approximation that we have:

E[Remp,n(Cn(f∗n))−Remp,n(f∗n)] (A12)
= E[Remp,n(Cn(f∗n))−Remp,n(f∗n) | Aε,n]P(Aε,n) + (A13)

E[Remp,n(Cn(f∗n))−Remp,n(f∗n) | ¬Aε,n](1− P(Aε,n))

≤ |E[Remp,n(Cn(f∗n)) | Aε,n]|P(Aε,n) + |E[Remp,n(f∗n) | Aε,n]|P(Aε,n) + εtail(n) (A14)

and that equals the right side of Eq. A8.
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A.4 Explanation about Lemma 5.1

Lemma 5.1 is a variant of Theorem 24 in Pollard [6, chapter 2, pages 25–27]. We use the notation
of Pollard in this section for compatibility. Pf is the expected value of f under distribution P and
Pnf is the expected function of f under the empirical distribution Pn.

Pages 30–31 in Pollard describe an extension of Theorem 24, where the empirical process in The-
orem 24, supf∈F |Pnf − Pf | is changed such that F become Fn (i.e., dependent on n). However,
this extension assumes that |f | ≤ K for some constant K, which is not true for the proper approxi-
mations. We describe how to adapt the extension of Theorem 24 to get Lemma 5.1 with Kn.

We follow the first part of the proof of Theorem 24, and bound each of the quantities PFn{Fn >
Kn} and PnF{Fn > Kn} by ε/2. We know that the quantity PFn{Fn > Kn}, for some n,
becomes smaller than ε/2 because of the requirement for the expected value of the truncated func-
tions to be smaller than εbound(n). In addition, we can use Markov inequality and the fact that
E[PnF{Fn > Kn}] = PFn{Fn > Kn} to bound the probability that PnF{Fn > Kn} is bigger
than ε/2. This is how we get the second summand in the right side of the probability term in Lemma
5.1. At that point, we can just follow the proof of Theorem 24 and its extension in pages 30–31 to
get Lemma 5.1, using the truncated set of functions Ftruncated,n.

A.5 Boundedness Property in the Unsupervised Case

To complete §5.2 in the manuscript, we show that the boundedness property holds for F′n.

Proposition A.4. There exists a β′(L, p, q,N) > 0 such that F′m has the boundedness property with
Km = pN log3m and εbound(m) = m−β

′ logm.

Proof. From the requirement of P, we know that for any x we have a z such that yield(z) = x and
|z| ≤ α|x|. Therefore, if we let X(m) = {x | |x| ≤ log2m/α}, then we have for any f ∈ F′m and
x ∈ X(m) that f(x) ≤ pN log3m = Km (similarly to the proof of Proposition 4.1). Denote by
f1(x, z) the function in Fm such that f(x) = − log

∑
z exp(−f1(x, z)).

In addition, from the requirements on P and the definition of Km we have:

E
[
|f | × I(|f | ≥ Km)

]
=

∑
x

P(x)f(x)I(f ≥ Km) (A15)

=
∑

x:|x|>log2m/α

P(x)f(x) (A16)

≤
∑

x:|x|>log2m/α

P(x)f1(x, z(x)) (A17)

where z(x) is some derivation for x. We have:∑
x:|x|>log2m/α

P(x)f1(x, z(x)) ≤
∑

x:|x|≥log2m/α

∑
z∈Dx(G)

P(x, z)f1(x, z(x)) (A18)

≤ pN logm
∑

x:|x|>log2m/α

∑
z

P(x, z)|z(x)| (A19)

≤ pN logm
∑

k>log2m

Λ(k)rkk (A20)

≤ pN logm
∑

k>log2m

qkk ≤ κ logmqlog
2m (A21)

for some constant κ > 0. Finally, for some β′(L, p, q,N) = β′ > 0 and some constant M , if
m > M then κ logm

(
qlog

2m
)
≤ m−β′ logm.
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[5] C. Gómez-Rodrı́guez and G. Satta. An optimal-time binarization algorithm for linear context-
free rewriting systems with fan-out two. In Proceedings of ACL-IJCNLP, 2009.

[6] D. Pollard. Convergence of Stochastic Processes. New York: Springer-Verlag, 1984.

5


