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Abstract

Probabilistic grammars are generative statistical models that are useful for compo-
sitional and sequential structures. We present a framework, reminiscent of struc-
tural risk minimization, for empirical risk minimization of the parameters of a
fixed probabilistic grammar using the log-loss. We derive sample complexity
bounds in this framework that apply both to the supervised setting and the un-
supervised setting.

1 Introduction

Probabilistic grammars are an important statistical model family used in natural language processing
[7], computer vision [16], computational biology [19] and more recently, in human activity analysis
[12]. They are commonly estimated using maximum likelihood estimate or variants. Such estima-
tion can be viewed as minimizing empirical risk with the log-loss [21]. The log-loss is not bounded
when applied to probabilistic grammars, and that makes it hard to obtain uniform convergence re-
sults. Such results would help in deriving sample complexity bounds, that is, bounds on the number
of training examples required to obtain accurate estimation.

To overcome this problem, we derive distribution-dependent uniform convergence results for proba-
bilistic grammars. In that sense, our learning framework relates to previous work about learning in a
distribution-dependent setting [15] and structural risk minimization [21]. Our work is also related to
[8], which discusses the statistical properties of estimation of parsing models in a distribution-free
setting. Based on the notion of bounded approximations [1, 9], we define a sequence of increasingly
better approximations for probabilistic grammars, which we call “proper approximations.” We then
derive sample complexity bounds in our framework, for both the supervised case and the unsuper-
vised case.

Our results rely on an exponential decay in probabilities with respect to the length of the derivation
(number of derivation steps the grammar takes when generating a structure). This means that most
of the probability mass for such a distribution is concentrated on a small number of grammatical
derivations. We formalize this notion, and use it in many of our results. For applications involving
real-world data of finite size (as in natural language processing, computational biology, and so on),
we believe this is a reasonable assumption.

The rest of the paper is organized as follows. §2 gives an overview of probabilistic grammars. §3
gives an overview of the learning setting. §4 presents proper approximations, which are approximate
concept spaces that permit the derivation of sample complexity bounds for probabilistic grammars.
§5 describes the main sample complexity results. We discuss our results in §6 and conclude in §7.
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2 Probabilistic Grammars

A probabilistic grammar defines a probability distribution over grammatical derivations generated
through a step-by-step process. For example, probabilistic context-free grammars (PCFGs) generate
phrase-structure trees by recursively rewriting nonterminal symbols as sequences of “child” symbols
according to a fixed set of production rules. Each rewrite of a PCFG is conditionally independent
of previous ones given one PCFG state; this Markov property permits efficient inference for the
probability distribution defined by the probabilistic grammar.

In this paper, we will assume that any grammatical derivation z fully determines a string x, denoted
yield(z). There may be many derivations z for a given string (perhaps infinitely many for some
kinds of grammars; we assume that the number of derivations is finite). In general, a probabilistic
grammar defines the probability of a grammatical derivation z as:

hθ(z) =
∏K
k=1

∏Nk

i=1 θ
ψk,i(z)
k,i = exp

∑K
k=1

∑Nk

i=1 ψk,i(z) log θk,i (1)

ψk,i is a function that “counts” the number of times the kth distribution’s ith event occurs in the
derivation. The θ are a collection of K multinomials 〈θ1, ...,θK〉, the kth of which includes Nk
events. We let N =

∑K
k=1Nk denote the total number of derivation event types. D(G) denotes

the set of all possible derivations of G. We define Dx(G) = {z ∈ D(G) | yield(z) = x}. We let
|x| denote the length of the string x, and |z| =

∑K
k=1

∑Nk

i=1 ψk,i(z) denote the “length” (number of
event tokens) of the derivation z.

Parameter estimation for probabilistic grammars means choosing θ from complete data (“super-
vised”) or incomplete data (“semi-supervised” or “unsupervised,” the latter usually implying that
strings x are evidence but all derivations z are missing). We can view parameter estimation as iden-
tifying a hypothesis from H(G) = {hθ(z) | θ} or, equivalently, from F(G) = {− log hθ(z) |
θ}. For simplicity of notation, we assume that there is a fixed grammar and use H to re-
fer to H(G) and F to refer to F(G).1 For every fθ ∈ F we have parameters θ such that
fθ(z) = −

∑K
k=1

∑Nk

i=1 ψk,i(z) log θk,i.

We will make a few assumptions aboutG and P(z), the distribution that generates derivations from
D(G) (note that P does not have to be a probabilistic grammar):

• Bounded derivation length: There is an α ≥ 1 such that, for all z, |z| ≤ α|yield(z)|. Further,
|z| ≥ |x|.

• Exponential decay of derivations: There is a constant r < 1 and a constant L ≥ 0 such that
P(z) ≤ Lr|z|.

• Exponential decay of strings: Let Λ(k) = |{z ∈ D(G) | |z| = k}| be the number derivations
of length k in G. Taking r as above, then we assume there exists a constant q < 1, such that
Λ(k)rk ≤ qk. This implies that the number of derivations of length k may be exponentially large
(e.g., as with many PCFGs), but is bounded by (q/r)k.

• Bounded expectations of rules: There is a B <∞ such that E[ψk,i(z)] ≤ B for all k and i.

We note that, for example, these assumptions must hold for any P whose support consists of a
finite set. These assumptions also hold in many cases when P itself is a probabilistic grammar.
See supplementary material for a note about these assumptions, their empirical justification and the
relationship to Tsybakov noise [20, 15].

3 The Learning Setting

In the supervised learning setting, a set of grammatical derivations z1, . . . , zn is used to estimate θ,
implying a choice of h ∈ H that “agrees” with the training data. MLE chooses h∗ ∈ H to maximize
the likelihood of the data:

h∗ = argmax
h∈H

1

n

n∑
i=1

log h(zi) = argmin
h∈H

∑
z∈D(G)

P̃(z) (− log h(z))

︸ ︷︷ ︸
Remp,n(− log h)

(2)

1Learning the rules in a grammar is another important problem that has received much attention [11].
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As shown, this equates to minimizing the empirical risk, or the expected value of a particular loss
function known as log-loss. The expected risk, under P, is the (unknowable) quantity

R(− log h) =
∑

z∈D(G)

P(z) (− log h(z)) = EP[− log h]

Showing convergence of the form suph∈H |Remp,n(− log h)−R(− log h)| −→
n→∞

0 (in probability),

is referred to as double-sided uniform convergence. (We note that suph∈H |Remp,n(− log h) −
R(− log h)| = supf∈F |Remp,n(f) − R(f)|). This kind of uniform convergence is the driving
force in showing that the empirical risk minimizer is consistent, i.e., the minimized empirical risk
converges to the minimized expected risk. We assume familiarity with the relevant literature about
empirical risk minimization; see [21].

4 Proper Approximations

The log-loss is unbounded, so that there is no function F : D(G) → R such that, ∀f ∈ F, ∀z ∈
D(G), f(z) ≤ F (z); i.e., there is no envelope to uniformly bound F. This makes it difficult to
obtain a uniform convergence result of supf∈F |Remp,n(f) − R(f)|. Vapnik [21, page 93] shows
that we can still get consistency for the maximum likelihood estimator, if we bound from below and
above the family of probability distributions at hand.

Instead of making this restriction, which is heavy for probabilistic grammars, we revise the learning
model according to well-known results about the convergence of stochastic processes. The revision
approximates the concept space using a sequence F1,F2, . . . and replaces two-sided uniform con-
vergence with convergence on the sequence of concept spaces. The concept spaces in the sequence
vary as a function of the number of samples we have. We next construct the sequence of concept
spaces, and in §5 we return to the learning model. Our approximations are based on the concept of
bounded approximations [1, 9].

Let Fm (for m ∈ {1, 2, . . .}) be a sequence of concept spaces contained in F. We will require that
as m grows larger, Fm becomes a better approximation of the original concept space F. We say that
the sequence “properly approximates” F if there exists a non-increasing function εtail(m) such that
εtail(m) −→

m→∞
0, a non-increasing function εbound(m) such that εbound(m) −→

m→∞
0, and an operator

Cm:F → Fm such that for all m larger than some M :

Containment: Fm ⊆ F

Boundedness: ∃Km ≥ 0, ∀f ∈ Fm, E
[
|f | × I(|f | ≥ Km)

]
≤ εbound(m)

Tightness: P

⋃
f∈F

{
z | Cm(f)(z)− f(z) ≥ εtail(m)

} ≤ εtail(m)

The second requirement bounds the expected values of Fm on values larger than Km. This is
required to obtain uniform convergence results in the revised model [18]. Note that Km can grow
arbitrarily large. The third requirement ensures that our approximation actually converges to the
original concept space F. We will show in §4.2 this is actually a well-motivated characterization of
convergence for probabilistic grammars in the supervised setting.

We note that a good approximation would have Km increasing fast as a function of m and εtail(m)
and εbound(m) decreasing fast as a function ofm. As we will see in §5, we cannot have an arbitrarily
fast convergence rate (by, for example, taking a subsequence of Fm), because the size of Km has a
great effect on the number of samples required to obtain accurate estimation.

4.1 Constructing Proper Approximations for Probabilistic Grammars

We now focus on constructing proper approximations for probabilistic grammars. We make an as-
sumption about the probabilistic grammar that ∀k,Nk = 2. For most common grammar formalisms,
this does not change the expressive power: any grammar that can be expressed using Nk > 2 can be
expressed using a grammar that has Nk ≤ 2. See supplementary material and [6].
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We now construct Fm. For each f ∈ F we define the transformation T (f, γ) that shifts every
θk = 〈θk,1, θk,2〉 in the probabilistic grammar by γ:

〈θk,1, θk,2〉 ←

{ 〈γ, 1− γ〉 if θk,1 < γ
〈1− γ, γ〉 if θk,1 > 1− γ
〈θk,1, θk,2〉 otherwise

(3)

Note that T (f, γ) ∈ F for any γ ≤ 1/2. Fix a constant p > 1. For each m ∈ N, define Fm =
{T (f,m−p) | f ∈ F}.
Proposition 4.1. There exists a constant β = β(L, q, p,N) > 0 such that Fm has the boundedness
property with Km = pN log3m and εbound(m) = m−β logm.

Proof. Let f ∈ Fm. Let Z(m) = {z | |z| ≤ log2m}. Then, for all z ∈ Z(m) we have f(z) =
−
∑
i,k ψ(k, i) log θk,i ≤

∑
i,k ψ(k, i)(p logm) ≤ pN log3m = Km, where the first inequality

follows from f ∈ Fm (θk,i ≥ m−p) and the second from |z| ≤ log2m. In addition, from the
requirements on P we have:

E
[
|f | × I(|f | ≥ Km)

]
≤ pN logm

(∑
k>log2m LΛ(k)rkk

)
≤ κ logm

(
qlog

2m
)

for some constant κ > 0. Finally, for some β(L, q, p,N) = β > 0 and some constantM , ifm > M

then κ logm
(
qlog

2m
)
≤ m−β logm.

We show now that Fm is tight with respect to F with εtail(m) =
N log2m

mp − 1
:

Proposition 4.2. There exists an M such that for any m > M we have:

P
(⋃

f∈F{z | Cm(f)(z)− f(z) ≥ εtail(m)}
)
≤ εtail(m) for εtail(m) =

N log2m

mp − 1
and

Cm(f) = T (f,m−p).

Proof. See supplementary material.

We now have proper approximations for probabilistic grammars. From this point, we use Fm to
denote the proper approximation constructed for G. We use εbound(m) and εtail(m) as in Proposi-
tion 4.1 and Proposition 4.2, and assume that p > 1 is fixed, for the rest of the paper.

4.2 Asymptotic Empirical Risk Minimization

It would be compelling to know that the empirical risk minimizer over Fn is an asymptotic empirical
risk minimizer (in the log-loss case, this means it converges to the maximum likelihood estimate).
As a conclusion to this section about proper approximations, we motivate the three requirements
that we posed on proper approximations by showing that this is indeed true. We now unify n, the
number of samples, and m, the index of the approximation of the concept space F. Let f∗n be the
minimizer of the empirical risk over F, (f∗n = argminf∈F Remp,n(f)) and let gn be the minimizer
of the empirical risk over Fn (gn = argminf∈Fn

Remp,n(f)).

Let D = {z1, ..., zn} be a sample from P(z). The operator (gn =) argminf∈Fn
Remp,n(f) is an

asymptotic empirical risk minimizer if E[Remp,n(gn) − Remp,n(f∗n)] → 0. Then, we have the
following:
Proposition 4.3. Let D = {z1, ..., zn} be a sample of derivations for G. Then gn =
argminf∈Fn

Remp,n(f) is an asymptotic empirical risk minimizer.
Lemma 4.4. Denote by Zε,n the set

⋃
f∈F{z | Cn(f)(z) − f(z) ≥ ε}. Denote by Aε,n the event

“one of zi ∈ D is in Zε,n.” Then if Fn properly approximates F then:
E [Remp,n(gn)−Remp,n(f∗n)] (4)

≤
∣∣E [Remp,n(Cn(f∗n)) | Aε,n

]∣∣P(Aε,n) +
∣∣E [Remp,n(f∗n) | Aε,n

]∣∣P(Aε,n) + εtail(n)

where the expectations are taken with respect to the dataset D. (See the supplementary material for
a proof.)
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Proof of Proposition 4.3. Let f0 ∈ F be the concept that puts uniform weights over θ, i.e., θk =
〈 12 ,

1
2 〉 for all k. Note that |E[Remp,n(f∗n) | Aε,n]|P(Aε,n)

≤ |E[Remp,n(f0) | Aε,n]|P(Aε,n) = log 2
n

∑n
l=1

∑
k,i E[ψk,i(zl) | Aε,n]P(Aε,n) (5)

Let Aj,ε,n for j ∈ {1, . . . , n} be the event “zj ∈ Zε,n”. Then Aε,n =
⋃
j Aj,ε,n. We have that:

E[ψk,i(zl) | Aε,n]P(Aε,n) ≤
∑
j

∑
zl
P(zl, Aj,ε,n)|zl| (6)

≤
∑
j 6=l
∑
zl
P(zl)P(Aj,ε,n)|zl|+

∑
zl
P(zl, Al,ε,n)|zl| (7)

≤
(∑

j 6=l P(Aj,ε,n)
)
B + E[ψk,i(z) | z ∈ Zε,n]P(z ∈ Zε,n) (8)

≤ (n− 1)BP(z ∈ Zε,n) + E[ψk,i(z) | z ∈ Zε,n]P(z ∈ Zε,n) (9)

where Eq. 7 comes from zl being independent and B is the constant from §2. Therefore, we have:

1

n

n∑
l=1

∑
k,i

E[ψk,i(zl) | Aε,n]P(Aε,n) ≤
∑
k,i

(
E[ψk,i(z) | z ∈ Zε,n]P(z ∈ Zε,n) + n2BP(z ∈ Zε,n)

)
(10)

From the construction of our proper approximations (Proposition 4.2), we know that only derivations
of length log2 n or greater can be in Zε,n. Therefore:

E[ψk,i | Zε,n]P(Zε,n) ≤
∑

z:|z|>log2 n

P(z)ψk,i(z) ≤
∞∑

l>log2 n

LΛ(l)rll ≤ κqlog
2 n = o(1) (11)

where κ > 0 is a constant. Similarly, we have P(z ∈ Zε,n) = o(n−2). This means that
|E[Remp,n(f∗n) | Aε,n]|P(Aε,n) −→

n→∞
0. In addition, it can be shown |E[Remp,n(Cn(f∗n)) |

Aε,n]|P(Aε,n) −→
n→∞

0 using the same proof technique we used above, while relying on the fact

that Cn(f∗n) ∈ Fn, and therefore Cn(f∗n)(z) ≤ pN |z| log n.

5 Sample Complexity Results

We now give our main sample complexity results for probabilistic grammars. These results hinge
on the convergence of supf∈Fn

|Remp,n(f)−R(f)|. The rate of this convergence can be fast, if the
covering numbers for Fn do not grow too fast.

We next give a brief overview of covering numbers. A cover gives a way to reduce a class of
functions to a much smaller (finite, in fact) representative class such that each function in the original
class is represented using a function in the smaller class. Let G be a class of functions. Let d(f, g)
be a distance measure between two functions f, g from G. An ε-cover is a subset of G, denoted by
G′, such that for every f ∈ G there exists an f ′ ∈ G′ such that d(f, f ′) < ε. The covering number
N(ε,G, d) is the size of the smallest ε-cover of G using with respect to the distance measure d.

We will be interested in a specific distance measure that is dependent on the empirical distribution
P̃ that describes the data z1, ..., zn. Let f, g ∈ G. We will use:

dP̃(f, g) = EP̃[|f − g|] =
∑
z∈D(G) |f(z)− g(z)| P̃(z) = 1

n

∑n
i=1 |f(zi)− g(zi)|

(12)
Instead of using N(ε,G, dP̃) directly, we are going to bound this quantity with N(ε,G) =

supP̃ N(ε,G, dP̃), where we consider all possible samples (yielding P̃). The following is the key
result about the connection between covering numbers and the double-sided convergence of the
empirical process supf∈Fn

|Remp,n(f)−R(f)| as n→∞:

Lemma 5.1. Let Fn be a permissible class2 of functions such that for every f ∈ Fn we have
E[|f |I(|f | ≤ Kn)] ≤ εbound(n). Let Ftruncated,n = {f × I(f ≤ Kn) | f ∈ Fm}, i.e., the set of

2The “permissible class” requirement is a mild regularity condition about measurability that holds for proper
approximations. We refer the reader to [18] for more details.
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functions from Fn after being truncated by Kn. Then for ε > 0 we have,

P

(
sup
f∈Fn

|Remp,n(f)−R(f)| > 2ε

)
≤ 8N(ε/8,Ftruncated,n) exp

(
− 1

128
nε2/K2

n

)
+ 2εbound(n)/ε

provided n ≥ K2
n/4ε

2.

Proof. See [18] (chapter 2, pages 30–31). See supplementary material for an explanation.

Covering numbers are rather complex combinatorial quantities that are hard to compute directly.
Fortunately, they can be bounded by using the pseudo dimension [3], a generalization of VC di-
mension for real functions. In the case of our “binomialized” probabilistic grammars, the pseudo
dimension of Fn is bounded by N , because we have Fn ⊆ F, and the functions in F are linear with
N parameters. Hence, Ftruncated,n has also pseudo dimension that is at most N . We have:
Lemma 5.2. (From [18, 13].) Let Fn be the proper approximations for probabilistic grammars, for
any 0 < ε < Kn we have:

N(ε,Ftruncated,n) < 2

(
2eKn

ε
log

2eKn

ε

)N
(13)

5.1 Supervised Case

Lemmas 5.1 and 5.2 can be combined to get our main sample complexity result:
Theorem 5.3. LetG be a grammar. Let Fn be a proper approximation for the corresponding family
of probabilistic grammars. Let P(x, z) be a distribution over derivations that satisfies the require-
ments in §2. Let z1, ..., zn be a sample of derivations. Then there exists a constant β(L, q, p,N) and
constant M such that for any 0 < δ < 1 and 0 < ε < 1 and any n > M and if

n ≥ max

{
128K2

n

ε2

(
2N log(16eKn/ε) + log

32

δ

)
,

log 4/δ + log 1/ε

β(L, q, p,N)

}
(14)

then we have

P

(
sup
f∈Fn

|Remp,n(f)−R(f)| ≤ 2ε

)
≥ 1− δ (15)

where Kn = pN log3 n.

Proof. Omitted for space. β(L, q, p,N) is the constant from Proposition 4.1. The proof is based on
simple algebraic manipulation of the right side of Eq. 13 while relying on Lemma 5.2.

5.2 Unsupervised Case

In the unsupervised setting, we have n yields of derivations from the grammar, x1, ..., xn, and our
goal again is to identify grammar parameters θ from these yields. Our concept classes are now the
sets of log marginalized distributions from Fn. For each fθ ∈ Fn, we define f ′θ as:

f ′θ(x) = − log
∑
z∈Dx(G) exp(−fθ(z)) = − log

∑
z∈Dx(G) exp

(∑K
k=1

∑Nk

i=1 ψi,k(z)θi,k

)
(16)

We denote the set of {f ′θ} by F′n. We define analogously F′. Note that we also need to define
the operator C ′n(f ′) as a first step towards defining F′n as proper approximations (for F′) in the
unsupervised setting. Let f ′ ∈ F′. Let f be the concept in F such that f ′(x) =

∑
z f(z, x). Then

we define C ′n(f ′)(x) =
∑
z Cn(f)(x, z).

It is not immediate to show that F′n is a proper approximation for F′. It is not hard to show that the
boundedness property is satisfied with the same Kn and the same form of εbound(n) as in Proposi-
tion 4.1 (we would have ε′bound(m) = m−β

′ logm for some β′(L, q, p,N) = β′ > 0). This relies
on the property of bounded derivation length of P. See the supplementary material for a proof. The
following result shows that we have tightness as well:
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Proposition 5.4. There exists an M such that for any n > M we have:

P
(⋃

f ′∈F′{x | C ′n(f ′)(x)− f ′(x) ≥ εtail(n)}
)
≤ εtail(n) for εtail(n) =

N log2 n

np − 1
and the

operator C ′n(f) as defined above.
Utility Lemma 5.5. For ai, bi ≥ 0, if − log

∑
i ai + log

∑
i bi ≥ ε then there exists an i such that

− log ai + log bi ≥ ε.

Sketch of proof of Proposition 5.4. From Utility Lemma 5.5 we have:

P

 ⋃
f ′∈F′

{x | C ′n(f ′)(x)− f ′(x) ≥ εtail(n)}

 ≤ P

⋃
f∈F

{x | ∃zCn(f)(z)− f(z) ≥ εtail(n)}


(17)

Define X(n) to be all x such that there exists a z with yield(z) = x and |z| ≥ log2 n. From the
proof of Proposition 4.2 and the requirements on P, we know that there exists an α ≥ 1 such that

P
(⋃

f∈F{x | ∃z s.t.Cn(f)(z)− f(z) ≥ εtail(n)}
)

≤
∑

x∈X(n)

P(x)

≤
∑

x:|x|≥log2 n/α

P(x) ≤
∞∑

k=blog2 n/αc

LΛ(k)rk ≤ εtail(n)
(18)

where the last inequality happens for some n larger than a fixed M .

Computing either the covering number or the pseudo dimension of F′n is a hard task, because the
function in the classes includes the “log-sum-exp.” In [9], Dasgupta overcomes this problem for
Bayesian networks with fixed structure by giving a bound on the covering number for (his respective)
F′ that depends on the covering number of F.

Unfortunately, we cannot fully adopt this approach, because the derivations of a probabilistic gram-
mar can be arbitrarily large. We overcome this problem using the following restriction. We assume
that |Dx(G)| < d(n), where d is a function mapping n, the size of our sample, to a real number.
The more samples we have, the more permissive (for large derivation set) the grammar can be. On
the other hand, the more accuracy we desire, the more restricted we are in choosing grammars that
have a large derivation set. We refer to this restriction as the “derivational condition.” With the
derivational condition, we can show the following result:
Proposition 5.6. (Hidden Variable Rule for Probabilistic Grammars) Under the derivational condi-
tion, N(ε,F′truncated,n) ≤ N(ε/d(n),Ftruncated,n).

The proof of Proposition 5.6 is almost identical to the proof of the hidden variable rule in [9]. For
the unsupervised case, then, we get the following sample complexity result:
Theorem 5.7. Let G be a grammar. Let F′n be a proper approximation for the corresponding
family of probabilistic grammars. Let P(x, z) be a distribution over derivations that satisfies the
requirements in §2. Let x1, ..., xn be a sample of strings from P(x). Then there exists a constant
β′(L, q, p,N) and constant M such that for any 0 < δ < 1 and 0 < ε < 1 and any n > M and if

n ≥ max

{
128K2

n

ε2

(
2N log(16eKnd(n)/ε) + log

32

δ

)
,

log 4/δ + log 1/ε

β′(L, q, p,N)

}
(19)

and |Dx(G)| < d(n), we have that

P

(
sup
f∈F′

n

|Remp,n(f)−R(f)| ≤ 2ε

)
≥ 1− δ (20)

where Kn = pN log3 n.

For this sample complexity bound to be non-trivial, for example, we can restrict Dx(G), through
d(n), to have a polynomial size in the number of our samples. Enlarging d(n) is possible even to an
exponential function of nρ for ρ < 1, e.g. d(n) = 2

√
n.
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criterion as Kn increases . . . as d(n) increases . . . as p increases . . .
tightness of proper approx-
imation

improves no effect improves

sample complexity bound degrades degrades degrades

Table 1: Trade-off between quantities in our learning model and effectiveness of different criteria.
d(n) is the function that gives the derivational condition, i.e., |Dx(G)| ≤ d(n).

6 Discussion

Our framework can be specialized to improve the two main criteria that have a trade-off: the tight-
ness of the proper approximation and the sample complexity. For example, we can improve the
tightness of our proper approximations by taking a subsequence of Fn. However, this will make the
sample complexity bound degrade, because Kn will grow faster. Table 1 gives the different trade-
offs between parameters in our model and the effectiveness of learning. In general, we would want
the derivational condition to be removed (choose d(n) = ∞, or at least allow d(n) = Ω(tn) for
some t, for small samples), but in that case our sample complexity bounds become trivial.

In the supervised case, our result states that the number of samples we require (as an upper bound)
grows mostly because of a term that behaves O(N3 logN) (for a fixed δ and ε). If our grammar, for
example, is a PCFG, then N depends on the total number of rules. When the PCFG is in Chomsky
normal form and lexicalized [10, 7], thenN grows by an order of V 2, where V is the vocabulary size.
This means that the bound grows by an order of O(V 6 log V ). This is consistent with conventional
wisdom that lexicalized grammars require much more data for accurate learning.

The dependence of the bound on N suggests that it is easier to learn models with a smaller grammar
size. This may help explain the success of recent advances in supervised parsing [4, 22, 17] that
have “coarse” models (with a much smaller size of nontermimals) as a first pass. Those models are
easier to learn and require less data to be accurate, and can serve as base models for later phases.

The sample complexity bound for the unsupervised case suggests that we need log d(n) times as
much data to achieve estimates as good as those for supervised learning. Interestingly, with unsu-
pervised grammar learning, available training sentences longer than a maximum length (e.g., 10) are
often ignored; see [14].

We note that sample complexity is not the only measure for the complexity of estimating probabilis-
tic grammars. In the unsupervised setting, for example, the computational complexity of ERM is
NP hard for PCFGs [5] or probabilistic automata [2].

7 Conclusion

We presented a framework for learning the parameters of a probabilistic grammar under the log-loss
and derived sample complexity bounds for it. We motivated this framework by showing that the
empirical risk minimizer for our approximate framework is an asymptotic empirical risk minimizer.
Our framework uses a sequence of approximations to a family of probabilistic grammars, which
improves as we have more data, to give distribution dependent sample complexity bounds in the
supervised and unsupervised settings.
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