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Abstract

Adaptor grammars are a flexible, powerful formalism for defining nonparametric,
unsupervised models of grammar productions. This flexibility comes at the cost
of expensive inference. We address the difficulty of inference through an online
algorithm which uses a hybrid of Markov chain Monte Carlo and variational infer-
ence. We show that this inference strategy is more scalable than past approaches.

1 Introduction

Nonparametric Bayesian models are effective tools to discover latent structure in data [1]. In this
work, we focus on adaptor grammars [2], which is a syntactic nonparametric models based on PCFG.
They provide a flexible and useful tool in understanding unstructured data or data where the structure
is latent, like language. They have been successfully applied for topic modeling [3], discovering
perspective [4], segmentation [5], and grammar induction [6]. Despite its modeling advantage, the
inference is slow and often not scalable to large datasets. A common approach to address this
computational bottleneck is through variational inference [7]. One of the advantages of variational
inference is that it can be easily parallelized [8] or transformed into an online algorithm [9], which
often converges in fewer iterations than batch variational inference.

Past variational inference techniques for adaptor grammars assume a preprocessing step that looks
at all available data to establish the support of these nonparametric distributions [6]. Thus, these
past approaches are not directly amenable to online inference. Markov chain Monte Carlo (MCMC)
inference, an alternative to variational inference, does not have this disadvantage. We apply stochas-
tic hybrid inference [10] to adaptor grammars by interleaving MCMC inference inside variational
inference. This preserves the scalability of variational inference while adding the sparse statistics
and improved exploration MCMC provides.

Our inference algorithm for adaptor grammars starts with a variational algorithm similar to [6] and
adds hybrid sampling within variational inference. We further extend it to online setting and process
examples in small batches from a data stream. The algorithm dynamically extends the underlying
approximate posterior distributions as more data are observed. This makes the algorithm flexible,
scalable, and amenable to datasets that cannot be examined exhaustively because of their size. Please
see [11] for a detailed version.

2 Adaptor Grammars

A Pitman-Yor Adaptor grammar (PYAG) forms the adapted tree distributions Hc using a Pitman-Yor
process [12, PY]. A draw Hc ≡ (πc, zc) is formed by the stick breaking process [13] parametrized
by scale parameter a, discount factor b, and base distribution Gc:

π′k ∼Beta(1− b, a+ kb), zk ∼Gc, πk ≡π′k
∏k−1
j=1 (1− π′j), H ≡

∑
k πkδzk . (1)
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Intuitively, the distribution Hc, which is often referred to as grammaton, is a discrete reconstruc-
tion of the atoms sampled from Gc—hence, reweights Gc. Grammaton Hc assigns non-zero stick-
breaking weights π to a countably infinite number of parse trees z. We describe learning these
grammatons in Section 3.

More formally, a PYAG is a quintuple A = 〈G,M ,a, b,α〉 with: a PCFG G; a set of adapted
nonterminals M ⊆ N ; Pitman-Yor process parameters ac, bc at each adaptor c ∈M and Dirichlet
parameters αc for each nonterminal c ∈ N . We also assume an order on the adapted nonterminals,
c1, . . . , c|M | such that cj is not reachable from ci in a derivation if j > i.

Given a PYAG A, the joint probability for a set of sentencesX and its collection of trees T is

p(X,T ,π,θ, z|A) =
∏
c∈M p(πc|ac, bc)p(zc|Gc)

∏
c∈N p(θc|αc)

∏
xd∈X p(xd, td|θ,π, z),

where xd and td represent the dth observed string and its corresponding parse.

3 Online Hybrid Variational-MCMC Inference

Variational inference posits a variational distribution over the latent variables in the model; this in
turn induces an “evidence lower bound” (ELBO, L) as a function of a variational distribution q, a
lower bound on the marginal log-likelihood. Variational inference optimizes this objective function
with respect to the parameters that define q.

In this section, we derive coordinate-ascent updates for these variational parameters. We strate-
gically use MCMC sampling to compute the expectation of q over parse trees z. This produces a
sparse approximation of the variational distribution, which improves both scalability and perfor-
mance. Sparse distributions are easier to store and transmit in implementations, which improves
scalability. [10] also show that sparse representations improve performance.

Variational Lower Bound We posit a mean-field variational distribution:

q(π,θ,T |γ,ν,φ) =
∏
c∈M

∏∞
i=1 q(π

′
c,i|ν1c,i, ν2c,i)

∏
c∈N q(θc|γc)

∏
xd∈X q(td|φd), (2)

where π′c,i is drawn from a variational Beta distribution parameterized by ν1c,i, ν
2
c,i; and θc is from a

variational Dirichlet prior γc ∈ R|R(c)|
+ . Index i ranges over a possibly infinite number of adapted

rules. The parse for the dth observation, td is modeled by a multinomial φd, where φd,i is the
probability generating the ith phrase-structure tree td,i.

The variational distribution over latent variables induces the following ELBO on the likelihood:

L(z,π,θ,T ,D;a, b,α) =
∑
c∈N Eq[log p(θc|αc)] +

∑
c∈M

∑∞
i=1 Eq[log p(π′c,i|ac, bc)] (3)

+
∑
c∈M

∑∞
i=1 Eq[log p(zc,i |π,θ)] +

∑
xd∈X Eq[log p(xd, td |π,θ, z)] +H[q(θ,π,T )]

where H[•] is the entropy function. To make this lower bound tractable, we truncate the distribution
over π to a finite set [14] for each adapted nonterminal c ∈M , i.e., π′c,Kc

≡ 1 for some index Kc.
Each weight πc,i is associated with an atom zc,i, a subtree rooted at c. We call the ordered set of zc,i
the truncated nonterminal grammaton (TNG). Each adapted nonterminal c ∈M has its own TNGc.
The ith subtree in TNGc is denoted TNGc(i).

Stochastic MCMC Inference Each observation xd has an associated variational multinomial dis-
tribution φd over trees td that can yield observation xd with probability φd,i. Holding all other
variational parameters fixed, the coordinate-ascent update [10, 15] for φd,i is

φd,i ∝ exp{E¬φd
q [log p(td,i|xd,π,θ, z)]}, (4)

where φd,i is the probability generating the ith phrase-structure tree td,i and E¬φd
q [•] is the expecta-

tion with respect to the variational distribution q, excluding the value of φd.

We apply stochastic variational inference [10, 16] to sample from this distribution. This produces
a set of sampled trees σd ≡ {σd,1, . . . , σd,k}. From this set of trees we can approximate our
variational distribution over trees φ using the empirical distribution σd, i.e.,

φd,i ∝ I[σd,j = td,i,∀σd,j ∈ σd]. (5)
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This leads to a sparse approximation of variational distributionφ. We use 10 samples in experiments.

Previous inference strategies [2, 17] for adaptor grammars have used sampling. Sampling requires
a derived PCFG G′ that approximates the distribution over tree derivations conditioned on a yield. It
includes the original PCFG rulesR = {c→ β} that define the base distribution and the new adapted
productionsR′ = {c⇒ z, z ∈ TNGc}. Under G′, the probability θ′ of adapted production c⇒ z is

log θ′c⇒z =

{
Eq[log πc,i], if TNGc(i) = z

Eq[log πc,Kc
] + Eq[log θc⇒z], otherwise

(6)

where Kc is the truncation level of TNGc and πc,Kc represents the left-over stick weights in the
stick-breaking process for adaptor c ∈M . θc⇒z represents the probability of generating tree c⇒ z
under the base distribution. See also [18].

The expectation of πc,i under the truncated variational stick-breaking distribution is

Eq[log πa,i] = Ψ(ν1a,i)−Ψ(ν1a,i + ν2a,i) +
∑i−1
j=1(Ψ(ν2a,j)−Ψ(ν1a,j + ν2a,j)), (7)

and the expectation of generating the phrase-structure tree a⇒ z based on PCFG productions is

Eq[log θa⇒z] =
∑
c→β∈a⇒z

(
Ψ(γc→β)−Ψ(

∑
c→β′∈Rc

γc→β′)
)

(8)

where Ψ(•) is the digamma function, and c → β ∈ a ⇒ z represents all PCFG productions in
the phrase-structure tree a ⇒ z. This PCFG can compose arbitrary subtrees and thus discover new
trees that better describe the data, even if those trees are not part of the TNG. This is equivalent to
creating a “new table” in MCMC inference and provides truncation-free variational updates [19] by
sampling a unseen subtree with adapted nonterminal c ∈M at the root. This frees our model from
preprocessing to initialize truncated grammatons in [6]. This stochastic approach has the advantage
of creating sparse distributions [19]. In addition, it also preserves the independent structure from
varaitional distributions and can be easily parallelized.

Calculating Expected Rule Counts Let us refer the multiset of all adapted productions asM(td,i)
and the multiset of PCFG productions as N(td,i). For every observation xd, we compute:

1: the expected number of productions within the TNG of adapted production a⇒ za,i:

fd(a⇒ za,i) =
∑
k

(
φd,k |a⇒ za,i : a⇒ za,i ∈M(td,k)|︸ ︷︷ ︸

count of rule a⇒ za,i in tree td,k

)
.

2: the expected counts of PCFG productionsR that defines the base distribution:

gd(a→ β) =
∑
k (φd,k |a→ β : a→ β ∈ N(td,k)|) .

3: a set of productions that are newly discovered by the sampler and not in the TNG:

hd(c⇒ zc,i) =
∑
k (φd,k |c⇒ zc,i : c⇒ zc,i /∈M(td,k)|) .

These counts can be computed by aggregating over different machines in distributed environment.

Variational Updates Given the sampled sparse vectors φ, we update all variational parameters as

γa→β =αa→β +
∑
xd∈X gd(a→ β) +

∑
b∈M

∑Kb

i=1 n(a→ β, zb,i),

ν1a,i =1− ba +
∑
xd∈X fd(a⇒ za,i) +

∑
b∈M

∑Kb

k=1 n(a⇒ za,i, zb,k),

ν2a,i =aa + iba +
∑
xd∈X

∑Ka

j=1 fd(a⇒ za,j) +
∑
b∈M

∑Kb

k=1

∑Ka

j=1 n(a⇒ za,j , zb,k),

where n(r, t) is the expected number of times production r is in tree t, estimated during sampling.
We update our PCFG hyperparameter α, PYGEM hyperparameters a and b as in [6].

Online Variational Inference In online case, we assume data arrive in minibatches B (a set of
sentences). Hence, we accumulate expected counts

f̃ (l)(a⇒ za,i) =(1− ε) · f̃ (l−1)(a⇒ za,i) + ε · |X||Bl|
∑
xd∈Bl

fd(a⇒ za,i), (9)

g̃(l)(a→ β) =(1− ε) · g̃(l−1)(a→ β) + ε · |X||Bl|
∑
xd∈Bl

gd(a→ β), (10)
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with decay factor ε ∈ (0, 1) to guarantee convergence. We set it to ε = (τ + l)−κ, where l is the
minibatch counter. The decay inertia τ prevents premature convergence, and decay rate κ controls
the speed of change in sufficient statistics [9]. We recover batch variational approach whenB = D
and κ = 0. The variables f̃ (l) and g̃(l) are accumulated sufficient statistics of adapted and unadapted
productions after processing minibatchBl. The updates for variational parameters become

γa→β =αa→β + g̃(l)(a→ β) +
∑
b∈M

∑Kb

i=1 n(a→ β, zb,i), (11)

ν1a,i =1− ba + f̃ (l)(a⇒ za,i) +
∑
b∈M

∑Kb

k=1 n(a⇒ za,i, zb,k), (12)

ν2a,i =aa + iba +
∑Ka

j=1 f̃
(l)(a⇒ za,j) +

∑
b∈M

∑Kb

k=1

∑Ka

j=1 n(a⇒ za,j , zb,k), (13)

where Ka is the size of the TNG at adaptor a ∈M .

Refining the Truncation Our model does not require a preprocessing step to initialize the TNGs,
rather, it constructs and expands all TNGs on the fly. To prevent the TNG from growing unwieldy,
we prune TNG after every u minibatches. As a result, we need to impose an ordering over all the
parse trees in the TNG. Similar to [20], we impose a reward term for longer phrases in addition to f̃
and sort all adapted productions in TNGa using the ranking score

Λ(a⇒ za,i) = f̃ (l)(a⇒ za,i) · log(ε · |s|+ 1),

where |s| is the number of yields in production a ⇒ za,i. Because ε decreases each minibatch, the
reward for long phrases diminishes. This is similar to an annealed version of [6]—where the reward
for long phrases is fixed. After sorting, we remove all but the top Ka adapted productions.

4 Experiments
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Figure 1: Word segmentation accuracy measured by word token F1 scores on brent corpus of three approaches
against number of inside-outside function call using unigram (left) and collocation (right) grammars in [5]. Our
ONLINE settings are batch size B = 20, decay inertia τ = 128, decay rate κ = 0.6 for unigram grammar; and
minibatch sizeB = 5, decay inertia τ = 256, decay rate κ = 0.8 for collocation grammar. TNGs are refined at
interval u = 50. Truncation size is set to KWord = 1.5k and KColloc = 3k. We observe similar behavior under
κ = {0.7, 0.9, 1.0}, τ = {32, 64, 512}, B = {10, 50} and u = {10, 20, 100}.

We implement our online adaptor grammar model (ONLINE) in Python and compare it against both
MCMC [5, MCMC] and the variational inference [6, VARIATIONAL]. We focus on the task of word
segmentation, which focuses on identifying word boundaries from a sequence of characters. We
evaluate all three models on the standard Brent version of the Bernstein-Ratner corpus [21, 22,
brent]. The dataset contains 10k sentences, 1.3k distinct words, and 72 distinct characters. We
compare the results on both unigram and collocation grammars introduced in [5].

Figure 1 illustrates the word segmentation accuracy in terms of word token F1-scores on brent
against the number of inside-outside function calls for all three approaches using unigram and col-
location grammars. In both cases, our ONLINE approach converges faster than MCMC and VARIA-
TIONAL approaches, yet yields comparable or better performance when seeing more data. We also
evaluate these three approaches on much larger datasets in addition to the brent corpus [11].

5 Conclusion

Adaptor grammars offer a flexible and quick way to prototype and test new models. We have pre-
sented a new online, hybrid inference scheme for adaptor grammars. We show that it is able to faster
discover useful structure in text than past approaches.
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