Encoding Prior Knowledge with Eigenword Embeddings

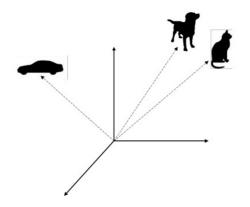
Dominique Osborne¹, <u>Shashi Narayan²</u> & Shay Cohen²

¹Department of Mathematics and Statistics, University of Strathclyde ²School of Informatics, University of Edinburgh

EACL 2017

Word embeddings ...

cat (0.1, 0.2, 0, 0.2, 0.03, ...) dog (0.2, 0.02, 0.1, 0.1, 0.02, ...) car (0.001, 0, 0, 0.1, 0.3, ...)



Learning dense representations

Neural networks

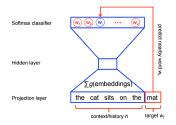
Matrix factorization

	context ₁	context ₂	 context _n
word ₁			
word ₂			
word _n			

- LSA (word-document) (Deerwester et al., 1990)
- GloVe

(word-neighbourWords) (Pennington et al., 2014)

 CCA based Eigenword (word-neighbourWords) (Dhillon et al., 2015)



- NLM (word-neighbourWords) (Bengio et al., 2003)
- Word2Vec (Mikolov et al., 2013)

Distributional hypothesis (Harris, 1954)

Adding knowledge to word embeddings

- Refining vector space representations using semantic lexicons such as WordNet, FrameNet, and the Paraphrase Database, to
- encourage linked words to have similar vector representations.
- Often operates as a post processing step, e.g., Retrofitting (Faruqui et at, 2015) and AutoExtend (Rothe and Schutze, 2015).

SPRINCETON UNIVERSITY

WordNet A lexical database for English

In this talk ...

Encode semantic knowledge to CCA-based eigenword embeddings

 Spectral learning algorithms are interesting for their speed, scalability, globally optimal solution, and performance in various NLP applications.

In this talk ...

Encode semantic knowledge to CCA-based eigenword embeddings

- Spectral learning algorithms are interesting for their speed, scalability, globally optimal solution, and performance in various NLP applications.
- ► We introduce prior knowledge in the CCA derivation itself.
 - Preserves the properties of spectral learning algorithms for learning word embeddings.
 - Applicable for incorporating prior knowledge into any CCA.

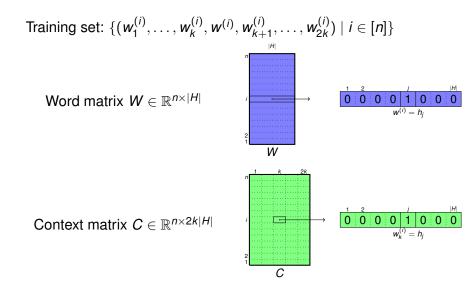
CCA-based Eigenword embeddings (Dhillon et al., 2015)

Training set: $\{(w_1^{(i)}, \dots, w_k^{(i)}, w^{(i)}, w_{k+1}^{(i)}, \dots, w_{2k}^{(i)}) \mid i \in [n]\}$

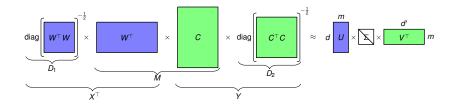
- Pivot word: w⁽ⁱ⁾
- Left context: $\{w_1^{(i)}, ..., w_k^{(i)}\}$
- Right context: $\{w_{k+1}^{(i)}, \dots, w_{2k}^{(i)}\}$

CCA finds projections for the contexts and for the pivot words which are most correlated (follows distributional hypothesis of Harris, 1954)

Defining two views for CCA



Dimensionality reduction with SVD



Eigenword embedding

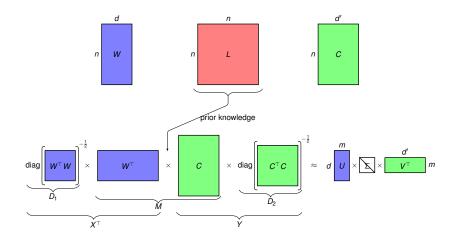
$$E = D_1^{-1/2} U \in \mathbb{R}^{|H| imes m}$$

Adding prior knowledge to Eigenword embeddings

Introduce prior knowledge in the CCA derivation itself to preserves the properties of spectral learning algorithms

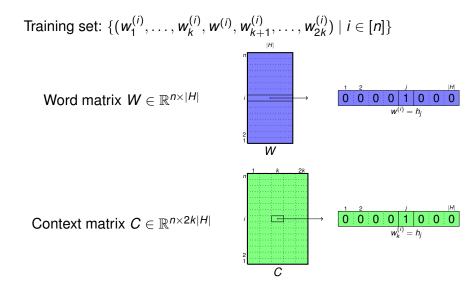
Prior knowledge \Leftarrow WordNet, FrameNet and the Paraphrase Database

Adding prior knowledge to Eigenword embeddings



Improve the optimization of correlation between the two views by weighing them using the external source of prior knowledge

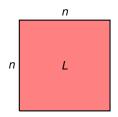
Two views for CCA



Prior knowledge as the weight matrix

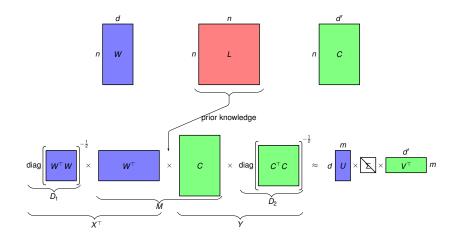
Training set:
$$\{(w_1^{(i)}, \dots, w_k^{(i)}, w^{(i)}, w_{k+1}^{(i)}, \dots, w_{2k}^{(i)}) \mid i \in [n]\}$$

Weight matrix over examples: $L \in R^{nxn}$



Captures adjacency information in the semantic lexicons, such as WordNet, FrameNet, and the Paraphrase Database

Adding prior knowledge to Eigenword embeddings



Do we still find projections for the contexts and for the pivot words which are most correlated?

Generalisation of CCA

Yes, if L is a Laplacian matrix!

Laplacian matrix $L \in R^{nxn}$

A symmetric positive semi-definite square matrix such that the sum over rows (or columns) is 0.

$$L_{ij} = \begin{cases} n-1 & \text{if } i=j\\ -1 & \text{if } i\neq j. \end{cases}$$

Lemma

 $X^{\top}LY$ equals $X^{\top}Y$ up to a multiplication by a positive constant.

Optimizes same objective function!

Generalisation of CCA

$$max(\sum_{k=1}^{m} (Xu_{k})^{\top} L(Yv_{k})) = max(\sum_{i,j} -L_{ij} (d_{ij}^{m})^{2})$$
$$= max(\sum_{i,j} (d_{ij}^{m})^{2} - n\sum_{i=1}^{n} (d_{ii}^{m})^{2})$$

where d_{ij}^m is the distance between projections of *i*th word and *j*th context views.

CCA follows distributional hypothesis, with additional constraints from prior knowledge.

Experiments

- Evaluation Benchmarks
 - Word Similarity: 11 different widely used benchmarks, e.g., the WS-353-ALL dataset (Finkelstein et al., 2002) and the SimLex-999 dataset (Hill et al., 2015)
 - Geographic Analogies: "Greece (a) is to Athens (b) as Iraq (c) is to (d)" (Mikolov et al. 2013)

▶ *d* = *c* − (*a* − *b*)

 NP Bracketing: "annual (price growth)" vs "(annual price) growth" (Lazaridou et al., 2013)

Experiments

 Prior Knowledge Resources: WordNet, the Paraphrase Database (PPDB), and FrameNet.

Baselines

- Off-the-shelf Word Embeddings: Glove (Pennington et al., 2014), Skip-Gram (Mikolov et al., 2013), Global Context (Huang et al., 2012), Multilingual (Faruqui and Dyer, 2014) and Eigen word embeddings (Dhillon et al. (2015)
- Retrofitting (Faruqui et al., 2015)

All embeddings were trained on the first 5 billion words from Wikipedia.

NPK: No prior knowledge, WN: WordNet, PD: the paraphrase database and FN: FrameNet.

		Word	l simila	rity ave	rage	Geo	graphic	c analo	gies	NP bracketing			
		NPK	WN	PD	FN	NPK	WN	PD	FN	NPK	WN	PD	FN
Ð	Glove	59.7	63.1	64.6	57.5	94.8	75.3	80.4	94.8	78.1	79.5	79.4	78.7
tti	Skip-Gram	64.1	65.5	68.6	62.3	87.3	72.3	70.5	87.7	79.9	80.4	81.5	80.5
ofi	Global Context	44.4	50.0	50.4	47.3	7.3	4.5	18.2	7.3	79.4	79.1	80.5	80.2
Retrofitting	Multilingual	62.3	66.9	68.2	62.8	70.7	46.2	53.7	72.7	81.9	81.8	82.7	82.0
	Eigen (CCA)	59.5	62.2	63.6	61.4	89.9	79.2	73.5	89.9	81.3	81.7	81.2	80.7
CCAPrior		-	60.7	60.6	60.0	-	89.1	93.2	92.9	-	81.8	82.4	81.0
CCAPrior+RF		-	63.4	64.9	61.6	-	78.0	71.9	92.5	-	81.9	81.7	81.2

NPK: No prior knowledge, WN: WordNet, PD: the paraphrase database and FN: FrameNet.

		Word similarity average						c analo	gies	NP bracketing			
		NPK	WN	PD	FN	NPK	WN	PD	FN	NPK	WN	PD	FN
Ð	Glove	59.7	63.1	64.6	57.5	94.8	75.3	80.4	94.8	78.1	79.5	79.4	78.7
Retrofitting	Skip-Gram	64.1	65.5	68.6	62.3	87.3	72.3	70.5	87.7	79.9	80.4	81.5	80.5
īđ	Global Context	44.4	50.0	50.4	47.3	7.3	4.5	18.2	7.3	79.4	79.1	80.5	80.2
leti	Multilingual	62.3	66.9	68.2	62.8	70.7	46.2	53.7	72.7	81.9	81.8	82.7	82.0
а.	Eigen (CCA)	59.5	62.2	63.6	61.4	89.9	79.2	73.5	89.9	81.3	81.7	81.2	80.7
CCAPrior		-	60.7	60.6	60.0	-	89.1	93.2	92.9	-	81.8	82.4	81.0
CCAPrior+RF		-	63.4	64.9	61.6	-	78.0	71.9	92.5	-	81.9	81.7	81.2

Adding prior knowledge to eigenword embeddings does improve the quality of word vectors

NPK: No prior knowledge, WN: WordNet, PD: the paraphrase database and FN: FrameNet.

		Word similarity average					graphic	c analo	gies	NP bracketing			
		NPK	WN	PD	FN	NPK	WN	PD	FN	NPK	WN	PD	FN
Ð	Glove	59.7	63.1	64.6	57.5	94.8	75.3	80.4	94.8	78.1	79.5	79.4	78.7
Retrofitting	Skip-Gram	64.1	65.5	68.6	62.3	87.3	72.3	70.5	87.7	79.9	80.4	81.5	80.5
īđ	Global Context	44.4	50.0	50.4	47.3	7.3	4.5	18.2	7.3	79.4	79.1	80.5	80.2
leti	Multilingual	62.3	66.9	68.2	62.8	70.7	46.2	53.7	72.7	81.9	81.8	82.7	82.0
а.	Eigen (CCA)	59.5	62.2	63.6	61.4	89.9	79.2	73.5	89.9	81.3	81.7	81.2	80.7
CCAPrior		-	60.7	60.6	60.0	-	89.1	93.2	92.9	-	81.8	82.4	81.0
CCAPrior+RF		-	63.4	64.9	61.6	-	78.0	71.9	92.5	-	81.9	81.7	81.2

Retrofitting further improves eigenword embeddings

NPK: No prior knowledge, WN: WordNet, PD: the paraphrase database and FN: FrameNet.

		Word similarity average					graphic	c analo	gies	NP bracketing			
		NPK	WN	PD	FN	NPK	WN	PD	FN	NPK	WN	PD	FN
Ð	Glove	59.7	63.1	64.6	57.5	94.8	75.3	80.4	94.8	78.1	79.5	79.4	78.7
Retrofitting	Skip-Gram	64.1	65.5	68.6	62.3	87.3	72.3	70.5	87.7	79.9	80.4	81.5	80.5
ofii	Global Context	44.4	50.0	50.4	47.3	7.3	4.5	18.2	7.3	79.4	79.1	80.5	80.2
leti	Multilingual	62.3	66.9	68.2	62.8	70.7	46.2	53.7	72.7	81.9	81.8	82.7	82.0
а.	Eigen (CCA)	59.5	62.2	63.6	61.4	89.9	79.2	73.5	89.9	81.3	81.7	81.2	80.7
CCAPrior		-	60.7	60.6	60.0	-	89.1	93.2	92.9	-	81.8	82.4	81.0
CCAPrior+RF		-	63.4	64.9	61.6	-	78.0	71.9	92.5	-	81.9	81.7	81.2

CCA results are more stable than retrofitting

Conclusion

 We described a method for incorporating prior knowledge into CCA-based eigenword embeddings.

 Adding prior knowledge to eigenword embeddings improves the quality of word vectors.

We proposed a general framework for incorporating prior knowledge into any CCA.