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Abstract. A weakness of standard Optimality Theory is its inability to account for grammars
with free variation. We describe here the Maximum Entropy model, a general statistical model,
and show how it can be applied in a constraint-based linguistic framework to model and learn
grammars with free variation, as well as categorical grammars. We report the results of using
the MaxEnt model for learning two different grammars: one with variation, and one without.
Our results are as good as those of a previous probabilistic version of OT, the Gradual Learning
Algorithm (Boersma, 1997), and we argue that our model is more general and mathematically
well-motivated.

1. Introduction

One of the requirements of any successful linguistic theory is to provide an explanation of
how the learner acquires the language-specific knowledge required by the theory. Optimality
Theory (Prince and Smolensky, 1993) is dominant in phonology in part because there are
algorithms for learning constraint rankings (Tesar and Smolensky, 1993; Pulleyblank and
Turkel, 1996; Prince and Tesar, 1999). Unfortunately, most existing OT learning algorithms
have two major problems. First, they are not designed to learn from noisy training data, and
generally will not converge when presented with it. Second, because they learn a single OT
constraint ranking, they cannot model grammars containing free variation, where a single
input form has more than one grammatical output form. (This is a limitation of OT istelf,
rather than a weakness of the learning procedures.) In this paper, we concern ourselves with
addressing these problems. In particular, we propose that a complete model of phonology and
its associated learning algorithm should be able to

• learn from a corpus of real, potentially noisy, data,
• account for free variation as well as categorical distinctions,
• account for effects caused by cumulative constraint violations, and
• generalize to examples not seen in the training data.

There have been various attempts to adapt the OT model in some way to explain
free variation, including floating constraints (Nagy and Reynolds, 1997), free ranking of
constraints within strata (Anttila, 1997b), and strictness bands (Hayes, 2000). One of the
more successful models to date is the probabilistic model proposed by Boersma (1997)
and its associated learning algorithm, the Gradual Learning Algorithm. By moving away
from the discrete domain of standard OT, the Gradual Learning Algorithm is able to learn
from noisy input, and can accurately reproduce grammars with free variation. However, as
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Keller and Asudeh (2002) have pointed out, the GLA is unable to account for cumulativity
effects. Keller’s own model, Linear Optimality Theory (Keller, 2000), is designed to account
for cumulativity effects, but learns only from acceptability judgment data, not from actual
linguistic forms.

In this paper we present a different OT-inspired model of constraint-based phonology, the
Maximum Entropy model. This model is in fact a very general statistical model that has been
used in many domains and whose mathematical properties are well known. Like the GLA,
this model is probabilistic, making it resistant to noise, and seeks to reproduce the distribution
of output forms in a training corpus, thus modeling free variation. Like Linear Optimality
Theory, the MaxEnt model treats constraints as additive, thus accounting for cumulativity
effects.

The connection between OT and Maximum Entropy models used in this paper has been
discussed before in Eisner (2000) and Johnson (2002). The estimation procedure or learning
method used in this paper is described in detail in Johnson et al. (1999), which also contains
statistical consistency results. Johnson (2002) uses the same estimation procedure to learn
constraint rankings for OT Lexical Functional Grammars.

The remainder of this paper is organized as follows: We first present the MaxEnt model
and its application to constraint-based phonology. We report experimental results similar to
those of the GLA on both categorical (no free variation) and stochastic (free variation) training
data. We then discuss the question of generalization, explain why it cannot be tested using the
kinds of problems presented here, and discuss how we can test for it in future work. Finally,
we argue that the MaxEnt model is more general and mathematically simpler than the GLA.

2. The Maximum Entropy Model

Maximum Entropy or log-linear models are a very general class of statistical models that
have been applied to problems in a wide range of fields, including computational linguistics.
Logistic regression models, exponential models, Boltzmann networks, Harmonic grammars,
probabilistic context free grammars, and Hidden Markov Models are all types of Maximum
Entropy models. Maximum Entropy models are motivated by information theory: they are
designed to include as much information as is known from the data while making no additional
assumptions (i.e. they are models that have as high an entropy as possible under the constraint
that they match the training data). Suppose we have some conditioning context x and a set of
possible outcomes Y(x) that depend on the context. Then a Maximum Entropy model defines
the conditional probability of any particular outcome y ∈ Y(x) given the context x as:

Pr(y|x) =
1

Z(x)
exp(

m∑

i=1

wifi(y, x)), where (1)

Z(x) =
∑

y∈Y(x)

exp(
m∑

i=1

wifi(y, x))

In these equations, f1(y, x) . . . fm(y, x) are the values of m different features of the pair (y, x),
the wi are parameters (weights) associated with those features, and Z(x) is a normalizing
constant obtained by summing over all possible values that y could take on in the sample space
Y(x). In other words, the log probability of y given x is proportional to a linear combination
of feature values,

∑m
i=1 wifi(y, x).

In the MaxEnt models considered here, x is an input phonological form, Y(x) is the set of
candidate output forms (i.e., Y is the Gen function) and y ∈ Y(x) is some particular candidate
output form. For an Optimality Theoretic analysis with m constraints C1 · · ·Cm, we use a
Maximum Entropy model with m features, and let the features correspond to the constraints.



Thus the feature value fi(y, x) is the number of violations of constraint Ci incurred by the
input/output pair (y, x). We can think of the parameter weights wi as the ranking values of
the constraints.

Note that this Maximum Entropy model of phonology differs from standard Optimality
Theory in that constraint weights are additive in log probability. As a result, many violations
of lower-ranked constraints may outweigh fewer violations of higher-ranked constraints. This
is a property shared by the recent Linear Optimality Theory (Keller, 2000), as well as the
earlier theory of Harmonic Grammar (Legendre et al., 1990), on which OT is based.1 The
property of additivity makes the MaxEnt model more powerful and less restrictive than
standard OT. When there is sufficient distance between the constraint weights and a finite
bound on the number of constraint violations, the MaxEnt model simulates standard OT (see
Johnson (2002) for an explicit formula for the weights). The model can therefore account
for categorical grammars where a single violation of a highly ranked constraint outweighs
any number of violations of lower ranked constraints. However, by assigning closely spaced
constraint weights, the MaxEnt model can also produce grammars with variable outputs,
or gradient grammaticality effects caused by cumulative constraint violations (Keller, 2000;
Keller and Asudeh, 2002). The GLA is able to model grammars with free variation, but, like
standard OT, cannot account for these cases of cumulative constraint violations.

Given the generic Maximum Entropy model, we still need to find the correct constraint
weights for a given set of training data. We can do this using maximum likelihood estimation
on the conditional likelihood (or pseudo-likelihood) of the data given the observed outputs:

PLw̄(ȳ|x̄) =
n∏

j=1

Prw̄(Y = yj|x(Y ) = xj) (2)

Here, ȳ = y1 . . . yn are the winning output forms for each of the n training examples
in the corpus, and the xj are the corresponding input forms. So the pseudo-likelihood of
the training corpus is simply the product of the conditional probabilities of each output form
given its input form. As with ordinary maximum likelihood estimation, we can maximize
the pseudo-likelihood function by taking its log and finding the maximum using any standard
optimization algorithm. In the experiments below, we used the Conjugate Gradient algorithm
(Press et al., 1992).

To prevent overfitting the training data, we introduce a regularizing bias term, or prior,
as described in Johnson et al. (1999). The prior for each weight wi is a Gaussian distribution
with mean µi and standard deviation σi that is multiplied by the psuedo-likelihood in (2). In
terms of the log likelihood, the prior term is a quadratic, so our learning algorithm finds the
wi that maximize the following objective function:

log PLw̄(ȳ|x̄) −
m∑

i=1

(wi − µi)
2

2σ2
i

(3)

For simplicity, the experiments reported here were conducted using the same prior for
each constraint weight, with µi = 0 and σi = σ. (For possible theoretical implications of
this choice, see Section 4.1.) Informally, this prior specifies that zero is the default weight of
any constraint (which means the constraint has no effect on the output), so we can vary how
closely the model fits the data by varying the standard deviation, σ. Lower values of σ give
a more peaked prior distribution and require more data to force the constraint weights away
from zero, while higher values give a better fit with less data, but may result in overfitting
the data. In particular, multiplying the number of training examples by a factor of r (while

1 In fact, the Harmony function from Harmonic Grammar is simply log Pr(y|x) in (2) (Smolensky and
Legendre, 2002).



Constraint Weight
*RTRHI 33.89
PARSE[RTR] 17.00
GESTURE[CONTOUR] 10.00
PARSE[ATR] 3.53
*ATRLO 0.41

Table 1. Constraint weights learned by MaxEnt model

keeping the empirical distribution fixed) will yield the same result as reducing σ by a factor of√
r. In other words, if we vary n and σ but hold nσ2 constant, the parameter weights learned

by the MaxEnt model will be the same.

3. Experimental Results

We ran experiments on two different sets of data, one categorical and one stochastic. Both
datasets are available as part of the Praat program (Boersma and Weenink, 2000). In this
section, we describe our experimental results and compare them to the results of the GLA on
the same datasets, as reported in Boersma (1999) and Boersma and Hayes (2001).

3.1. Learning a Categorical Grammar

For this experiment, we used the Wolof tongue-root grammar described in Boersma (1999),
which includes five constraints:

*RTRHI: High vowels must not have a retracted tongue root (rtr).
*ATRLO: Low vowels must not have an advanced tongue root (atr).
PARSE[RTR]: If an input segment is [rtr], it must be realized as [rtr] in the output.
PARSE[ATR]: If an input segment is [atr], it must be realized as [atr] in the output.
GESTURE[CONTOUR]: Do not change from [rtr] to [atr], or vice versa, within a word.

There are 36 input forms provided with this grammar, each of which is paired with
a winning output form and three losing candidates. Boersma (1999) reports the results of
a sample run of the GLA on this set of data. The algorithm was presented with 10,000
training examples (uniformly distributed among the 36 input forms) with a plasticity of 1.0
and evaluation noise of 2.0,2 and learned the following ranking:

*RTRHI�PARSE[RTR]�GESTURE[CONTOUR]�PARSE[ATR]�*ATRLO

The learned ranking values are sufficiently far apart that the noisy evaluation hardly ever
reranks the constraints, giving an error rate below 0.2 percent for all input forms.

We tested the MaxEnt model using various values of nσ2, with training data uniformly
distributed among the 36 input forms. Like Boersma (1999), we tested the accuracy of the
learner on these same 36 input forms. (We discuss ways to test the generalization abilities of
the two algorithms in Section 4.3.) In Table 1, we show the constraint weights learned by the
MaxEnt model with nσ2 at approximately 1,200,000. With these weights, the average error
rate over all input forms is 0.07 percent, and the maximum error rate for any input form is
0.19 percent (comparable to the GLA). If we increase nσ2, the error rates drop essentially to

2 See Boersma and Hayes (2001) for a description of the GLA, including an explanation of the plasticity value
and evaluation noise.



zero. Note that the constraint weights learned by the MaxEnt model have the same relative
ranking as those learned by the GLA and are spaced out at roughly exponential intervals. This
sort of exponential pattern of constraint weights is exactly the pattern that, in the limit, gives
rise to the strict domination of Optimality Theory (Johnson, 2002).

3.2. Learning a Stochastic Grammar

For this experiment, we used the data on Finnish genitive plurals described in Boersma and
Hayes (2001) (henceforth B&H). This set of data was originally collected by Anttila (1997a;
1997b) from a large text corpus.

In Finnish, there are two possible genitive plural endings—a weak ending (usually /-jen/)
and a strong ending (usually /-iden/). Some stems allow only one of the two endings (e.g.
kameroiden/*kamerojen ‘camera’, kalojen/*kaloiden ‘fish’), while others are acceptable with
either ending (e.g. naapurien/naapureiden ‘neighbor’). Among the stems that allow both
endings, there are differences in the degree to which one ending is preferred over the other,
as measured by corpus frequency. Anttila argues that the use of the weak or strong ending
is determined entirely by the phonological properties of the stem. He proposes a number of
possible constraints in his analysis, of which B&H use 11. Since our aim is to compare the
performance of our algorithm to the results in B&H, we use these same 11 constraints:

C1 (STRESS-TO-WEIGHT): Stressed syllables must be heavy.
C2 (WEIGHT-TO-STRESS): Heavy syllables must bear stress.

C3, C4, C5 (*Í, *Ó, *Á): No stressed syllables with underlying high/mid/low vowels.3

C6, C7, C8 (*Ĭ, *Ŏ, *Ă): No unstressed syllables with underlying high/mid/low vowels.
C9 (*H.H): No consecutive heavy syllables.
C10 (*L.L): No consecutive light syllables.
C11 (*LAPSE): No consecutive unstressed syllables.

The data set in B&H contains 5698 tokens, which comprise all genitive plurals of stems
ending in light syllables. (Stems ending in heavy syllables require the strong ending and
exhibit no variation, so B&H excludes them from the test of stochastic learning.) The tokens
are divided into 22 classes depending on the phonological structure of the stem. For each
of these classes, the pattern of constraint violations for the winning candidate and the losing
candidate is different. Table 2 shows examples of four words from different stem classes and
their patterns of constraint violations.

B&H’s characterization of the data is misleading, however. Although each of the 22
classes has a different pattern of constraint violations, the GLA does not consider these
patterns directly during the learning process. Rather, it learns from the pattern of differences
between the violations of the winning output and its corresponding losing candidate. Table
3 shows the pattern of differences for each of the stems in Table 2, obtained by subtracting
the vector of constraint violations for the winning candidate from that of the losing candidate.
Here, we see that from the algorithm’s point of view, stems like ‘naapuri’ and ‘ministeri’ do
not belong to different classes at all. Reanalyzing B&H’s classes in this way, it turns out that
in fact there are only eight different classes of stems for which distributions must be learned.
Since our algorithm, like the GLA, considers only differences in violations between winning
and losing candidates, we consider only these eight collapsed classes in reporting our results.

Table 4 compares the results of the GLA and MaxEnt models on this data set. The
“Tokens” column shows the number of tokens in each class, and the “% Majority” column

3 By “underlying vowels”, Anttila means vowels in the stem.



Word Candidates C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

kala ká.lo.jen 1 1 0 0 0 0 0 1 0 1 1
ká.loi.den 1 2 0 0 0 0 0 1 1 0 1

naapuri náa.pu.ri.en 0 1 0 0 0 1 0 0 0 1 2
náa.pu.rèi.den 0 1 1 0 0 0 0 0 1 0 0

ministeri mı́.nis.te.ri.en 1 2 0 0 0 1 0 0 0 1 3
mı́.nis.te.rèi.den 1 2 1 0 0 0 0 0 1 0 1

maailma máa.il.mo.jen 0 2 0 0 0 0 0 1 1 0 2
máa.il.mòi.den 0 2 0 0 1 0 0 0 3 0 0

Table 2. Constraint violation patterns of four of B&H’s classes, with example words

Word Differences in Constraint Violations
kala 0 1 0 0 0 0 0 0 1 -1 0
naapuri 0 0 1 0 0 -1 0 0 1 -1 -2
ministeri 0 0 1 0 0 -1 0 0 1 -1 -2
maailma 0 0 0 0 1 0 0 -1 2 0 -2

Table 3. Some of B&H’s classes are not distinct

Class Tokens % Majority GLA MaxEnt
1 1097 100 99.5 99.6
2 1000 100 100.0 100.0
3 923 100 100.0 100.0
4 873 70.7 69.5 69.4
5 821 98.4 100 99.8
6 457 99.6 99.4 98.0
7 436 82.1 81.6 80.5
8 91 50.5 58.0 55.3

Table 4. Results of the GLA and MaxEnt on the Stochastic Grammar

shows the percentage of output forms of that class in the training data belonging to the
majority output. For example, in class 2, 100% of the output forms belong to the majority
output (in this case, /-iden/), whereas in class 4, the outputs are split 70/30 (the more common
ending in this case happens to be /-jen/). The “GLA” and “MaxEnt” columns show the
percentage of forms produced by these algorithms that match the majority output forms in
the training data. The MaxEnt results are for nσ2 = 569,800. The GLA results are those
reported in B&H, and reflect an average taken over 100 separate runs of the algorithm. During
each run, the algorithm was presented with 388,000 training examples. The distribution of
input forms in training was according to their empirical frequencies in the corpus, as was
the distribution of output forms for each input. The training examples were presented in five
groups. The initial plasticity was set to 2.0, but was reduced after each group of examples, to
a final value of 0.002. The noise value began at 10.0 for the first group of training examples,
and was set to 2.0 for the remaining examples. In their paper, Boersma and Hayes argue
that reducing the plasticity corresponds to the child’s decreasing ability to learn with age, but
give no justification for the change in noise level. In any case, it is not clear how they chose
the particular training schedule they report, or whether other training schedules would yield
significantly different results. We discuss these points further in Section 4.4.



4. Discussion

In this section, we discuss some of the theoretical implications of our work and the question
of generalization. We then compare the results presented for the GLA and MaxEnt model and
argue in favor of the MaxEnt model on formal and practical grounds.

4.1. The Initial State

For many applications of the MaxEnt model, the bias term in the objective function is simply
a means of preventing overtraining. Here, we can interpret it on a more theoretical level
as a learning bias or assumption about the initial state of acquisition. To keep our initial
experiments as simple as possible, we used the same prior for each constraint weight, which
corresponds to the assumption that all constraints are equally ranked in the absence of data.
However, it is widely believed that in fact children’s acquisition begins with markedness
constraints outranking faithfulness constraints. This situation could easily be modeled by
using priors with different means for the markedness and faithfulness constraints, and setting
the means for the markedness constraints to some higher value than those for the faithfulness
constraints. In the absence of data, markedness would outrank faithfulness, but as data
accumulated indicating otherwise, the strength of the data would overcome the prior, and the
faithfulness constraints would become more important. Universal rankings could be modeled
similarly by adjusting the priors on various constraints to reflect the desired universal ranking.

4.2. The Learning Path

Unlike the GLA and related approaches, our approach cleanly distinguishes the structure of
the model (i.e., the MaxEnt exponential form conditional probability distribution (2) and the
objective function (3) to be maximized in learning) from the details of the method(s) that
can be used to actually maximize that function. This corresponds to the distinction between
Marr’s computational level, which specifies what is to be computed, and Marr’s algorithmic
level, which specifies the algorithms used to carry out that computation (Marr, 1982). This
paper’s principal claim is that the constraint weights that maximize (3) define a conditional
probability distribution (2) that is as accurate as the distributions inferred by the GLA for the
cases investigated here.

Any algorithm for maximizing (3) can in principle be used to find the optimal constraint
weights. We used the Conjugate Gradient algorithm because it is a well-known efficient
general-purpose algorithm that works well on large systems (for other tasks we have used
it with thousands of constraint weights and tens of thousands of training items), but there
are a number of other algorithms that could be used instead. For example, iterative scaling
algorithms are specialized for optimizing MaxEnt objective functions (Berger et al., 1996) but
should yield the same results as obtained with the Conjugate Gradient algorithm. Gradient
ascent is a popular but not very efficient optimization algorithm which may produce human-
like learning curves, although we have not investigated this here: again, the constraint weights
it converges to should be the same as the ones obtained using Conjugate Gradient.4 We leave
for future work the question of which optimization algorithm best models the human learning
path.

4 This discussion ignores the possibility of multiple local maxima. In fact it is possible to show that the log
conditional likelihood is concave, so there is only one global maximum (Berger et al., 1996).



4.3. Generalization

In the machine learning community, it is standard practice to evaluate the generalization
ability of a learning algorithm by testing on examples not seen in the training data. This
is typically done by partitioning the corpus, training on, say, 90% of the data, and testing on
the remaining 10%. For small data sets, this process can be repeated using the other nine
possible partitions of the corpus to obtain an average test set performance. For very small
data sets, the testing portion may consist of only a single data point. Keller and Asudeh
(2002) suggest using exactly these methods to evaluate the generalization ability of the GLA,
and at first glance, it seems that we should evaluate the MaxEnt learner in this way.

Upon reflection, however, this sort of experiment doesn’t make sense for the learning
problems we have seen so far. We could set aside 10% of the 5698 Finnish words for testing,
but the learning algorithm doesn’t see words, it only sees patterns of violations. Since all the
words in the corpus fall into only eight classes of violation patterns, the learning algorithm
would have already seen many examples of each class during training, and there would be
no need to generalize during testing. Alternatively, we could treat the classes themselves
as the data points, and perform a leave-one-out regimen. But that would be like providing
a child with input that is missing all words with certain phonological characteristics, and
expecting the child to be able to produce those words correctly. This is not the normal course
of acquisition.

The reason there is no real generalization problem in the tasks we have seen so far is
that much of the work has been done before training even begins. The small number of word
classes is due to the fact that linguists have chosen a few relevant constraints by which to
characterize each word. One of our stated criteria for a successful learning algorithm is the
ability to generalize, but we will not be able to test this ability until we start working on more
difficult problems. These would be problems with many more constraints, so that the number
of possible combinations of constraint violations would be large enough that the algorithm
would not see all of the possibilities during training. We are currently working on finding
data for a problem of this type in order to truly test the generalization ability of the MaxEnt
learner.

4.4. Comparison to the GLA

We believe there are three key features of the GLA that have caused it to become influential.
First is its ability to model variation in the adult grammar. Second is the ability to model
the initial state (by setting the initial rankings of faithfulness and markedness constraints to
different values). Finally, in at least some cases, the GLA seems to mimic the child’s learning
path (Boersma and Levelt, 1999). We have shown that the MaxEnt algorithm is able to learn
both categorical and stochastic grammars as accurately as the GLA. We have not yet run
experiments using different priors or different learning algorithms, but we have shown that it
would be easy to use these methods to model different assumptions about the initial state and
the learning path.

Given the preliminary nature of our results with regard to the actual process of
acquisition, why do we believe the MaxEnt model is worth pursuing as an alternative to the
GLA? Our argument is twofold. First, the MaxEnt model is mathematically well-motivated,
resting on principles of information theory. It has only a single parameter to set—the ratio of
σ, the standard deviation of the prior, to the number of training examples (i.e. how closely the
model should fit the data). The GLA, in contrast, has at least two parameters—the ratio of the
plasticity value to the number of training examples, and the evaluation noise—and potentially
many more, if complicated training schedules like the ones in B&H are used. There seems to
be no principled way to choose the parameters for a good training schedule, nor do we know



how sensitive the results are to that choice, or whether the GLA is guaranteed to converge. In
contrast, there is a clear relationship between nσ2 and the accuracy of learning in the MaxEnt
model, and many optimization algorithms that could be used, including Conjugate Gradient,
have proofs of convergence.

The second advantage of the MaxEnt model is its generality. Unlike the GLA, the
MaxEnt model is not designed specifically for OT, and in fact has been used in many other
fields for a century since its original introduction in statistical physics. The mathematical
properties of the model have been well-studied, it has been shown to be useful for learning in
a variety of domains, and in general there is a wide literature available (Jelinek, 1997).

5. Conclusions

In this paper we have presented a new way of modeling constraint-based phonology using the
statistical framework of the Maximum Entropy model. We have shown that this model, in
conjunction with standard optimization algorithms, can learn both categorical and stochastic
grammars from a training corpus of input/output pairs. Its performance on these tasks is
similar to that of the GLA. We have not yet added any assumptions about the initial state or
learning path taken by the MaxEnt model, but we have described how this could easily be
done by changing the priors of the model or the optimization algorithm used.

In addition to these empirical facts about the MaxEnt model, we wish to emphasize its
strong theoretical foundations. Unlike the GLA, which is a somewhat ad hoc model designed
specifically for learning OT constraint rankings, the MaxEnt model is a very general statistical
model with an information theoretic justification that has been used successfully for many
different types of learning problems. The MaxEnt model also has fewer parameters than the
GLA and does not require complicated training schedules. Given our positive results so far
and the success of Maximum Entropy models for other types of machine learning tasks, we
believe that this model is worth pursuing as a framework for probabilistic constraint-based
phonology.
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