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Abstract 

  In recent years, Bayesian models have become increasingly popular as a way of 

understanding human cognition.  Ideal learner Bayesian models assume that cognition can be 

usefully understood as optimal behavior under uncertainty, a hypothesis that has been supported 

by a number of modeling studies across various domains (e.g., Griffiths & Tenenbaum, 2005; Xu 

& Tenenbaum, 2007).  The models in these studies aim to explain why humans behave as they 

do given the task and data they encounter, but typically avoid some questions addressed by more 

traditional psychological models, such as how the observed behavior is produced given 

constraints on memory and processing.  Here, we use the task of word segmentation as a case 

study for investigating these questions within a Bayesian framework.  We consider some 

limitations of the infant learner, and develop several online learning algorithms that take these 

limitations into account.  Each algorithm can be viewed as a different method of approximating 

the same ideal learner. When tested on corpora of English child-directed speech, we find that the 

constrained learner’s behavior depends non-trivially on how the learner's limitations are 

implemented. Interestingly, sometimes biases that are helpful to an ideal learner hinder a 

constrained learner, and in a few cases, constrained learners perform equivalently or better than 

the ideal learner.  This suggests that the transition from a computational-level solution for 

acquisition to an algorithmic-level one is not straightforward. 

 

Key words: algorithmic level, Bayesian models, computational level, English, ideal learning, 

online learning, processing limitations, word segmentation 

 

 



1. Introduction 

 Language acquisition can be thought of as an induction problem, where the child 

observes some finite set of linguistic data, and must generalize beyond those data to form a more 

abstract representation of the language that can be used to produce and understand novel forms.  

In recent years, there has been growing interest and success in examining induction problems in 

many areas of cognition using a rational analysis approach (Oaksford & Chater, 1998), often 

through the use of Bayesian models (Griffiths, Chater, Kemp, Perfors, & Tenenbaum, 2010; 

Griffiths, Kemp, & Tenenbaum, 2008; Tenenbaum, Griffiths, & Kemp, 2006).  These models are 

typically used to examine problems at Marr’s (1982) computational level of analysis, asking 

what the goal of the computation is and the general strategy by which it might be solved.  They 

are ideal learners, which solve the induction problem optimally given particular assumptions 

about internal representation and the information available to the learner.  Researchers have 

found that human behavior accords with that of the models in a number of domains, including 

language (e.g., Frank, Goodman, & Tenenbaum, 2009; Griffiths & Tenenbaum, 2005; 

Tenenbaum & Griffiths, 2001; Xu & Tenenbaum, 2007).  These results are useful for showing 

that humans can integrate data optimally in many cases, but due to their focus on the 

computational level of explanation, the models tell us very little about the actual processes and 

mechanisms by which humans might achieve these behaviors - what Marr (1982) termed the 

algorithmic level of analysis.  Indeed, one of the main criticisms of the Bayesian approach is that 

its frequent neglect of algorithmic-level explanations is unsatisfying to those who are interested 

in the processes by which humans make their inductive leaps (McClelland, Botvinick, Noelle, 

Plaut, Rogers, Seidenberg, & Smith, 2010).  Given the limitations on human cognitive abilities 

(e.g., memory and processing), what kinds of algorithms might actually be used to compute the 



solutions that are optimal under a Bayesian model?  What kinds of approximations might be 

required, and will different approximations lead to different results? 

 In this paper, we begin to address these very general questions by using the task of word 

segmentation by human infants as a case study.  Our work can be viewed as one instance of a 

recent trend towards examining cognitively plausible implementations of Bayesian models 

(Brown & Steyvers, 2009; Sanborn, Griffiths, & Navarro, in press; Shi, Griffiths, Feldman, & 

Sanborn, in press).  The problem of word segmentation is useful for our purposes because 

previous work has already analyzed the behaviors of ideal learners on this task, characterizing 

the differences between learners making different assumptions about the nature of the input data.  

Specifically (as discussed further in section 2.2), ideal learners who assume that words are 

predictive of other words (implemented using a bigram model) are more successful than learners 

who make the simpler unigram assumption that words are independent units (Goldwater, 

Griffiths, and Johnson, 2009). 

 The results of Goldwater, Griffiths, and Johnson (2009) (henceforth GGJ) were obtained 

by implementing their ideal learners using an algorithm that stored the entire corpus in memory.  

Here we ask whether more cognitively plausible algorithms, which take account of human 

memory and processing limitations, yield similar results (either quantitatively or qualitatively).  

We develop three different algorithms, where each algorithm can be viewed as a different 

method of approximating the same ideal learner.  Like GGJ’s ideal learners, our learners are 

unsupervised: their input consists of strings of phonemes with no word boundaries marked 

(except for utterance boundaries), and no initial lexicon of known words.  Unlike GGJ’s ideal 

learners, our learners use online (incremental) processing algorithms, which assume that the 

learner can only store and process a limited amount of data at once.  When tested on a corpus of 



English child-directed speech (Bernstein-Ratner, 1984), we find that the modeled learner’s 

behavior depends non-trivially on how the learner's processing limitations are implemented.  In 

particular, not all of the constrained learners exhibit the same qualitative differences between 

unigram and bigram versions as do the ideal learners. In some cases, the constrained unigram 

learners actually perform better than the ideal unigram learners, a behavior we discuss in light of 

Newport’s “Less is More” hypothesis about human language acquisition (Newport, 1990). These 

results show that different kinds of cognitive limitations (constraints on the kinds of hypotheses 

learners entertain – e.g., whether or not words are predictive – and constraints on memory and 

processing) can interact in surprising and non-trivial ways.  In particular, learners with restricted 

hypothesis spaces (here, unigram learners) may actually benefit from having restricted 

processing powers as well.  Also, although the online learners we explore here are less successful 

than the most powerful learner we tested (the ideal bigram learner), we find they are able to 

utilize the statistical information in the data quite well, achieving comparable performance to 

other recent models of word segmentation, and far better performance than a simple transitional 

probability learner (Saffran et al., 1996). 

 

2. Statistical Word Segmentation 

 Word segmentation is the task of identifying word boundaries in fluent speech, and is one 

of the first problems that infants must solve during language acquisition.  A number of weak 

cues to word boundaries are present in fluent speech, and there is evidence that infants are able to 

use many of these, including phonotactics (Mattys et al., 1999), allophonic variation (Jusczyk et 

al., 1999b), metrical (stress) patterns (Morgan et al., 1995; Jusczyk et al., 1999c), effects of 

coarticulation (Johnson and Jusczyk, 2001), and statistical regularities among sequences of 



syllables (Saffran et al., 1996).  With the exception of the last cue, all these cues are language-

dependent, in the sense that the way the cue relates to word boundaries differs between 

languages.  For example, English words are most often stressed on the initial syllable, while in 

other languages stress might be more typical on the penultimate or final syllable.  Similarly, 

phonotactic constraints differ between languages, with legal words in one language being illegal 

in others.  Thus, one would normally assume that in order to use these cues, infants must have 

already learned some of the words in the language in order to identify the dominant stress 

patterns and phonotactics (though see Blanchard, Heinz, & Golinkoff (2010) for one way 

language-specific phonotactics might be learned at the same time the initial segmentation 

problem is being solved).   Since the point of word segmentation is to identify words in the first 

place, needing to know words in order to learn segmentation cues creates a chicken-and-egg 

problem.  Fortunately, language-independent cues, such as statistical regularities between 

syllables or phonemes, can help infants out of this problem by allowing them to identify words 

(statistically coherent sound sequences) or word boundaries (statistically incoherent sound 

sequences) without already knowing what some words are.  Infants appear to use these 

regularities earlier than other kinds of cues (Thiessen & Saffran, 2003), which suggests that 

strategies exploiting regularities in syllable or phoneme sequences can indeed provide the initial 

bootstrapping step for word segmentation.  Consequently, although most of the other cues 

mentioned above are also statistical in nature, research (especially computational research) into 

statistical word learning has tended to focus on the use of syllable and phoneme regularities.  

 Before describing the models we will be exploring here, we first briefly review some other 

unsupervised models of word segmentation.  A complete review of previous work is beyond the 

scope of this paper; instead we describe only some of the most recent models, which we will use 



for comparison to our own, and refer the reader to Goldwater (2006) for additional references.  

 

2.1 Recent Statistical Word Segmentation Models 

2.1.1 WordEnds 

 WordEnds (Fleck, 2008) is an unsupervised learning algorithm that operates in batch mode 

over sequences of phonemes.  It focuses on boundaries (rather than words), and works by 

estimating the probabilities of different phoneme sequences occurring at word beginnings and 

endings, using these to identify locations that are likely to be word boundaries.  An initial 

estimate of the probabilities is made by looking at the sequences that occur at utterance 

boundaries.  These initial probabilities are used to hypothesize new word boundaries, which are 

then used to update the learner's estimates of probable word beginnings and endings, and the 

process continues iteratively.  As a final cleanup measure, the learner merges hypothesized 

words together if the merged word occurs frequently enough in the existing segmentation.  

Although lexical items are used in the last step of the algorithm, WordEnds is not primarily 

word-based, in that it does not try to optimize a lexicon or explicitly model entire words or their 

relationships to each other (the phoneme sequences to the right and left of a word boundary are 

assumed to be independent, so the learner does not assume one word is predictive of the next). 

   

2.1.2  Bootstrap Voting Experts 

 Hewlett and Cohen (2009) introduced a learning model called Bootstrap Voting Experts 

that works by chunking together sequences of phonemes that have low internal entropy and high 

boundary entropy.  Thus, like WordEnds, this learner uses phonemic probability information, but 

no explicit model of words or a lexicon.  Also like WordEnds, the learner iterates over the corpus 



in batch mode, improving subsequent segmentation hypotheses by information gained from 

previous segmentation hypotheses.  Using a sliding window of a fixed length, two “voting 

experts” use accumulated entropy knowledge to vote whether a boundary should be inserted 

between two phonemes; if the number of votes exceeds a pre-determined threshold, the learner 

inserts a word boundary.   

  

2.1.3 PHOCUS 

 Blanchard, Heinz, & Golinkoff (2010) created PHOCUS (PHOnotactic CUe Segmenter), 

an online learner that couples statistical word learning with phonotactic constraints.  In 

particular, Blanchard et al. demonstrate a way in which language-specific phonotactic 

constraints, realized as likely and unlikely phonemic sequences, can be learned at the same time 

that segmentation is being attempted and an explicit lexicon is built.  The learner uses an online 

algorithm, processing one utterance at a time and starting with an initially empty lexicon.  The 

learner considers all possible segmentations of each utterance and chooses the one that is most 

probable, as computed by multiplying together the probabilities of each hypothesized word.  The 

newly segmented words are then added to the lexicon (or, if they already exist, their counts are 

incremented).  The relative frequency of each word in the lexicon is used as its probability when 

segmenting future utterances, and phonotactic probabilities are computed based on the current 

lexical items.  Possible words that are not in the lexicon are assigned probabilities using these 

phonotactic probabilities.  Note that when the learner starts out, no lexical items exist, so 

utterances will not be segmented, but added to the lexicon whole.  However, since some 

utterances are individual words, they allow the learner to begin to find boundaries in later 

utterances. 



 This model is the most similar to those we introduce below, in that it uses an online 

algorithm and computes probabilities of different segmentations based on a learned lexicon.  The 

main differences are in exactly how the probabilities are computed and the use of phonotactic 

probabilities in the PHOCUS learner.  The best-performing variants of this learner also include 

domain-specific universally applicable knowledge about words: Namely, well-formed words 

must have a least one syllabic sound, and the learner knows which sounds are syllabic.   

In addition, some of our learners assume that words are predictive of each other, whereas 

PHOCUS does not. 

 

2.2 Bayesian word segmentation 

 The starting point of our research is the work of Goldwater, Griffiths, and Johnson (2007) 

(GGJ), which provides a Bayesian learning analysis of how statistical information could be used 

by infants to begin to segment words from continuous speech.  It is a computational-level 

approach which defines the goal of learning as identifying the optimal segmentation of the input 

corpus from the space of all possible segmentations.  Each segmentation implicitly defines a 

lexicon (the set of word types occurring in the segmentation); the learner decides which 

segmentation is optimal based on the words in the learned lexicon and their frequencies. 

In the language of Bayesian analysis, the learner seeks to identify an explanatory 

hypothesis that both accounts for the observed data and conforms to prior expectations about 

what a reasonable hypothesis should look like.  GGJ develop two models within a Bayesian 

framework where the learner is presented with some data d (a corpus of phonemically 

transcribed utterances, where each utterance is an unsegmented sequence of phonemes) [end note 

1] and seeks a hypothesis h (a segmentation of the corpus into a sequence of words) that both 



explains the data (i.e., concatenating together the words in h forms d) and has high prior 

probability.  The optimal solution is the hypothesis with the highest probability, given the data: 

 

(1)   

 

 The learner determines the posterior probability of h having observed d based on P(d | h) 

– the likelihood of d being observed if h was true – and P(h) – the prior probability of h.  Since a 

hypothesis is only a sequence of words, if the hypothesis sequence matches the observed 

sequence of phonemes, the likelihood is 1; if the hypothesis sequence does not match the 

observed sequence, the likelihood is 0.  For example, hypotheses consistent with the observation 

sequence lookatthedoggie (we use orthographic rather than phonemic transcriptions here for 

clarity) include lookatthedoggie, look at the doggie, lo oka t th edo ggie,  and  l o o k a t t h e d o 

g g i e.  Inconsistent hypotheses, for which P(d|h) = 0, include i like pizza, a b c, and lookatthat.   

Since the likelihood is either 0 or 1, all of the work in the models is done by the prior 

distribution over hypotheses.  For GGJ, the prior of h encodes the intuitions that words should be 

relatively short, and the lexicon should be relatively small.  In addition, each of the two models 

encodes a different expectation about word behavior: in the unigram model, the learner assumes 

that words are statistically independent (i.e. context is not predictive); in the bigram model, 

words are assumed to be predictive units.   

To encode these intuitions mathematically, GGJ use a model based on the Dirichlet 

Process from  nonparametric Bayesian statistics (Ferguson, 1973), which can be summarized as 

follows.   Imagine that the sequence of words w1…wn in h is generated sequentially using a 



probabilistic generative process.  In the unigram model, the identity of the ith word is chosen 

according to 

 

(2)  

 

where  is the number of times w  has occurred in the previous i-1 words, α is a parameter 

of the model, and P0 is a base distribution specifying the probability that a novel word will 

consist of the phonemes x1…xm: 

 

(3)  

 

The equation in (2) enforces the preference for a small lexicon by stating that the probability of a 

word is approximately proportional to the number of times that word has occurred previously.  

Thus, hypotheses where a small number of words occur frequently will be preferred over those 

with larger lexicons, where each word occurs less often.  In addition, the first time a word 

appears in the sequence,  = 0, so the probability of the word is completely determined by 

the equation in (3).  Since (3) is a product of the phonemes in the word, words with fewer 

phonemes (i.e., shorter words) will be preferred.  The GGJ model also includes a geometric 

distribution over utterance lengths, to account for the fact that the corpus consists of individual 

utterances.  A more detailed description of both the unigram model and the bigram model 

(below) can be found in the original paper.  

 The bigram model, which is based on a hierarchical Dirichlet Process  (Teh at al, 2006), 

is conceptually similar to the unigram model except that it tracks not only the frequencies of 



individual words, but also the frequencies of pairs of words.  Just as the unigram model prefers 

hypotheses where a small number of words appear with high frequency, the bigram model 

prefers hypotheses where a small number of bigrams appear with high frequency (in addition to 

the assumptions of the unigram model).  The model is defined as follows: 

 

(4)  

(5)  

where is the number of times the bigram (w’,w) has occurred in the first i-1 words, 

 is the number of times w  has occurred as the second word of a bigram, bi-1 is the total 

number of bigrams, and β and γ are model parameters.  The preference for hypotheses with 

relatively few distinct bigrams is enforced in the equation in (4), by making a bigram's 

probability approximately proportional to the number of times it has occurred before.  This is 

analogous to the equation in (2) for the unigram model.  When a new bigram is created, its 

probability is determined by the equation in (5), which assigns higher probability to new bigrams 

that use words that already occur in many other bigrams (i.e., the model assumes that a few 

words create bigrams very promiscuously, while most do not).   

 

2.3. Ideal and Constrained Bayesian Inference  

2.3.1. Ideal learners 

 To evaluate the performance of both the unigram and bigram Bayesian models in an ideal 

learner framework, GGJ used Gibbs sampling, a stochastic search procedure often used for ideal 

learner inference problems.  Gibbs sampling, a type of Markov chain Monte Carlo procedure, is 



a batch algorithm that iterates over the corpus multiple times.  Gibbs samplers are guaranteed to 

converge, which means that after a number of initial iterations (usually called “burn-in”), each 

iteration produces a sample from the posterior distribution of the model in question (here, either 

the unigram or bigram GGJ model).  This convergence guarantee is what makes these samplers 

popular for ideal learner problems, since it means that the true posterior of the model can be 

examined without the effects of additional constraints imposed by the learning algorithm. 

 During each iteration of GGJ’s Gibbs sampler, every possible boundary location (position 

between two phonemes) in the corpus is considered in turn.  At each location b, the probability 

that b is a boundary is computed, given the current boundary locations in the rest of the corpus 

(details of this computation can be found in GGJ; critically, it is based on the equations defining 

the Bayesian model and thus on the lexicon and frequencies implicit in the current 

segmentation).  Then the segmentation is updated by inserting or removing a boundary at b 

according to this probability, and the learner moves on to the remaining boundary locations.  

Pseudocode for this algorithm is shown in (6). 

 

(6) Pseudocode for Gibbs sampler (Ideal Learner) 

 Randomly initialize all word boundaries in corpus 

For i = 1 to number of iterations 

 For each possible boundary location b in corpus 

(1) Compute p, the probability that b is a boundary (b = 1) 

given the current segmentation of the rest of the corpus 

(2) With probability p, set b to 1; else set b to 0 

 

GGJ found that in order to converge to a good approximation of the posterior, the Gibbs sampler 

required 20000 iterations (i.e.,  each possible boundary in the corpus was sampled 20000 times), 



with α = 20 for the unigram models, and β = 10,  γ = 3000 for the bigram models.   

 Due to the convergence guarantees noted above, this algorithm is well-suited to the 

computational-level analysis that GGJ were interested in, allowing them to ask what kinds of 

segmentations would be learned by ideal learners with different assumptions about the nature of 

language.  GGJ discovered that an ideal learner that is biased to heed context (the bigram model) 

achieves far more successful segmentation than one that is not (the unigram model).  Moreover, 

a unigram ideal learner will severely undersegment the corpus, identifying common collocations 

as single words (e.g., you want segmented as youwant), most likely because the only way a 

unigram learner can capture strong word-to-word dependencies is to assume those words are 

actually a single word.  This tells us about the expected behavior in learners who are able to 

make optimal use of their input – that is, what in principle are the useful biases for humans to 

use, given the available data. 

 Turning to the algorithmic level of analysis, however, the GGJ learner is clearly less 

satisfactory, since the Gibbs sampling algorithm requires the learner to store the entire corpus in 

memory, and also to perform a significant amount of processing (recall that each boundary in the 

corpus is sampled 20000 times). In the following section, we describe three algorithms that make 

more cognitively plausible assumptions about memory and processing.  These algorithms will 

allow us to investigate how such memory and processing limitations might affect the learner’s 

ability to achieve the optimal solution to the segmentation task (i.e., the solution found by the 

ideal learners in GGJ).  

 

 

 



2.3.2. Constrained learners 

 To simulate limited resources, all the learning algorithms we present operate in an online 

fashion, so that processing occurs one utterance at a time rather than over the entire corpus 

simultaneously.  Under GGJ’s Bayesian model, the only information necessary to compute the 

probability of any particular segmentation of an utterance is the number of times each word (or 

bigram, in the case of the bigram model) has occurred in the model’s current estimation of the 

segmentation. Thus, in each of our online learners, the lexicon counts are updated after 

processing each utterance (and in the case of one learner, during the processing of each utterance 

as well).  The primary differences between our algorithms lie in the additional details of how 

resource limitations are implemented, and whether the learner is assumed to sample 

segmentations from the posterior distribution or choose the most probable segmentation. [end 

note 2] 

 

2.3.2.1 Dynamic Programming Maximization 

 We first tried to find the most direct translation of the ideal learner to an online learner 

that must process utterances one at a time, such that the only limitation is that utterances must be 

processed one at a time.  One idea for this is an algorithm we call Dynamic Programming 

Maximization (DPM), which processes each utterance as a whole, using dynamic programming 

(specifically the Viterbi algorithm) to efficiently compute the highest-probability segmentation 

of that utterance given the current lexicon.[end note 3]   It then adds the words from that 

segmentation to the lexicon and moves to the next utterance.  This algorithm is the only one of 

our three that has been previously applied to word segmentation (Brent, 1999).  Pseudocode for 

this learner is shown in (7). 



 

(7) Pseudocode for DPM Learner 

 initialize lexicon (initially empty) 

For u = 1 to number of utterances in corpus 

(1) Use Viterbi algorithm to compute the highest probability 

segmentation of utterance u, given the current lexicon 

(2) Add counts of segmented words to lexicon 

  

2.3.2.2 Dynamic Programming Sampling 

We then created a variant that is similar to DPM, but instead of choosing the most 

probable segmentation of each utterance conditioned on the current lexicon, it chooses a 

segmentation based on how probable that segmentation is. This algorithm, called Dynamic 

Programming Sampling (DPS),  computes the probabilities of all possible segmentations using 

the forward pass of the forward-backward algorithm, and then uses a backward pass to sample 

from the distribution over segmentations.   Pseudocode for this learner is shown in (8); the 

backward sampling pass is an application of the general method described in Johnson, Griffiths, 

and Goldwater (2007). 

 

(8) Pseudocode for DPS learner 

 initialize lexicon (initially empty) 

For u = 1 to number of utterances in corpus 

(1) Use Forward algorithm to compute probabilities of all 

possible segmentations of utterance u, given the current lexicon 

  (2) Sample segmentation, based on probability of the segmentation 

(3) Add counts of segmented words to lexicon 

 



 

2.3.2.3 Decayed Markov Chain Monte Carlo 

 We also examined a learning algorithm that recognizes that human memory decays over 

time and so focuses processing resources more on recent data than on data heard further in the 

past (a recency effect).  We implemented this using a Decayed Markov Chain Monte Carlo 

(DMCMC) algorithm (Marthi et al., 2002), which processes an utterance by probabilistically 

sampling s word boundaries from all the utterances encountered so far.  The sampling process is 

similar to Gibbs sampling, except that the learner only has the information available from the 

utterances encountered so far to inform its decision, rather than information derived from 

processing the entire corpus.   

The probability that a particular potential boundary b is sampled is given by the 

exponentially decaying function ba
-d, where ba is the number of potential boundary locations 

between b and the end of the current utterance, and d is the decay rate.  Thus, the further b is 

from the end of the current utterance, the less likely it is to be sampled.  The exact probability is 

based on the decay rate d.  For example, suppose d was 1, and there are 5 potential boundaries 

that have been encountered so far.  The probabilities for sampling each boundary are shown in 

Table 1.  

 

[Insert Table 1 approximately here: Likelihood of sampling a given boundary in DMCMC] 

 

 After each boundary sample is completed, the learner updates the lexicon.  Pseudocode 

for this learner is shown in (9).  

 



(9) Pseudocode for DMCMC learner 

initialize lexicon (initially empty) 

For u = 1 to number of utterances in corpus 

Randomly initialize word boundaries for utterance u. 

For s = 1 to number of samples to be taken per utterance 

(1) Probabilistically sample one potential boundary from 

utterance u or earlier, based on decay rate d (has bias to 

sample more recent boundaries) and decide whether a word 

boundary should be placed there 

(2) Update lexicon if boundary changed (inserted or 

deleted) 

 

We note that one main difference between the DMCMC learner and the Ideal learner is 

that the Ideal learner samples every boundary from the corpus on each iteration, rather than being 

restricted to a certain number from the current utterance or earlier.  The Ideal learner thus has 

knowledge of future utterances when making its decisions about the current utterance and/or 

previous utterances, while the DMCMC learner does not.[end note 4] In addition, restricting the 

number of samples in the DMCMC learner means that it requires less processing time/resources 

than the Ideal learner.   

We examined a number of different decay rates, ranging from 2.0 down to 0.125.  To 

give a sense of what these really mean for the DMCMC learner, Table 2 shows the probability of 

sampling a boundary within the current utterance assuming the learner could sample a boundary 

from any utterances that occurred within the last 30 minutes of verbal interaction (i.e., this 

includes child-directed speech as well as any silences or pauses in the input stream).  

Calculations are based on samples from the alice2.cha file from the Bernstein corpus, where an 



utterance occurs on average every 3.5 seconds.  As we can see, the lower decay rates cause the 

learner to look further back in time, and thus require the learners to have a stronger memory in 

order to successfully complete the boundary decision process. 

 

[Insert Table 2 approximately here: Probability of sampling a boundary from the current 

utterance, based on decay rate] 

 

 The DMCMC learner has some similarity to previous work on probabilistic human 

memory, such as Anderson & Schooler (2000).  Specifically, Anderson & Schooler argue for a 

rational model of human memory that calculates a “need” probability for accessing words, which 

is approximately how likely humans are to need to retrieve that word.  The higher a word’s need 

probability, the more likely a human is to remember it.  The need probability is estimated based 

on statistics of the linguistic environment. Anderson & Schooler demonstrate that the need 

probability estimated from a number of sources, including child-directed speech, appears to 

follow a power law distribution with respect to how much time has elapsed since the word was 

last mentioned.  Our DMCMC learner, when doing its constrained inference, effectively 

calculates a need probability for potential word boundaries – this is the sampling probability 

calculated for a given boundary, which is derived from an exponential decay function.  Potential 

word boundaries further in the past are less likely to be needed for inference, and so are less 

likely to be retrieved by our DMCMC learner. 

 

 

 



3. Bayesian Model Results 

3.1 The data set 

 We tested the GGJ Ideal learner and our three constrained learners on data from the 

Bernstein corpus (Bernstein-Ratner, 1984) from the CHILDES database (MacWhinney 2000). 

We used the phonemic transcription of this corpus that has become standard for testing word 

segmentation models (Brent, 1999).[end note 5] The phonemically transcribed corpus contains 

9790 child-directed speech utterances (33399 tokens, 1321 types, average utterance length = 3.4 

words, average word length = 2.9 phonemes)  See Table 3 for sample transcriptions and 

Appendix Figure 1 for the phonemic alphabet used.  Unlike previous work, we used cross-

validation to evaluate our models, splitting the corpus into five randomly generated training sets 

(~8800 utterances each) and separate test sets (~900 utterances each), where each training and 

test set were non-overlapping subsets of the data set used by GGJ.  We used separate training and 

test sets to examine the modeled learner’s ability to generalize to new data it has not seen before 

(and been iterating over, in the case of the Ideal learner).  Specifically, we wanted to test if the 

lexicon the learner inferred was useful beyond the immediate dataset it trained on.  Temporal 

order of utterances was preserved in the training and test sets, such that utterances in earlier parts 

of each set appeared before utterances in later parts of each set.[end note 6]  

 

[insert Table 3 approximately here: Samples of Bernstein corpus.] 

 

3.2 Performance measures 

 We assessed the performance of these different learners, based on precision and recall 

over word tokens, word boundaries, and lexicon items, where precision is # correct/# found and 



recall is # correct/# found in the gold standard. To demonstrate how these measures gauge 

performance differently, let us consider the evaluation of the utterances “look at the doggie” and 

“look at the kitty”, which are translated into phoneme characters as “lUk  &t  D6  dOgi” and  

“lUk  &t  D6  kIti”.  Suppose the algorithm decided the best segmentation was “lUk&t  D6  

dOgi” and “lUk&t  D6kIti”.  For word tokens, precision is 2/5, while recall is 2/8;  for word 

boundaries (utterance-initial and utterance-final boundaries are excluded), precision is 3/3, while 

recall is 3/6;  for lexicon items, precision is 2/4, while recall is 2/5.    

 

3.3 Performance 

 Table 4 reports the scores for each Bayesian learner, along with results (where available) 

from other statistical learners discussed previously.   F scores (F = (2 * precision * 

recall)/(precision + recall)) are also provided.  Note that the results for the WordEnds, Bootstrap 

Voting Experts (BVE), and PHOCUS  learners are not strictly comparable to our own results, 

since they do not use a separate training and test set.  Instead, they trained over the entire 

Bernstein corpus and were evaluated by how well they segmented that corpus.  In addition, 

PHOCUS performance was computed after discarding the first 1000 utterances (see Blanchard et 

al. (2010) for discussion as to why).  The results for the transitional probability learner are from 

an implementation that computes transitional probabilities based on an initial sweep through the 

corpus (technically making it a batch algorithm; online versions are possible but would require 

some form of smoothing to avoid zero-probability transitions). The learner then inserts 

boundaries at each transitional probability minimum, as suggested by Saffran, Aslin, & Newport 

(1996).  (One could segment instead at a fixed transitional probability threshold; we found no 

threshold that worked better than using the minimum.) [end note 7]  



As for the parameters of our own learners, all DMCMC learners have s = 20000 (20000 

samples per utterance), as we found this gave the best segmentation performance.  While this 

may still seem like a lot of processing, this learner nonetheless takes 89% fewer samples than the 

ideal learner in GGJ, which is a substantial savings in processing resources.  In addition, the 

DMCMC unigram learners fared best with d = 1.0, while the DMCMC bigram learners fared 

best with d = 0.25.  Figure 1 shows the F scores over word tokens for each of the Bayesian 

learners (both unigram and bigram variants) while Figure 2 shows the F scores over lexicon 

items. 

 

[Insert Table 4 approximately here: Average performance of different learners on the test sets.] 

 

[Insert Figure 1 approximately here: Word token F-scores for each of the learners] 

[Insert Figure 2 approximately here: Lexicon item F-scores for each of the learners] 

 

 A few observations:  First, while there is considerable variation in the performance of our 

constrained learners, all of them out-perform a transitional probability learner operating over 

phonemes (compare Bayesian learner results to TransProb learner results in Table 4).  In 

addition, our best Bayesian learners compare favorably to other statistical learning algorithms, 

particularly with respect to their scores over lexicon items.  For example, though the batch-

learning WordEnds model achieves comparable boundary scores (BF) to many of our online 

Bayesian learners, its lexicon score (LF) is much lower than most of our online Bayesian learners 

(LF WordEnds = 36.6, LF all learners but Bigram DPS: 51.8 – 65.0).  Similarly, while PHOCUS 

achieves comparable token scores to our best online Bayesian learner (TF PHOCUS: 75.8, TF 



Bigram DMCMC: 73.0), its lexicon score is lower (LF PHOCUS: 54.5, LF Bigram DMCMC: 

62.6).  Thus, our online Bayesian learners seem better able to extract a reliable lexicon from the 

available data than other recent statistical learners, including one (PHOCUS) that relies on 

domain-specific knowledge about word well-formedness. 

Second, when we examine the impact of the unigram and bigram assumptions on word 

token performance, we find that the bigram learners do not always benefit from assuming words 

are predictive of other words.  While the Ideal, DPM and DMCMC learners do (bigram F > 

unigram F, Ideal: p <  .001, DPM: p = .046, DMCMC: p = .002), the DPS learner is harmed by 

this bias (unigram F > bigram F: p < .001).  This is also true for the lexicon F scores: While the 

Ideal and DPM learners are helped (bigram F > unigram F, Ideal: p < .001, DPM: p = .002), the 

DPS and DMCMC learners are harmed (unigram F > bigram F, DPS: p < .001, DMCMC: p = 

.006).[end note 8]   

 Third, when comparing our ideal learner to our constrained learners, we find – somewhat 

unexpectedly – that some of our constrained learners are performing equivalently or better than 

their ideal counterparts.  For example, when we look at word token F-scores for our bigram 

learners, the DMCMC learner seems to be performing equivalently to the Ideal learner 

(DMCMC ≠ Ideal: p = 0.144).  Among the unigram learners, our DPM and DMCMC learners 

are equally out-performing the Ideal learner (DPM > Ideal: p < .001, DMCMC > Ideal: p < .001, 

DPM ≠ DMCMC: p = 0.153) and the DPS is performing equivalently to the Ideal learner (Ideal ≠ 

DPS: p = 0.136). Turning to the lexicon F-scores, the results look a bit more expected for the 

bigram learners: The Ideal learner is out-performing the constrained learners (Ideal > DPM: p < 

.001, Ideal > DPS: p < .001, Ideal > DMCMC:  p < .001). However, among the unigram learners 

we again find something unexpected: the DMCMC learner is out-performing the Ideal learner 



(DMCMC > Ideal: p = .006).  The Ideal learner is still out-performing the other two constrained 

learners, however (Ideal > DPM:  p = .031, Ideal > DPS: p < .001). 

 Fourth, GGJ found that both their ideal learners tended to undersegment (putting multiple 

words together into one word), though the unigram learner did so more than the bigram learner 

(see Table 5 for examples).  

 

[insert Table 5 approximately here: GGJ ideal model performance: Unigram vs. Bigram] 

 

 One way to gauge whether undersegmentation is occurring is to look at the boundary 

precision and recall scores.  When boundary precision is higher than boundary recall, 

undersegmentation is occurring; when the reverse is true, the model is oversegmenting (splitting 

single words into more than one word).  If we examine Table 4, we can see that (as found by 

GGJ) the Ideal learners are undersegmenting, with the bigram model doing so less than the 

unigram model.  Looking at our constrained learners, we can see that the unigram DMCMC 

learner is also undersegmenting.  However, every other constrained model is oversegmenting, 

with the DPS learners being the most blatant oversegmenters; the bigram DMCMC learner 

appears to be oversegmenting the least.  

 We also examined performance on the first and last words in utterances, as compared to 

performance over the entire utterance, based on work by Seidl & Johnson (2006) who found that 

7-month-olds are better at segmenting words that are either utterance-initial or utterance-final 

(see Seidl & Johnson (2006) for detailed discussion on why this might be).  If our models are 

reasonable reflections of human behavior, we hope to find that their performance on the first and 

last words is better than their performance over the entire utterance.  Moreover, they should 



perform equally on the first and last words in order to match infant behavior.  Figures 3 and 4 

show word token F-scores for unigram and bigram learners, respectively, for whole utterances, 

first words, and last words.  Table 6 shows the significance test scores for comparing first word, 

last word, and whole utterance performance for each of the learners. 

 

[Insert Figure 3 approximately here: Performance of Bayesian unigram learners on whole 

utterances, first words, and last words] 

[Insert Figure 4 approximately here: Performance of Bayesian bigram learners on whole 

utterances, first words, and last words] 

[Insert Table 6 approximately here: Significance test scores] 

 

 Looking first to the Bayesian unigram learners, we find that the DPM and DMCMC 

learners match infant behavior best by improving equally on first and last words, compared to 

whole utterances. The Ideal learner improves on both first and last words, but improves more for 

last words than for first words, making its performance slightly different than infants’.   The DPS 

learner only achieves better performance for first words, making its performance even more 

different from infants’. Turning to the Bayesian bigram learners, we find that only the DPM and 

DPS learners are matching infants by improving equally on first and last word performance, 

compared to whole utterance performance.  Both the Ideal and DMCMC learners only improve 

for first words, and not for last words. 

 

 

 



4. Discussion 

 Through these simulations, we have made several interesting discoveries.  First, though 

none of our constrained learners out-performed the best ideal learner (the bigram learner) on all 

measures, our constrained learners still were able to extract statistical information from the 

available data well enough to out-perform learners that segment by tracking transitional 

probability.  Since transitional probability strategies have historically been strongly associated 

with the idea of “cognitively plausible statistical learning” in models of human language 

acquisition (e.g., Saffran et al., 1996; Saffran, 2001; Perruchet & Desaulty, 2008; Pelucchi, Hay, 

& Saffran, 2009), our result underscores how statistical learning can be considerably more 

successful than is sometimes thought when only transitional probability learners are considered.  

In addition, our online Bayesian learners also out-performed several recent statistical models of 

word segmentation with respect to identifying a reliable lexicon, while performing comparably at 

token and word boundary identification.  Our results suggest that even with limitations on 

memory and processing, a learning strategy that focuses explicitly on identifying words in the 

input and optimizing a lexicon (as all our learners here do) may work better than one that focuses 

on identifying boundaries (as transitional probability learners and some recent statistical learning 

models do). 

 Second, we discovered that a bias that was helpful for the ideal learner – to assume words 

are predictive units – is not always helpful for constrained learners.  This suggests that we must 

be careful in transferring the solutions we find for ideal learners to learners who have constraints 

on their memory and processing the way that humans do.  In this case, we speculate that the 

reason some of our constrained learners do not benefit from the bigram assumption has to do 

with the algorithm’s ability to search the hypothesis space; when tracking bigrams instead of just 



individual words, the learner’s hypothesis space is much larger.  It may be that some constrained 

learners do not have sufficient processing resources to find the optimal solution (and perhaps to 

recover from mistakes made early on).  However, not all constrained learners suffer from this.  

There were constrained learners that benefited from the bigram assumption, which suggests less 

processing power may be required than previously thought to converge on good word 

segmentations.  In particular, if we examine the DMCMC learner, we can decrease the number of 

samples per utterance to simulate a decrease in processing power.  Table 7 shows the F-scores by 

word tokens for both the unigram and bigram DMCMC learner with varying samples per 

utterance.  Though performance does degrade when processing power is more limited, these 

learners still out-perform the best phonemic transition probability learner variant we identified 

(which had scores around 38 for word tokens), even when sampling only 0.057% as much as the 

ideal learner.  Moreover, the bigram assumption continues to be helpful, even with very little 

processing power available for the DMCMC learner. 

 

[Put Table 7 approximately here: Performance on test set 1 for DMCMC learners] 

 

 If we constrain the ideal learner so it can only sample as often as the DMCMC learner 

does, we find that the unigram learner’s segmentation performance is not quite as good as the 

DMCMC unigram learner’s (see Table 8), though the bigram learner is much closer to (and in 

the case of the lexicon scores, better than) the DMCMC bigram learner.  One could imagine that 

the DMCMC learner scores so well because the DMCMC algorithm is simply more efficient 

than the Gibbs sampler used by the ideal learner -- i.e., given the same number of total samples, 

DMCMC is able to find a higher probability segmentation than the Gibbs sampler. According to 



the results in Table 9, however, this is not the case: even when achieving higher segmentation 

scores, the DMCMC learner still  finds a segmentation that actually has a lower posterior 

probability than its ideal learner counterpart.  So it is not that the DMCMC learner is better at 

finding optimal solutions than the ideal learner – instead, it appears that some solutions that are 

sub-optimal with respect to posterior probability are actually better than those “optimal” 

solutions with respect to segmentation performance measures.  This suggests that there could be 

something gained by the DMCMC learner’s method of approximated inference if we are more 

interested in good segmentation performance (to be discussed further below). 

 

[Put Table 8 approximately here: Performance on test set 1 for DMCMC learners and ideal 

learners that only sample as much as the DMCMC learners do.] 

 

[Put Table 9 approximately here: Posterior probability vs. segmentation performance on test set 1 

for the Ideal and DMCMC learners.] 

 

 Turning to the more general comparison of the ideal learner to the constrained learners, 

we made a surprising discovery – namely that some of our constrained unigram learners out-

performed the ideal learner.  This is somewhat counterintuitive, as one might naturally assume 

that less processing power would lead to equivalent if not worse performance.  

To rule out the possibility that these results are an artifact of this particular corpus, we 

tested our learners on a larger corpus of English, the Pearl-Brent derived corpus available 

through CHILDES (MacWhinney 2000).  This corpus contains child-directed speech to children 

between 8 months and 9 months old, consisting of 28,391 utterances (96,920 word tokens, 3,213 



word types, average words per utterance: 3.4, average phonemes per word: 3.6).  In Table 10, we 

report the learners’ performance on five test sets generated from this corpus (these were 

generated the same way as the ones from the Bernstein-Ratner corpus were).  The same 

surprising performance trend appears, where the DMCMC unigram learner is out-performing the 

Ideal unigram learner – though only with respect to tokens and word boundaries, and not with 

respect to lexicon items. 

 

[Insert Table 10 approximately here: Average performance of different learners on five test sets 

from the Pearl-Brent derived corpus. ] 

 

  We subsequently looked at the errors being made by both the ideal and the DMCMC 

unigram learners on these English corpora, and discovered a potential cause for the surprising 

behavior.  It turns out that the ideal learner makes many more undersegmentation errors on 

highly frequent bigrams consisting of short words (e.g., can you, do you, and it’s a segmented as 

canyou, doyou, and itsa) while the DMCMC learner does not undersegment these bigrams.  

When the DMCMC learner does make errors on frequent items that are different from the errors 

the ideal learner makes, it tends to oversegment, often splitting off sequences that look like 

English derivational morphology, such as “-s” (plural or 3rd sg present tense) and “-ing” 

(progressive) (e.g., ringing segmented as ring ing, and flowers segmented as flower s).  If we 

survey the errors made by each learner for items occurring 7 or more times in the first test set of 

each English corpus and which are not shared (i.e., only one learner made the error), we find the 

DMCMC learner’s additional errors are far fewer than the ideal learner’s additional errors (as 

show below in Table 11).   



 

[Insert Table 11 approximately here: Analysis of unshared errors made by the ideal and 

DMCMC unigram learners for items occurring 7 or more times in the first test set of each 

corpus.] 

Why might this particular error pattern occur? A possible explanation for this error 

pattern is related to the ideal learner’s increased processing capabilities.  Specifically, the ideal 

learner is granted the memory capacity to survey the entire corpus for frequency information and 

update its segmentation hypotheses for utterances occurring early in the corpus at any point 

during learning.  This allows the ideal unigram learner to notice that certain short items (e.g., 

actual words like it’s and a) appear very frequently together.  Given that it cannot represent this 

mutual occurrence any other way, it will decide to make these items a single lexical item; 

moreover, it can fix its previous “errors” that it made earlier during learning when it thought 

these were two separate lexical items.   In contrast, the DMCMC learner does not have this 

omniscience about item frequency in the corpus, nor as much ability to fix “errors” made earlier 

in the learning process.  This results in the DMCMC learner leaving these short items as 

separate, particularly when encountered in earlier utterances.  As they then continue to exist in 

the lexicon as separate lexical items, undersegmentation errors do not occur nearly as much.  

In summary, more processing power and memory capacity does appear to hurt the 

inference process of the ideal unigram learner, even if that learner identifies a segmentation with 

a higher posterior probability.  This behavior is similar to Newport (1990)’s “Less is More” 

hypothesis for human language acquisition, which proposes that limited processing abilities are 

advantageous for tasks like language acquisition because they selectively focus the learner’s 

attention.  With this selective focus, children are better able to home in on the correct 



components for language since they do not consider as much complex information.  Transferring 

this idea to our unigram learners, the more limited inference process of the DMCMC learner 

focuses its attention only on the current frequency information and does not allow it to view the 

frequency of the corpus as a whole.  Coupled with this learner’s more limited ability to correct its 

initial hypotheses about lexicon items, this leads to superior segmentation performance.  We 

note, however, that this superior performance is mainly due to the unigram learner’s inability to 

capture word sequence predictiveness; when it sees items appearing together, it has no way to 

capture this behavior except by assuming these items are actually one word.  Thus, the ideal 

unigram learner’s additional knowledge causes it to commit more undersegmentation errors in its 

quest to find the segmentation with the highest posterior probability. The bigram learner, on the 

other hand, does not have this problem – and indeed we do not see the DMCMC bigram learner 

out-performing the ideal bigram learner. 

 Turning to general undersegmentation behavior, we also discovered that the tendency to 

undersegment the corpus depends on how constraints are implemented in our learners, as well as 

whether the learners assume words are predictive or not.  According to Peters (1983), English 

children tend to make errors that indicate undersegmentation rather than oversegmentation, so 

perhaps learners that undersegment are a better match for children’s behavior. Here, the 

Bayesian learners that undersegmented on the English data were both of the ideal learners as 

well as the unigram DMCMC learner. 

 Another finding is that models differ on their ability to match infant word segmentation 

behavior at utterance edges (the first word and the last word).  Some of our constrained models 

are in fact better able to match infant behavior on this measure than our ideal models.  Seidl and 

Johnson (2006) review a number of proposed explanations of why utterance edges are easier, 



including perceptual/prosodic salience, cognitive biases to attend more to edges (including 

recency effects), or the pauses at utterance boundaries.  In our results, we find that all of the 

models find utterance-initial words easier to segment, and most of them also find utterance-final 

words easier.  Since none of the algorithms include models of perceptual salience, our results 

suggest that this explanation is probably unnecessary to account for the edge effect, especially 

for utterance-initial words.  Rather, it seems simpler to assume that the pauses at utterance 

boundaries make segmentation easier by eliminating the ambiguity of one of the two boundaries 

of the word.   

However, if this were the only effect at utterance edges, then we would expect all of our 

models to find both initial and final words easier.  In fact, some of them, including the ideal 

bigram learner, find only initial words easier.   This finding suggests that some other statistical 

property of final words actually make them more difficult than initial words for (at least some) 

purely statistical learners.  For example, the words and phrases that end sentences (often nouns 

or verbs) may be more variable or infrequent than the words that start sentences (often pronouns 

or determiners).  Since utterance-final words seem to be at least as easy for infants as utterance-

initial words, a recency effect could be playing an important role here. However, in light of the 

varying results of the different models, further analysis of the statistical properties of utterance-

final versus utterance-initial words is warranted before drawing any strong conclusions. 

 

5. Conclusions & Future Work 

 One moral of this investigation is that a simple intuition about human cognition, such as 

having memory and processing limitations, can be cashed out multiple ways in online learning 

algorithms.  Here, we examined limitations such as processing utterances incrementally and 



implementing recency effects with exponential decay functions.  Having explored several learner 

instantiations incorporating this intuition, we find that the learning assumptions or biases that 

work best depend on how limitations are implemented.  And in fact, some biases that are helpful 

for an ideal learner, such as using context to guide hypotheses, may hinder a constrained learner 

with more limited memory and processing resources.  On a related note, if the learner does not 

use word context, having less memory and processing resources may in fact be beneficial. 

 We view these investigations as a first step towards understanding how to translate 

computational-level solutions into algorithmic-level ones for language acquisition, as there are 

clearly other ways of implementing constrained algorithms.  One question we might ask is 

whether any given learner represented by a combination of a model and a constrained learning 

algorithm (such as our constrained learners here) can be represented solely by a model that 

explicitly defines those same constraints.  Then, if this second model could be optimized, we 

would find it yields the same answer as the constrained learners here.  This would place what we 

are currently considering algorithmic-level constraints back into the computational level 

definition of the model.  While this is possible, it is by no means certain and it could very well be 

that this latter kind of model is considerably more complicated. 

It is also useful to ask if the effects discovered here are robust, and persist across different 

languages.  If the learning model presented here is meant to be a first pass language-independent 

method for word segmentation, we would want it to be successful in languages besides English.  

Moreover, with respect to empirical grounding, we can take further inspiration from what is 

known about the representations infants attend to, and allow our algorithms to have knowledge 

of syllables (Jusczyk et al. 1999a), to track stressed and unstressed phonemes/syllables separately 

(Curtin, Mintz, & Christiansen (2005), Pelucchi, Hay, & Saffran (2009)), and to have additional 



prior phonotactic knowledge argued to be universal in human language (e.g., Blanchard et al. 

(2010)). 

 The transition from a computational-level solution for an acquisition problem to the 

algorithmic-level approximation may not necessarily be straightforward.  By integrating what we 

know of the human ability to utilize available statistical information with what we know of 

human limitations, we can come to understand how infants accomplish the things they do. 

 

Appendix. Phoneme encoding of corpus. 

[Put Appendix Figure 1 approximately here: Phoneme encoding.] 
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End Notes 

End note 1: Note that the units over which these models operate are phonemes, rather than 

phonetic features (Christiansen et al., 1998) or syllables (Swingley, 2005).  This is not 

uncontroversial, as it makes the model insensitive to feature-based similarity between sounds and 

abstracts away from many details of phonetic and acoustic variation.  However, it was chosen 



based on the available input corpora, and to facilitate comparison with other word segmentation 

models. 

End note 2: We note also that some of the algorithms differ on whether they would converge on 

the optimal solution, given infinite resources (infinite iterations, infinite memory buffers, etc.)  

The first algorithm (Dynamic Programming Maximization) would not, while the other two 

(Dynamic Programming Sampling, Decayed Markov Chain Monte Carlo) would.   In this sense, 

the latter two algorithms might be considered ideal, though the particular implementations here 

(with their limited resources) are not.  Under this view, we are comparing both a constrained 

non-ideal algorithm and constrained ideal algorithms against an unconstrained ideal algorithm.  

While all ideal algorithms may be asymptotically equivalent, we will find they exhibit interesting 

differences given finite resources, and that not all of them compare favorably with the 

constrained non-ideal algorithm. 

End note 3: Technically, the probabilities computed by the Viterbi algorithm (and the forward 

algorithm used by the DPS model) are only an approximation of the true probabilities of the 

segmented utterances, since they are based on the contents of the lexicon not including any of the 

words in the current utterance.  Equation (2) shows that in the true posterior, the words 

segmented at the beginning of the utterance will affect the probabilities of the words at the end of 

the utterance. 

End note 4: We note, however, that the DMCMC learner does have knowledge of “future” 

utterances when it samples boundaries from utterances further back in the corpus than the current 

utterance.  However, this knowledge of the “future” utterances (compared to the utterance being 

sampled) only extends to the current utterance, rather than to the whole corpus (which includes 

utterances after the current utterance).  Only at the very end of the corpus would a DMCMC 



learner have knowledge of the entire corpus when doing any of its samples – but it does not have 

this knowledge initially, while the Ideal learner does.  

End note 5: We note that the statistical strategies we explore here are meant to be an initial 

bootstrapping method for children to break into word segmentation – as such, we believe testing 

these strategies on a corpus this size is not unreasonable.  However, see additional results from a 

larger English corpus in the Discussion section that follow the same trends observed in the 

Bernstein corpus. 

End note 6: Although the Ideal learner is not sensitive to the order of presentation in the training 

set, the constrained learners are, since they process the data incrementally and early 

segmentation decisions impact future segmentation decisions.  

End note 7: We note that our transitional probability learner achieves comparable or better 

performance compared to other reported transitional probability learner implementations:  The 

one in Brent (1999) operated over phonemes and had token F-scores in the 40s and lexicon 

precision near 15, while the one in Gambell & Yang (2006) operated over syllables and had 

token F-scores near 30. 

End note 8: All p-values reported above and below were calculated by comparing 5 runs (1 per 

test set) of each of the mentioned learners in a two-tailed t-test analysis (i.e., 5 observations from 

each learner were aggregated, and compared against each other).   
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Figure 1. Word token F-scores for each of the learners, averaged over the test sets. 

 

Figure 2. Lexicon item F-scores for each of the learners, averaged over the test sets. 
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Figure 3. Performance of unigram learners on whole utterances, first words, and last words. 

 

Figure 4. Performance of bigram learners on whole utterances, first words, and last words. 
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Appendix Figure 1. Phoneme encoding. Taken with permission from Goldwater, Griffiths, & 

Johnson (2007). 

 

 

Table 1. Likelihood of sampling a given boundary in DMCMC, d = 1.  The relative probability 

of a given boundary being sampled is the decay probability ba
-d divided by the sum of the decay 

probabilities for all boundary positions under consideration (in this example, five boundary 

positions). 

Boundary position ba
-d Relative probability 

end – 1 1-1 = 1/1 = 1.00 1.00/(Σ(probs)) = 0.44 

end – 2 2-1 = 1/2 = 0.50 0.50/(Σ(probs)) = 0.22 

end – 3 3-1 = 1/3 = 0.33 0.33/(Σ(probs)) = 0.15 

end – 4 4-1 = 1/4 = 0.25 0.25/(Σ(probs)) = 0.11 

end – 5 5-1 = 1/5 = 0.20 0.20/(Σ(probs)) = 0.08 

 

 

 

possible word orderings are equally likely, i.e., that the next word is statistically
independent of the previous word. In contrast, the bigrammodel assumes that the
identity of the previous word can be used to help predict the current word. In sim-
ulations using these models, we found that the unigram model proposed far too
few boundaries, often identifying common word sequences as individual words.
We have argued that this behavior results from a mismatch between the inde-
pendence assumptions in the model and the strong word-to-word dependencies
that are found in realistic input corpora. When these dependencies are taken into
account, as in our bigram model, word segmentation improves markedly. The
importance of considering word-to-word dependencies has not been revealed by
previously proposed unigrammodels because of biases introduced by their learn-
ing algorithms, which prevent these models from finding optimal segmentations.

Our results are not incompatible with the possibility that infants use transi-
tional probabilities or other local statistics to identify word boundaries. However,
they do imply that statistics and strategies that are sufficient for segmenting the
kinds of stimuli found in most behavioral experiments will not necessarily be
sufficient for completely segmenting natural language. Our findings suggest the
possibility that human learners may exploit statistical information in more sub-
tle ways than have typically been investigated, and we hope that this work will
provide a source of further hypotheses that can be tested through experiments.

Appendix: phoneme encoding

Consonants
ASCII Ex. ASCII Ex.
D THe h Hat
G Jump k Cut
L bottLe l Lamp
M rhythM m Man
N siNG n Net
S SHip p Pipe
T THin r Run
W WHen s Sit
Z aZure t Toy
b Boy v View
c CHip w We
d Dog y You
f Fox z Zip
g Go ˜ buttON

Vowels
ASCII Ex.
& thAt
6 About
7 bOY
9 flY
A bUt
E bEt
I bIt
O lAW
Q bOUt
U pUt
a hOt
e bAY
i bEE
o bOAt
u bOOt

Rhotic Vowels
ASCII Ex.
# ARe
% fOR
( hERE
) lURE
* hAIR
3 bIRd
R buttER
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Table 2. Probability of sampling a boundary from the current utterance, based on decay rate. 

decay rate Probability of sampling within current utterance 

2.0 0.942 

1.5 0.772 

1.0 0.323 

0.75 0.125 

0.50 0.036 

0.25 0.009 

0.125 0.004 

 

 

Table 3. Samples of Bernstein corpus. 

English orthography Phonemic transcription 

you want to see the book 

look there’s a boy with his hat 

and a doggie 

you want to look at this 

yu want tu si D6 bUk 

lUk D*z 6 b7 wIT hIz h&t 

&nd 6 dOgi 

yu want tu lUk &t DIs 

 

 

 

 

 

 



Table 4. Average performance of different learners on the five test sets, along with published 

results from other recent statistical learners where available and the results from a transitional 

probability learner.  Note that the PHOCUS results are from the “3s” implementation, which 

performed best on the corpus.  Precision (P), recall (R), and F-score (F) over word tokens (T), 

word boundaries (B), and lexicon items (L) resulting from the chosen word segmentation are 

shown.  Standard deviations are shown in parentheses where available.  

Bayesian Unigram Learners (words are not predictive) 

 TP TR TF BP BR BF LP LR LF 

GGJ-Ideal 63.2 

(0.99) 

48.4 

(0.80) 

54.8 

(0.85) 

92.8 

(0.67) 

62.1 

(0.42) 

74.4 

(0.42) 

54.0 

(0.92) 

73.6 

(1.89) 

62.3 

(1.30) 

DPM 63.7 

(2.82) 

68.4 

(2.68) 

65.9 

(2.73) 

77.2 

(1.86) 

85.3 

(1.67) 

81.0 

(1.64) 

61.9 

(2.17) 

56.9 

(2.07) 

59.3 

(2.09) 

DPS 55.0 

(4.82) 

62.6 

(3.99) 

58.5 

(4.45) 

70.4 

(3.73) 

84.21 

(1.79) 

76.7 

(2.85) 

54.8 

(1.64) 

49.2 

(3.14) 

51.8 

(2.2) 

DMCMC 71.2 

(1.57) 

64.7 

(2.31) 

67.8 

(1.97) 

88.8 

(0.89) 

77.2 

(2.17) 

82.6 

(1.53) 

61.0 

(1.18) 

69.6 

(0.43) 

65.0 

(0.67) 

Bayesian Bigram Learners (words are predictive) 

 TP TR TF BP BR BF LP LR LF 

GGJ-Ideal 74.5 

(1.41) 

68.8 

(1.53) 

71.5 

(1.46) 

90.1 

(0.75) 

80.4 

(1.01) 

85.0 

(0.82) 

65.0 

(1.19) 

73.5 

(1.71) 

69.1 

(1.15) 

DPM 67.5 

(1.13) 

71.3 

(0.74) 

69.4 

(0.90) 

80.4 

(0.96) 

86.8 

(0.63) 

83.5 

(0.57) 

66.0 

(1.00) 

63.2 

(1.46) 

64.5 

(1.05) 

DPS 34.2 

(2.16) 

47.6 

(2.16) 

39.8 

(2.13) 

54.9 

(1.40) 

85.3 

(2.07) 

66.8 

(1.00) 

39.0 

(2.02) 

34.4 

(2.42) 

36.5 

(2.19) 

DMCMC 72.0 74.0 73.0 84.1 87.4 85.7 61.1 64.2 62.6 



(1.24) (1.76) (1.43) (0.98) (1.47) (0.94) (1.41) (1.35) (1.17) 

Comparison Learners 

 TP TR TF BP BR BF LP LR LF 

WordEnds   70.7 94.6 73.7 82.9   36.6 

BVE 79.1 79.4 79.3 92.8 90.5 91.6    

PHOCUS  77.7 74.0 75.8 89.7 83.6 86.5 47.3 64.0 54.5 

TransProb 34.3 

(0.88) 

42.7 

(0.83) 

38.0 

(0.87) 

52.8 

(1.22) 

71.1 

(1.00) 

60.6 

(1.15) 

24.3 

(0.55) 

39.7 

(1.1) 

30.1 

(0.70) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 5. GGJ ideal learner model performance: Unigram vs. Bigram.  Segmentations are shown 

in their English orthographic form, and undersegmentations are italicized. 

Unigram Model Bigram Model 

youwant to see thebook 

look theres aboy 

with his hat 

and adoggie 

you wantto lookatthis 

lookatthis 

havea drink 

okay now 

whatsthis 

whatsthat 

whatisit 

look canyou take itout 

you want to see the book 

look theres a boy 

with his hat 

and a doggie 

you want to lookat this 

lookat this 

have a drink 

okay now 

whats this 

whats that 

whatis it 

look canyou take it out 

 

 

 

 

 

 



Table 6. Significance test scores (two tailed t-test) for comparisons between first word, last word, 

and  whole utterance performance across the five test sets. Non-significant differences are 

italicized. 

 first ≠ whole last ≠ whole last ≠ first 

Unigram Models (Words are not predictive) 

GGJ – Ideal .001 < .001 .003 

DPM .008 .046 .108 

DPS .008 .130 .038 

DMCMC < .001 .003 .207 

Bigram Models (Words are predictive) 

GGJ – Ideal < .001 .157 .050 

DPM < .001 .005 .730 

DPS < .001 .003 .372 

DMCMC .002 .069 .029 

 

Table 7. Performance on test set 1 for DMCMC learners with varying samples per utterance.  

Learners were tested with the decay rate that yielded the best performance at 20000 samples per 

utterance (unigram = 1, bigram = 0.25).  F-scores over word tokens are shown, as well as the 

processing comparison to the ideal learner (as measured by number of samples taken).   

s 20000 10000 5000 2500 1000 500 250 100 

% Ideal learner samples 11.0 5.7 2.8 1.4 0.57 0.28 0.14 0.057 

Unigram, d = 1 69.8 68.5 65.5 63.5 63.4 60.0 56.9 51.1 

Bigram, d = 0.25 74.9 71.8 68.3 66.1 64.6 61.2 59.9 60.9 



Table 8. Performance on test set 1 for DMCMC learners and ideal learners that only sample 

approximately as much as the DMCMC learners do. DMCMC learners sampled 20000 times per 

utterance with decay rate = 1 for the Unigram learner and 0.25 for the Bigram learner.  Ideal 

learners made 2000 iterations over the corpus, sampling every potential boundary once each 

iteration. 

Unigram Learners (words are not predictive) 

 TP TR TF BP BR BF LP LR LF 

GGJ-Ideal 62.7 49.6 55.4 90.5 63.5 74.7 55.8 73.7 63.5 

DMCMC 72.6 67.2 69.8 88.1 78.8 83.2 61.3 68.3 64.6 

Bigram Learners (words are predictive) 

 TP TR TF BP BR BF LP LR LF 

GGJ-Ideal  70.0 66.3 68.1 86.2 79.8 82.9 61.3 68.3 64.6 

DMCMC  68.6 72.3 70.4 81.2 87.4 84.2 59.5 60.5 59.9 

 

 

 

 

 

 

 

 



Table 9.  Posterior probability vs. segmentation performance on test set 1 for Ideal and DMCMC 

learners.  Note that smaller absolute values of log posterior probability indicate segmentations 

that have higher probability under the model, 

Unigram Learners (words are not predictive) 

 log posterior probability TF BF LF 

GGJ-Ideal -18077 55.4 74.7 63.5 

DMCMC -19959 69.8 83.2 64.6 

Bigram Learners (words are predictive) 

 log posterior probability TF BF LF 

GGJ-Ideal  -15642 68.1 82.9 64.6 

DMCMC  -16264 70.4 84.2 59.9 

 

 

 

 

 

 

 

 

 

 

 

 



Table 10. Average performance of different learners on five test sets from the Pearl-Brent 

derived corpus.  Precision (P), recall (R), and F-score (F) over word tokens (T), word boundaries 

(B), and lexicon items (L) resulting from the chosen word segmentation are shown.  Standard 

deviations are shown in parentheses.  

Unigram Models (words are not predictive) 

 TP TR TF BP BR BF LP LR LF 

GGJ-Ideal 62.4 

(0.52) 

48.1 

(0.67) 

54.3 

(0.62) 

92.0 

(0.33) 

62.1 

(0.53) 

74.2 

(0.39) 

50.0 

(0.76) 

69.9 

(1.10) 

58.3 

(0.84) 

DPM 53.6 

(3.15) 

66.1 

(2.19) 

59.2 

(2.79) 

66.7 

(2.37) 

88.5 

(0.54) 

76.1 

(1.61) 

60.9 

(1.79) 

38.5 

(1.70) 

47.2 

(1.81) 

DPS 46.3 

(5.48) 

61.6 

(3.66) 

52.8 

(4.87) 

60.9 

(4.61) 

89.5 

(1.33) 

72.4 

(3.10) 

51.4 

(3.15) 

28.5 

(4.22) 

36.6  

(4.29) 

DMCMC 67.5 

(1.71) 

61.0 

(3.92) 

64.1 

(2.80) 

86.3 

(1.24) 

74.5 

(4.08) 

79.9 

(1.96) 

53.8 

(3.11) 

61.0 

(2.47) 

57.2 

(2.82) 

Bigram Models (words are predictive) 

 TP TR TF BP BR BF LP LR LF 

GGJ-Ideal 70.4 

(1.03) 

68.3 

(0.75) 

69.4 

(0.89) 

85.6 

(0.78) 

82.0 

(0.31) 

83.7 

(0.53) 

60.5 

(0.98) 

65.5 

(0.67) 

62.9 

(0.80) 

DPM 61.9 

(1.58) 

70.3 

(0.97) 

65.9 

(1.27) 

75.2 

(1.16) 

89.6 

(0.83) 

81.7 

(0.61) 

61.0 

(0.79) 

48.9 

(1.01) 

54.3 

(0.68) 

DPS 32.3 

(4.99) 

48.4 

(4.73) 

38.7 

(5.10) 

52.8 

(3.47) 

90.5 

(0.95) 

66.6 

(2.63) 

37.6 

(1.62) 

23.7 

(1.69) 

29.1 

(1.74) 

DMCMC 69.2 

(1.19) 

73.1 

(0.96) 

71.1 

(1.08) 

81.1 

(0.89) 

87.6 

(0.49) 

84.2 

(0.69) 

52.7 

(1.41) 

53.0 

(1.37) 

52.8 

(1.34) 

 
 
 



Table 11. Analysis of unshared errors made by the ideal and DMCMC unigram learners for items 

occurring 7 or more times in the first test set of each corpus. 

Corpus Ideal learner (undersegmentation) DMCMC learner (oversegmentation) 

Bernstein-Ratner 749 62 

Pearl-Brent 1671 185 

 

 

 
 


