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Abstract

Many semantic parsing models use tree trans-
formations to map between natural language
and meaning representation. However, while
tree transformations are central to several
state-of-the-art approaches, little use has been
made of the rich literature on tree automata.
This paper makes the connection concrete
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(a) Sentence: 'what is the population of portland maine'
Meaning: answer(population(cityid(portland, maine)))

(b) answer

popu‘latian
cityid %

portiand maine 'what is the population of portland main'

(©)qp
gp.answer(xz)  —'whatis' gz.x;
g7 -population(xy)— 'the population of gz.x;

with a tree transducer based semantic parsing
model and suggests that other models can be
interpreted in a similar framework, increasing
the generality of their contributions. In par-
ticular, this paper further introduces a varia-
tional Bayesian inference algorithm that is ap-
plicable to a wide class of tree transducers,
producing state-of-the-art semantic parsing re-
sults while remaining applicable to any do-
main employing probabilistic tree transducers.

gz.cityid(xz, x2) = q3X1 q4x2
gz .portland - 'portland’
g4 -maine - 'maine’

Figure 1: (a) An example sentence/meaning pair, (b) a
tree transformation based mapping, and (c) a tree trans-
ducer that performs the mapping.

volve tree transformations either between two trees
or a tree and a string.

The tree transducer, a formalism from automata
1 Introduction theory which has seen interest in machine transla-

Semantic parsing is the task of mapping natural Iarﬁi—On (Yamada and Knight, 2001; Graehl et al., 2008)

guage sentences to a formal representation of meaﬁﬂd has potential applications in many other areas,

ing. Typically, a system is trained on pairs of natural® well suited to formalizing such tree transforma-

language sentences (NLs) and their meaning repr_té(-)n based models. Yet, while many semantic pars-

sentation expressions (MRs), as in figure 1(a), arl§9 Systems resemble the formallsm,_gach was pro-
the system must generalize to novel sentences. posed as an independent model requiring custom al-

Most semantic parsing models rely on an assum[gpmlhms’ 1]‘?av"?9 I lIJncIear hhow d?/\\//elopmen;s n
tion of structural similarity between MR and NL. one line of inquiry relate to others. We argue for a

Since strict isomorphism is overly restrictive, thisun'fylng theory of tree transformation based seman-

assumption is often relaxed by applying transformaic Parsing by presenting a tree transducer model and

tions. Several approaches assume a tree structuredfgwmg connections to othe_r similar SySt‘?m?'
the NL, MR, or both (Ge and Mooney, 2005; Kate We make a further contribution by bringing to

and Mooney, 2006; Wong and Mooney, 2006: I_L}ree transducers the benefits of the Bayesian frame-
et al., 2008; Brschinger et al., 2011), and often in_work for principled handling of data sparsity and



prior knowledge. Graehl et al. (2008) present an ENt straightforward to produce a corresponding RTG
training procedure for top down tree transducers, baihat generates the set of parseg:0fConsequently,
while there are Bayesian approaches to string trangile we assume we have an RTG for the MR lan-
ducers (Chiang et al., 2010) and PCFGs (Kuriharguage, there is no loss of generality if the MR lan-
and Sato, 2006), there has yet to be a proposal fguage is actually context free.

Bayesian inference itree transducers. Our vari- . S

ational algorithm produces better semantic parsés VVeighted root-to-frontier, linear,

than EM while remaining general to a broad class Non-deleting tree-to-string transducers

of transducers appropriate for other domains. Tree transducers (Rounds, 1970; Thatcher, 1970) are
In short, our contributions are three-fold:  Wegenergjizations of finite state machines that operate

present a new state-of-the-art semantic parsing, yrees. Mirroring the branching nature of its in-

model, propose a broader theory for tree transformay,; the transducer may simultaneously transition to

tion based semantic parsing, and present a genefalera| successor states, assigning a separate state to
inference algorithm for the tree transducer framez,ch subtree.

work. We recommend the last of these as just one thare are many classes of transducer with dif-

ber_meflt of working within a ge_neral theory: contri-sarant formal properties (Knight and Greahl, 2005:
butions are more broadly applicable. Maletti et al., 2009). Figure 1(c) is an example of
a root-to-frontier, linear, non-deleting tree-to-string
transducer. It is defined using rules where the left
hand side identifies a state of the transducer and a
In semantic parsing, an MR is typically an expresfragment of the input tree, and the right hand side
sion from a machine interpretable language (e.g.,@escribes a portion of the output string. Variables
database query language or a logical language like stand for entire sub-trees, and state-variable pairs
Prolog). In this paper we assume MRs can be rep;.z; stand for strings produced by applying the
resented as trees, either by pre-parsing or becausansducer starting at statg to subtreex;. Fig-
they are already trees (often the case for functionake 1(b) illustrates an application of the transducer,
languages like LISP) More specifically, we assume taking the tree on the left as input and outputting the
the MR language is a regular tree language. string on the right.

A regular tree grammar (RTG) closely resembles Formally, a weighted root-to-frontier, tree-to-
a context free grammar (CFG), and is a way of destring transducer is a 5-tupl€@, ¥, A, gstart, R). Q
scribing a language of trees. Formally, defiigas s a finite set of state§; andA are the input and out-
the set of trees with symbols from alphab&tand put alphabetsgg,,+ is the start state, an® is the
Tx(.A) as the set of all trees ifi; 4 Where symbols set of rules. Denote a pair of symboisandb by
from A only occur at the leaves. Then an RTG is a.b, the cross product of two set$ andB by A.B,
tuple (Q, X, ¢start, R), WhereQ is a set of states,  and letX be the set of variablegeg, z1, ...}. Then,
is an alphabetyg,,+ € Q is the initial state, anR  each ruler € R is of the form[q.t — u].v, where
is a set of grammar rules of the fon— ¢, whereg v € R=0 is the rule weightg € Q,t € Tx(X), and
is a state fron andt is a tree fronx;( Q). w is a string in(A U Q.X)* such that every: € X

A rule typically consists of a parent state (left) andn v also occurs ir.
its child states and output symbol (right). We indi- We saygq.t is the left hand side of rule andu its

2 Meaning representationsand regular
treegrammars

cate states using all capital letters: right hand side. The transducetigear iff no vari-
_ able appears more than once on the right hand side.
NUM — populatioffPLACE). It is non-deleting iff all variables on the left hand

side also occur on the right hand side. In this paper
we assume that every treen the left hand side is ei-
ther a single variable, or of the formo (xo, ...zy),

See Liang et al. (2011) for work in representing lambdayheres € 3 (i.e., itis a tree of deptk< 1).
calculus expressions with trees.

Intuitively, an RTG is a CFG where the yield of
every parse is itself a tree. In fact, for any CEGit



A weighted tree transducer may define a probabil-
ity distribution, either a joint distribution over input NUM — populatiofPLACE) (m)
and output pairs or a conditional distribution of the PLACE — cityid(CITY, STATE) (r)
output given the input. Here, we will use joint dis-

tributions, which can be defined by ensuring that the cITY = por.tland 2
weights of all rules with the same state on the left- STATE — maine 0)
hand side sum to one. In this case, it can be help- MR NL

ful to view the transducer as simultaneously gener- G, 101 = Gr T 2)
ating both the input and output, rather than the usual qxllR.m — gy

view of mapping input trees into output strings. A ql\f'QR-m — Nty

joint distribution allows us to model with a single 0 :
machine both the input and output languages, whichgm_-populatiowy, z1, wa) —

is importanj during decoding when we want to infer oW, qMTil.xl ¢"NP wy (3)
the input given the output.

qy'f“'.cityid(wl, X1, W, T2, w3) —
4 A generative model of semantic parsing q"NP wy @V 29 g ws @Ry ¢PVP v (4)

Like the hybrid tree semantic parser (Lu et al., 2008) aV w; — ‘population’ ¢".u, (5)

and the synchronous grammar based WASP (Wong

and Mooney, 2006), our model simultaneously gen-

erates the input MR tree and the output NL string. Qw1 — ... qoy-wi

The MR tree is built up according to the provided W w; — ‘of ¢FNP.ay, (6)

MR grammar, one grammar rule at a time. Coupled

with the application of the MR rule, similar CFG- N

like productions are applied to the NL side, repeated ¢ -W — ¢ (7)

until both the MR and NL are fully generated. In

each step, we select an MR rule and then build tH:égure 2: Examples of transducer rules (bottom) that gen-
] . . . rate MR and NL associated with MR rulesv (top).

NL by first choosing a pattern with which to expancf}

. - . ransducer rule 2 selects MR rutdrom the MR gram-
itand then filling out that pattern with words drawnp,ar - ryle 3 simultaneously writes the MR associated

from a unigram distribution. with rule m and chooses an NL pattern (as does 4 for
This kind of coupled generative process cam). Rules 5-7 generate the words associated withc-
be naturally formalized with tree transducer rulesgording to a unigram distribution specific to.

where the input tree fragment on the left side of each
rule describes the derivation of the MR and the righrammaticality of the MR and lack flexibility since

w C~f7 w
Gy -w1 — ‘Of" g wy

END.w

W
G- W1 — ... 1

describes the corresponding NL derivation. sub-strings corresponding to a given tree fragment
For a simple example of a tree-to-string transmust be completely pre-specified. Instead, we break
ducer rule consider transductions down into a three stage process of

choosing the (i) MR grammar rule, (ii) NL expan-
sion pattern, and (iii) individual words according to

. . unigram distribution. Such a decomposition in-
which simultaneously generates tree fragmen . . :
. L corporates independence assumptions that improve
population(z1) on the left and sub-string “popula-

tion of ¢.z,” on the right. Variablez; stands for generalizability. See Figure 2 for example rules

. . from our transducer and Figure 3 for a derivation.
an MR subtree undggopulation, and, on the right, .
) ) ) To ensure that only grammatical MRs are gener-
state-variable paig.z; stands for the NL substring at

. ) : ed, each state of our transducer encodes the iden-
generated while processing subtrgestarting from "
. . . ty of exactly one MR grammar rule. Transitions
g. While this rule can serve as a single step o

MR NL T }
an MR-to-NL map such as the example transduc%retweem andq ™ states implicitly select the em

shown in Figure 1(c), such rules do not model theedded rule. For instance, rule 2 in Figure 2 selects

g.populatior{z;) — ‘population of’ ¢.z; (1)



MR grammar ruler to expand the*” child of the subtree variable, indicating that nothing is gener-
parent produced by rule:. Aside from ensuring ated in the MR. Rule 7 subsequently generates these
the grammaticality of the generated MR, rules of subtrees a$l’ symbols, marking corresponding lo-
this type also model thprobability of the MR, con- cations where words might be produced in the NL,
ditioning the probability of a rule both on the par-which are later removed during post processing.
ent rule and the index of the child being expanded. Figure 3(b) illustrates the coupled generative pro-
Thus, parent staw'?1 encodes not only the identity cess. At each step of the derivation, an MR rule is
of rule m, but also the child index, in this case. chosen to expand a node of the MR tree, and then a
Once the MR rule is selecteg\- states are ap- corresponding part of the NL is expanded. Step 1.1
plied to select among rules such as 3 and 4 to gepnf the example chooses MR rule,, NUM —
erate the MR entity and choose the NL expansiopopulation(PLACE). Transducer rule 3 then gener-
pattern. These rules determine the word order of thetespopulationin the MR (shown in the left column)
language by deciding (i) whether or not to generatat the same time as choosing an NL expansion pat-
words in a given location and (ii) where to insert thdern (Step 1.2) which is subsequently filled out with
result of processing each MR subtree. Decision (i) ispecific words “population” (1.3) and “of” (1.4).
made by either transitioning to staf¥ to generate  This coupled derivation can be represented by a
words or togENP to generate the empty string. De-tree, shown in Figure 3(c), which explicitly repre-
cision (ii) is made with the order af;’s on the right sents the dependency structure of the coupled MR
hand side. Rule 4 illustrates the case whegoet- and NL (a simplified version is shown in (d) for clar-
land andmaine in cityid(portland, maine) would be ity). In our transducer, which defines a joint distri-
realized in reverse order as “maine ... portland”.  bution over both the MR and NL, the probability of
The particular set of patterns that appear on the rule is conditioned on the parent state. Since each
right of rules such as 3 embodies the binary word astate encodes an MR rule, MR rule specific distribu-
tachment decisions and the particular permutation ¢ibns are learned for both the words and their order.
z; in the NL. We allow words to be generated at the ) o
beginning and end of each pattern and between tRe Relation to existing models

;8. Thus, rule 4 is just one of 16 such possible pairhe (ree transducer model can be viewed either as
terns (3 binary decisions and 2 permutations), whilg generative procedure for building up two separate
rule 3 is one of 4. We instantiate all such rules andrctures or as a transformative machine that takes
allow the system to learn weights for them according o a5 input and produces another as output. Dif-
to the language of the training data. ferent semantic parsing approaches have taken one
Finally, the NL is filled out with words chosen ac- o the other view, and both can be captured in this
cording to a unigram distribution, implemented in Zingle framework.
PCFG-like fashion, using a different rule for each \yagp (Wong and Mooney, 2006) is an exam-
word which recursively chooses the next word UNple of the former perspective, coupling the genera-
til a string termination rule is reachédGenerating tion of the MR and NL with a synchronous gram-
word sequence “population_of" entails firs_t choosingnar’ a formalism closely related to tree transducers.
rule 5 in Figure 2. State," is then recursively ap- he most significant difference from our approach
plied to choose rule 6, generating “of” at the same; hat they use machine translation techniques for
time as deciding to terminate the string by transia iomatically extracting rules from parallel corpora;
tioning to a new state™" which deterministically gjm;jar techniques can be applied to tree transduc-
concludes by writing the empty strirg ers (Galley et al., 2004). In fact, synchronous gram-
On the MR side, rules 5-7 do very little: the treeny 55 and tree transducers can be seen as instances of
on the left side of rules 5 and 6 consists entirely of §,o same more general class of automata (Shieber,

“There are roughly 25,000 rules in the transducers in our 3The addition ofi¥’ symbols is a convenience; it is easier to

experlmer)ts, .and the majority of .the.se implement the unlgrara]esign transducer rules where every substring on the right side
word distributions since every entity in the MR may pOtent'a”ycorresponds to a subtree on the left

produce any of the words it is paired with in training.
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}P“‘latl{ 1.2)gnw; qusx; g™,
w, X W, 1.3)"population” gu.w; qni.x; g7, 'population’

@ 1.4)"population of" ¢, gnf.x; ¢, ‘9
Step 2: PLACE — cityid(CITY, STATE) (r) aityid
}pu‘lan{ 2.1)"population of" g".x,
W cityid W 2.2)"population of" ¢, ¢'fx, ¢™w, ¢%x, ¢
N
Wy X Wy Xp  wy portland \mame
Step 3: CITY - portland (u) 'portland’ 'maine’
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Figure 3: Coupled derivation of an (MR, NL) pair. At each st&pMR grammar rule is chosen to expand the MR and
the corresponding portion of the NL is then generated. Sysnbo stand for locations in the tree corresponding to
substrings of the output and are removed in a post-proggssap. (a) The (MR, NL) pair. (b) Step by step derivation.
(c) The same derivation shown in tree form. (d) The undegiglapendency structure of the derivation.

2004). Rather than argue for one or the other, wgansducer, on the other hand, naturally captures the
suggest that other approaches could also be intexame probabilistic dependencies while maintaining

preted in terms of general model classes, groundirtge separation between MR and NL, and further al-

them in a broader base of theory. lows us to build upon a larger body of theory.

The hybrid tree model (Lu et al., 2008) takes KRISP (Kate and Mooney, 2006) uses string clas-
a transformative perspective that is in some waysifiers to label substrings of the NL with entities
more similar to our model. In fact, there is a onefrom the MR. To focus search, they impose an or-
to-one relationship between the multinomial paramdering constraint based on the structure of the MR
eters of the two models. However, they represent thteee, which they relax by allowing the re-ordering
MR and NL with a single tree and apply tree walk-of sibling nodes and devise a procedure for recover-
ing algorithms to extract them. Furthermore, theyng the MR from the permuted tree. This procedure
implement a custom training procedure for searcteorresponds to backward-application in tree trans-
ing over the potential MR transformations. The treelucers, identifying the most likely input tree given a



particular output string. number of times- appears inc. In EM, we are in-

SCISSOR (Ge and Mooney, 2005) takes syntactierested in the point estimate f@rthat maximizes
parses rather than NL strings and attempts to trangt), W|6), where) and)V are theN input-output
late them into MR expressions. While few semanpairs in the training data. In the Bayesian setting,
tic parsers attempt to exploit syntactic informationhowever, we place a symmetric Dirichlet prior over
there are techniques from machine translation fdt and estimate a posterior distribution over béth
using tree transducers to map between parsed pandé.
allel corpora, and these techniques could likely be p(V, X, W,0)
applied to semantic parsing. (0, XY, W) = AL

P\,

Borschln.ger et al. (2011) argue for the PCF_G as - (6) Hf\ilp(yz,wi,wile)
an alternative model class, permitting conventional = ~
grammar induction techniques, and tree transducers JpO) Tz Xsen, P(yir v, wil6)do
are similar enough that many techniques are applica- Since the integral in the denominator is in-
ble to both. However, the PCFG is less amenable toactable, we look for an appropriate approximation
conceptualizing correspondences between parallgld, X') ~ p(6, X|Y,W). In particular, we assume
structures, and their model is more restrictive, onlyhe rule weights and the derivations are independent,
applicable to domains with finite MR languagesj.e., (6, X) = ¢(0)q(X). The basic idea is then to
since their non-terminals encode entire MRs. Thdefine a lower bound < In p(), W) in terms ofq
tree transducer framework, on the other hand, allovand then apply the calculus of variations to find a

us to condition on individual MR rules. that maximizesF.
- , X, W0
6 Variational Bayesfor treetransducers Inp(Y,Wla) =In Eq[p(yq(eX)H]
As seen in the example in Figure 3(c), tree trans- 2 p(V, X, W|0)
ducers not only operate on trees, their derivations > Eq[ln q(6, X) =7

are themselves trees, making them amenable 0 dyq v ing our independence assumption, we arrive at
hamic programming and an EM training procedur?he following expression foF, whered, is the par-

resembling inside-outside (Graehl et al., 2008). ENj¢ a1 narameter vector corresponding to the rules
assigns zero probability to events not seen in tr\ﬁith parent state:

training data, however, limiting the ability to gen-

eralize to novel items. The Bayesian framework of- F = Z (Eq(0n) I p(0:]cw)] — Eqg,y[In q(6;)])

fers an elegant solution to this problem, introducing teQ

a prior over rule weights which simultaneously en- v

sures that all rules receive non-zero probability and™ Z (Eqltn p(wi, 24, 4il0)] — Eyay) [0 q(w:)]) -
allows the incorporation of prior knowledge and in-  =!

tuitions. Unfortunately, the introduction of a prior We find theq(6;) andg(z;) that maximizeF by
makes exact inference intractable, so we use an dgking derivatives of the Lagrangian, setting them to
proximate method, variational Bayesian inferencéero, and solving, which yields:

(Bishop, 2006), deriving an algorithm similar to that q(6;) = Dirichlet(6;| &)
for PCFGs (Kurihara and Sato, 2006). B(pyer (@)

The tree transducer defines a joint distribution q(z;) = [lrer (T)A
over the inputy, outputw, and their derivation: >wex, rer 0(r)er@
as the product of the weights of the rules appearinghere
in z. That s, )

a(r) = ar) + Y By(ay)ler()]
ply,z,wlf) = [ 00r)=@ ;
reR

wheref is the set of multinomial parametersis a 0(r) = exp | ¥(a(r)) — ¥( Z a(r))

transducer ruled(r) is its weight, and:,.(z) is the ris(r)=t



The parameters of(6,) are defined with respect German, Greek, and Thai. For evaluation, follow-
to ¢(x;) and the parameters a@f(x;) with respect ing from Kwiatkowski et al. (2010), we reserve 280
to the parameters af(6;). q(x;) can be computed sentences for test and train on the remaining 600.
efficiently using inside-outside. Thus, we can perburing development, we use cross-validation on the
form an EM-like alternation between calculatinig 600 sentence training set. Attest, we run once on the

andé.? remaining 280 and perform 10 fold cross-validation
It is also possible to estimate the hyperonthe 250 sentence sets.
parametersy from data, a practice known asn- To judge correctness, we follow standard prac-

pirical Bayes, by optimizing.F. We explore learn- tice and submit each parse as a GeoQuery database

ing separate hyper-parameters for eachd;, us- query, and say the parse is correct only if the answer
ing a fixed point update described by Minka (2000)matches the gold standard. We report raw accuracy
wherek; is the number of rules with parent state  (the percentage of sentences with correct answers),
. as well as F1: the harmonic mean of precision (the

, 1 1 2F\ '/ oF proportion of correct answers out of sentences with

A = ( (M) (M)) a parse) and recall (the proportion of correct answers

' out of all sentences).
7 Training and decoding We run three other state-of-the-art systems for

) o ) o comparison WASP (Wong and Mooney, 2006) and
We implement our VB training algorithm inside the,, hybrid tree (Lu et al., 2008) are chosen to rep-

tree transducer package Tiburon (May and Knightesent tree transformation based approaches, and,
2006), and experiment with both manually set ang e this comparison is our primary focus, we also
automatically estimated priors. For our manuall)feportUBL-S (Kwiatkowski et al., 2010) as a non-
set priors, we explore different hyper-parameter sef:oo pased top-performing systénThe hybrid tree
tings for Fh_ree different priors, one for each of theg otaple as the only other system based on a gen-
main decision types: MR rule, NL pattern, and word, otive model, andni-hybrid, a version that uses a

generation. For the automatic priors, we est'rn"’ul‘i'nigram distribution over words, is very similar to

separate hyper-parameters for each multinomial (Bfur own model. We also report the best performing

which there are hundreds). As is standard, we injjersion re-hybrid, which incorporates a discrimina-
tialize the word distributions using a variant of IBM , o re-ranking step.
model 1, and make use of NP lists (a manually cre- \ye report transducer performance under three dif-
ated list of the constants in the MR language paireg, .o training conditionstsEM using EM, tsVB-
with the wgrds that refer t'o them in the corpus). 1o using VB with empirical Bayes, artdvB-hand

At test time, since finding the most probalitR i hyner-parameters manually tuned on the Ger-
for a sentence involves summing over all pos&blpnan training datac( of 0.3, 0.8, and 0.25 for MR
derivations, we instead find the MR associated Witn”e’ NL pattern, and word choices, respectively).
the most probablderivation. Table 1 shows results for 10 fold cross-validation
on the training set. The results highlight the benefit
of the Dirichlet prior, whether manually or automat-
We evaluate the system on GeoQuery (Wong aridally set. VB improves over EM considerably, most
Mooney, 2006), a parallel corpus of 880 Englishikely because (1) the handling of unknown words
questions and database queries about United Statesl MR entities allows it to return an analysis for all
geography, 250 of which were translated into Sparsentences, and (2) the sparse Dirichlet prior favors
ish, Japanese, and Turkish. We present here a@wer rules, reasonable in this setting where only a
ditional translations of the full 880 sentences intdew words are likely to share the same meaning.

(077 k’tO(tQ

8 Experimental setup and evaluation

“Because of the resemblance to EM, this procedure has been sngte that accuracy and f-score reduce to the same formula
called VBEM. Unlike EM, however, this procedure alternatess there are no parse failures.

between two estimation steps and has no maximization step.  6yp|-g is based on CCG, which can be viewed as a map-
ping between graphs more general than trees.



DEV geo600 - 10 fold cross-val TEST ge0880 - 600 train/280 test

German Greek German Greek
Acc F1 Acc F1 Acc F1 Acc F1

UBL-S 76.7 76.9 76.2 76.5 UBL-S 750 750| 73.6 73.7
WASP | 66.3 75.0 71.2 79.7 WASP | 65.7 ¢74.9| 70.7 e786
uni-hybrid | 61.7 66.1 71.0 754 re-hybrid 62.1 68.5 69.3 74.6
re-hybrid 62.3 69.5 70.2 76.8 tsVB-hand| e 74.6 74.6| 754 754
tsEM 61.7 67.9 67.3 73.2 English Thai
tsVB-auto 74.0 74.0 ¢79.8 79.8 UBL-S 821 821 | 664 66.4
tsVB-hand| ¢78.0 78.0| 79.0 79.0 WASP | 711 777 714 75.0

English Thai re-hybrid 76.8 ¢81.0 73.6 76.7
UBL-S | 853 84| 740 741 tsVB-hand| e 79.3 79.3| ¢ 782 782
WASP /3.5 794 698 73.9 geo0250 - 10 fold cross-val
uni-hybrid | 76.3 79.0 71.3 73.7 English Spanish
re-hybrid 77.0 82.2 71.7 76.0 UBL-S 80.4 80.6 79.7 80.1
tSEM 735 781 698 729  yagp [ 700 808 724 810
tsVB-auto | 812 812 747 747 re-hybrid | 748 82.§ 78.8e862
tsVB-hand| e83.7 83.7| ¢76.7 e76.7 tsVB-hand!| ¢83.2 832 | ¢80.0 80.0

Table 1: Accuracy and F1 score comparisons on the Japanese Turkish
geo600 training set. Highest scores are in bold, while UBL-S | 805 806 742 749
the highest among theee based models are marked with ~ WASP 74.4 829 62.4 75.9
a bullet. The dotted line separates the tree based from re-hybrid 76.8 82.4 66.8 e 775
non-tree based models. tsVB-hand| ¢« 78.0  78.0/ ¢ 756  75.6

On the test set (Table 2), we only run the modelable 2: Accuracy and F1 score comparisons on the
variants that perform best on the training set. Test s@?%%oh,?”dh gi‘?thO test sets|.1] Ht')%g.d?t sc(:jorles are in
accuracy is consistently higher for the VB trained?®'d: While the highest among these modeis are
i t d than the other t t f i marked with a bullet. The dotted line separates the tree
ree transducer than the other tree transformatiq e from non-tree based models.
based models (and often highest overall), while f-

score remains competitive. and describing a general purpose variational infer-

9 Conclusion ence algorithm for adapting tree transducers to the
Bayesian framework. The new VB algorithm re-
We have argued that tree transformation based ssults in an overall performance improvement for the

mantic parsing can benefit from the literature on fortransducer over EM training, and the general effec-
mal language theory and tree automata, and havieeness of the approach is further demonstrated by
taken a step in this direction by presenting a trethe Bayesian transducer achieving highest accuracy

transducer based semantic parser. Drawing this coamong other tree transformation based approaches.
nection facilitates a greater flow of ideas in the

research community, allowing semantic parsing t&cknowledgments
leverage ideas from other work with tree automatawe thank Joel Lang, Michael Auli, Stella Frank,

while ”?ak'”g clearer how seemingly isolated ef'Prachya Boonkwan, Christos Christodoulopoulos,
fo_rts might relatg t_o one another. We de'monsj[rat‘%annis Konstas, and Tom Kwiatkowski for provid-

_th's by both building On previous work in train- ing the new translations of GeoQuery. This research
ing tree transducers using EM (Graehl et al., 2008), - supported in part under the Australian Re-

"Numbers differ slightly here from previously published re-search Council’s Discovery Projects funding scheme

sults due to the fact that we have standardized the inputs to tiigroject number DP110102506).
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