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Abstract string classifiers (Kate and Mooney, 2006), syn-

chronous grammar (Wong and Mooney, 2006),

unifying theory for semantic parsing models comblnatpry categorlal. grammar (zetlemoyer
bade gon treey transformatior?s. Mgny exist- and Collins, 2005; Kwiatkowski et al., 2010),

ing models use tree transformations, but im-  and PCFG-based approaches (Lu et al., 2008;

plement specialized training and smoothing ~ Borschinger et al., 2011). Each approach has re-

methods, which makes it difficult to mod- quired its own custom algorithms, which has made

ify or extend the models. By connecting model development and innovation slow. Never-

to the rich literature on tree automata, we  theless, there are many similarities between the

show how semantic parsing models canbe de-  5h5r95ches, which all exploit parallels between the

veloped using completely general estimation structure of the meaning representation and that of

methods. We demonstrate the approach by . .

reframing and extending one state-of-the-art the natural language. The meaning representa_tlon,

model as a tree automaton. Using a variant of ~ aS & context-free formal language, has an obvious

the inside-outside algorithm with variational tree structure. Trees are also widely used to describe

Bayesian estimation, our generative model natural language structure. Consequently, the

achieves higher raw accuracy than existing  semantic parsing problem can be generally defined

generative and discriminative approachesona g learning a mapping between trees, one of which

standard data set. may be latent. This mapping can be expressed as a
tree transducera formalism from automata theory

1 Introduction that maps input trees to output trees or strings. Tree

{ransducers have well understood properties and
algorithms, and a rich literature, making them a

This paper introduces tree transducers as a

Automatically interpreting language is an importan
challenge for computational linguisticsSemantic . .
parsing addresses the specific task of learning t8artlcularly appealing model class.

map hatural language sentences to formal represen-Although some previous approaches strongly re-

tations of their meaning, a problem that arises in des_emble tree transducers, to our knowledge, we are

veloping natural language interfaces, for exampléhe fII’S\';V'[O eXp“C'?ﬁ/ iormulatet_the probleip n th|_s
Given a set of (sentence, meaning representatio Y. € argue fhat connecting semantic parsing

pairs like the example below, we want to to learn é the tree automata literature will free researchers
C

map that generalizes to previously unseen senten m devising gustom SfOIUt'on,S and ?IIOW them to
ocus on studying and improving their models and

1. Sentence: what is the capital of texas ? developing more general learning algorithms.
Meaning: answer(capitdl(stateid(texas))) To demonstrate the effectiveness of the approach,
gye choose one state-of-the-art model, the hybrid tree

Researchers have formalized the learning pro Luetal. 2008). t late it into the tree t q
lem in various ways, with approaches includin uetal, ). translate it into the tree transducer



START

[1] START. highest(ioc(xo)) —» loc(highest(ORD.x,)) we particularly make use of tree-to-string transduc-
{g% ORD.cityid(x, X4) —» cityid(ID.x4, ID.X,) ers.
ID.wa —»> wa i
(a) [4]ID.seattle —» seattls Form_ally, an extended left hand_ side, root-
; to-frontier, tree-to-tree transducer is a 5-tuple
START.highest [1] loc [ loc [3114] loc

loc > highest — hig?est S higr|1est (Q7 >, A, qstart., R) Q is a finite set of statesy.

cityid  ORD.cityid cityid cityid andA are the input and output tree alphabets,
(b)  sedfle Wa sedfle wa ID.wa IDseatle wi seatte is the start state, an® is the set of rules. We de-
note a pair of symbols; andb by a.b, and the cross

Figure 1: An e>_<tended left hand side, root-to-frontier; lin roduct of two sets! and B by A.B. Let X be the
ear, non-deleting, tree-to-tree transducer (a) and an ex-

ample derivation (b). Numbered arrows in the derivatiorf‘et of varlableqﬂ:(.), 15} F'ha”y’ let 75:(A) be
indicate which rules apply during that step. Rule [1] id€ Set of trees with non-terminals from alphahlet

the only rule with an extended left hand side. and leaf symbols from alphabét Then, each rule
r € R is of the form[q.t — wu].v, whereq € Q,
framework, and add a small extension, made easy BIYG To(X), u € .TA(Q'X) S”CEO”T"’“ eveny € X
in u also occurs irt, andv € R=" is the weight of
the framework. We also update a standard tree trar}%—e rule
ducer training .algo_rlthm to mcorporate a\(arlatlona We sayq.t is the left hand side of the rule and
Bayes approximation. The result is the first purel

generative model to achieve state-of-the-art resuI{% the right hand side. The transducefiiear '.ﬁ no
on a standard data set. variable appears more than once on the right hand

side. It isnon-deletingiff all variables on the left
2 Extended, root-to-frontier, linear, hand side also occur on the right hand side. Iff every
non-deleting tree transducers treet on the left hand side is of the fora(x, ...z,,),
whereo € ¥ (i.e., itis a tree of deptk 1), then the
Tree transducers (Rounds, 1970; Thatcher, 197@hnsducer is simply root-to-frontier, otherwise we
are generalizations of finite state machines that talg%y it has amextended left hand sideith the added
trees as inputs and either output a string or anothgbwer to look a bounded depth into the tree at each
tree. Mirroring the branching nature of its input,step. Finally, for aree-to-stringtransducerA is an
the tree transducer may simultaneously transition t9iphabet, and the right hand sides of the rules consist
any number of successor states, assigning a separgf¢inite tuples of elements taken fro U Q. X.
state to process each sub-tree. Although they werea weighted tree transducer may define a probabil-
originally conceived of by Rounds (1970) as a wayty distribution, either a joint distribution over input
to formalize tree transformations in Iinguistic theoryand Output pairs or a conditional distribution of the
they have since received far more interest in theore@utput given the input. Here, we will use joint dis-
ical computer science. Recently, however, they haygibutions, which can be defined by ensuring that the
also been used for syntax-based statistical machiwéights of all rules with the same state on the left-
translation (Graehl et al., 2008; Knight and Greahlyand side sum to one. In this case, it can be helpful
2005). to view the transducer as simultaneously generating

Figure 1 presents an example of a tree-to-tregoth the input and output, rather than the usual view
transducer. It is defined using tree transformatiogf reading inputs and writing outputs.
rules, where the left hand side identifies a state of
the transducer and a fragment of the input tree, a8l Semantic parsing and meaning
the right hand side describes a fragment of the output representation languages
tree. Variablesy; stand for entire sub-trees. ThereT . N .
o he goal of semantic parsing is to assign formal
are many classes of transducer, each with its own se- ~ =
. : . meanings to natural language (NL) sentences, re-
lection of algorithms (Knight and Greahl, 2005). In__ " .
. . . . L quiring a formal meaning language. Some systems
this paper we restrict consideration primarily to the

. ) ) use lambda expressions; others use variable free log-
extended left hand side, root-to-frontier, linear, non- P 9

deleting tree transducers (Maletti et al., 2009), an'&al languages or functional languages (such as that



of example 1 in the introduction). Here we deal withequation define®(MR).

meaning representations (MRs) of the latter form

where the bracketing makes the tree structure ob-P(MR) =P(R) [[ [ P(Riili.R:) ()
vious* We refer to functions and predicates in the i€paths jEargs;

MR as either symbols or entities. Since MRs are | other words, each node in the tree is generated
trees, the language can be defined by a Regular Trggcording to the probability of the MR rule that de-
Grammar (a kind of CFG that generates trees). Wes it conditioned on (1) the MR rul&; that de-
refer to this grammar as theeaning representation rives its parent symbol and (2) its positigeneath
grammaror MR grammar. Figure 3 shows a frag-that parent.
ment of such a grammar and an MR parse. The The hybrid tree model then re-orders and extends
parse is just the MR with each symbol labeled withhjs pasic skeleton to include the NL. The probabil-
its grammar rule. Like most systems, the MR gramity of this hybrid tree can be formally defined as fol-
mar is one of our inputs. lows if we let pat; be the word order pattern used

. to generate the children of the node at patland
4 Thehybrid tree model words; be the indices of the words attached under
The idea of the hybrid tree model (Lu et al., 2008) ishe node at.
to start with the MR and apply a series of transfor-

mations to create a kind of parse tree for the NL. P(NL-MR hybrid = P(R.) H P(pat;|R;)

There are two types of transformation. The first icpaths

determines word order by simultaneously choosing ~ H P(R;.;|j, R;) H P(w;.x|R;)
where to attach words (but not the particular words) j€argsi kewords;

and whether or not to swap the order of siblings (Fig- (2)

ure 2a). Once the order is determined, word gener-

. . : . Note thatP(pat|R) and P(w|R) correspond re-
ating transformations are then applied to insert spe-. _ .. .

e . ) : . Spectively to the weights on the word order and word
cific words in the determined locations (Figure 2b).

The hvbrid tree includes parameters for the |\/IFgeneration transformations. In fact, equation 2 is a
yor INcludes param oint probability over not only theVL and MR pair
as well as the transformations in Figure 2 that rela

words to meaning representations. The probabili ut also the actual set of transformations chosen to
. . . roduce the particular hybrid tree relating them.

of each symbol in the MR is conditioned on the M P y g

grammar rules that derive its parent symbol. Defins Reframing the hybrid treeasatree

ing symbol probabilities in terms of their parents’  transducer

grammar rules (as opposed to parent symbols as in _ _
a standard PCFG) distinguishes between functiorf¥e now define a tree transducer that simultaneously

and predicates with the same name but different s§énerates an MR tree and NL string according to the
mantics (Wong and Mooney, 2006). joint probability defined by equation 2. We create
To formally define the probability of the MR, let separate states for each of the two transformation

paths be the set of paths from the root to every nod&/Pes brderstates for word order selection awdrd

in the MR where paths are represented using a vafitates for word generation). In order to model the
ety of Gorn's notation (Gorn, 1962) Let args; be ~Properties of the MR grammar (necessary for mod-
the set of indices of the children of the node at path €ling equation 1), we create one additional state type
and R; be the grammar rule that derives the symbdP! S€lecting MR childrendrg states) and embed the

ati according to the MR parse. Then, the followingVIR grammar rules into the states so that each state
is identified with exactly one grammar rule. Tran-

*With a pre-parsing step, it may also be possible to represegjtions between transducer states then simulate the

lambda expressions with trees (see Liang et al. (2011)). . .
2|.e., paths are represented by strings where the empty stril%;tlon of the MR grammar as it generates a new MR

¢ is the path to the root, andfis a path ang is the index ofa  tree. Notationally, we employ subscripts to indicate
child of the node at, : - j is the path to that child. each state’s basic typarg, order, or word) and su-

perscripts to indicate the associated MR grammar



(a) Word Order Transformations (b) Word Generation Transformations
A A . .
N e N w  — porutorando' (Portland)
X x, P> W x W x3 W . . ,
0 1 . ¢ w  —» meen' (Maine)
Al\ ? W —» 'no
e Se
Xo > W Xq w
A
A —> |
w
c . L .
(c) C|ty|d\ Order cityid Generate cityid

\ \
portﬂ me —» me W portland —» me 'no' portland
/ N yd \

w w 'meen’ 'porutorando’

Figure 2: The two transformation types of the hybrid tree el@hd an example of their application. (a) Word order
transformations simultaneously permute arguments andladggmbols where words should be attached. The dotted
lines indicate thal’ symbols may or may not be attached in each of the possibl¢idosa and siblings may or
may not be swapped. Each possible configuration of siblidigramngs and/” attachments corresponds to a single
transformation. Thus there are 4 different transformatifmn the case wherd has one child, and 16 for when it has
2. In the case wherd has no children, word attachment is not optional. (b) Wongkgation replaces eadl symbol
with actual words. (c) The series of transformations frormnegle MRcityid(portland,me}o produce a parse for the
Japanese equivalent of ‘portland, maine’.

rule, so that, for instance, statg.,., is anorder P(w|R).
state associated with MRL grammar rute ]

Figure 3 presents a graphical representation of el Sourcetreelanguage model: P(R;;lj, R:)
basic state transitions of the transducer, where tiRule type 1 in Table 1 begins the process by tran-
states for each grammar rule are clustered inside dsitioning from start stat@s¢art t0 qﬁrder, where the
ted lines beneath its associated grammar rule labgrammar rulek ranges over those rules with the start
The transducer begins in arg state and proceeds assymbol S on the left hand side. Choosing exactly
follows. First, thearg state selects the next child bywhich ¢t ;_ to transition to corresponds to the de-
transitioning to arorder state corresponding to the cision of choosing the root symbol of the MR tree
MR rule that generates the appropriate child. Th&he symbol generated hb§), and these transducer
order state then chooses the appropriate word ordeules define the”(R,) term in equation 1, i.e., the
pattern and transitions to tiweord andarg states as- probability of the grammar rule corresponding to the
sociated with that same grammar rfuleTheword root symbol of the MR tree.
states proceed to generate words one at a time in aFor each pair of MR grammar ruld?” and R¢,
loop and finally terminate the string. Then tagy we add a transducer rule of the form of rule type 2
state begins the cycle over again by transitioning tthat transitions from the states associated with
theorder of the next child in the MR tree. to those forRe if R° generates a valid child of the

Table 1 lists the actual transducer rule typessymbol generated byg”. Thus, the choice of state
Rule probabilities are conditioned on the state otransition here corresponds to choosing the child of
the left hand side. Thus, since states identify botthe last generated symbol of the input tree. State
their function and the grammar rule of the currenqﬂgyi selects the!” argument of the current func-
MR node, rule weights correspond directly to thdion in the MR without generating anything in the
terms in equation 2P(R;.;|j, R;), P(pat|R), and input tree. With rules described in the next section,
stateg¥ . then writes the symbol to the input tree

Note that onlyarg states are permitted to transition to states s c
for different grammar rules. specified by MR grammar rulg.



MR & Tree Possible Grammar Rules & State Transitions

answer(capital_1(stateid(texas))) Ystart

what's the capital of texas ?

answer Qry > answer(City) Qry—> answer(R\‘)r)n"\ Qry =answer(Num)
e . .- ‘,' T*q .
Yorder " Yorder+ + ‘order:
‘ . nY P Ve
, qa(g Ywords, 1 ‘ ‘A ; “ 3 L
words,0
capital_ Cty - capital_1(Cntry)
......... ‘q0(der
oa

MR Grammar Fragment

Qry

Qry— answer(City)

Qry—> answer(Rvr)

Qry—> answer(Num)

Cty »>capital_1(State)

I Cty »capital_1(Cntry)

e () N "~ | State > stateid(StateName)
) \,W0rd81 words,O '| StateName —>texas

texas StateName — texa

Figure 3: State transitions selecting appropriate grammias for generating an MR. Solid arcs indicate a state
transition was taken; dotted lines are alternatives. State divided up into disjoint sets and associated with aifipec
MR rule. Transitioning between state sets implicitly cheman MR rule. The rules lined up with the MR tree to
the left constitute an MR parse. The bottom right shows tlaengnar fragment corresponding to this portion of the
transducer.

Since the state on the left encodes the rule of thaf the hybrid tree. These rules simply enumerate
parent and the argument number, and the state on tite conjunction of all the possible word attachment
right the child rule, the weights for transducer rulegpatterns and argument order decisions. Binary se-
of type 2 defineP(R;.;|j, R;) in equation 1. guences indicates the word attachment portion of

o the hybrid tree pattern, where each bit is either 1 in-
5.2 Order decisions: P(pat|R) dicating an attachment, or O for a decision not to at-
Word ordering decisions are made with the aid ofach. For am argument function, there are+ 1
preprocessing step that addSsymbols to the input such choices, requiring an+ 1 bit sequence, where
tree wherever words can be attached. These symbejsis the decision for thé:'* position. Argument
are just a convenience: it is easier to design rulasder is indicated by, a permutation of the num-
where every output structure has a counterpart in thers0, 1, ...n — 1, andjj is the k** number in the
input. The symbols are removed later in a postprgeermutation, indicating which argument appears at
cessing step (also using a tree transducer). Attacpesitionk. Stateqvff,ird&1 generates the words fg,
ment decisions are then made by deciding which cg‘tateqwords o replaces the symbal” with the empty
theselW symbols to replace with the empty Smngstrmg, and the state;sff . select the grammar rule

(no attachment) or a string of words. "
We add transducer rules of the form of rule typdVith which to generate the™ child. When there
is only a single childi’’, no decisions about argu-

3in Table 1 for each MR grammar rule/, to de-
fine the selection of one of the word order pattern@1€nt order or child attachment are needed; rule type
4 always generates words for these constants.



R
QStart-xO — qOrder"rO (1)

RP R°
Qarg,i-T0 — Gorder-T0 (2)
RS RSf RS RS RS
Gorder-f (W0, To, W1, T1, W2, ... Tn—1,Wy) — Gwords,io W0 Qarg,jo-Ljo dwords,i; W1 Garg,j; -Lj1
RS RS RS
Qwords,iz W2 -+ Qarg,j,_1Lin—1 Qwords,i, - Wn (3)
R R
qorder'f(wo) — Qwords,1-Wo0 (4)
R R
Qwords,1-T0 — word, Qwords,1-%0 (5)
R R
Gwords,1-X0 —* wordy, Gwords,0-%0 (6)
R
qwords,O'W — € (7)

Table 1: Seven transducer rule types for three classesndftnanation. (1)-(2) defin@’(R;.;|j, R:), (3)-(4) define
P(pat|R;), and (5)-(7) definé®(w|R;).

The following input tree and output string pair is5.4 Derivation weights and thejoint
illustrates an intermediate computation produced by  probability distribution

interleaving these two kinds of ordering rules withrpe transducer applies the rules from the three
the argument selection rules of the previous sectiopjgsses of transformation in Table 1 to ultimately
and applying them to the example in Figure 2:  ,ro4quce an MR-NL pair. The probability of this
qf:gjﬁd.cityz’d(w, portland(W), W, me(W), W) 2 derivatiqn is essentially the same quantity e_ls that of
peityid e peityid the hybrid tree of the original model (shown in equa-
qwords,O'W qwords,l'W qwords,l'W tion 2).

Rpo'rtland Rcityid

Gwords.1 W dwords.0-W g A extension: head-switching

The \(\{e|ghts on these rules d_eflne the ConOIItlon%&eordering siblings allows the hybrid tree to cap-
probability (pat|R), wherepat is one of the pat- e 5 Jarge number of word orders, but it is stil
terns of the word transformations illustrated in Figvonstrained by the hierarchy of the tree. This con-
ure 2. straint reduces the search space but also prevents the

. model from learning some word orders. Figure 4 il-
5.3 Word generation: P(w|R) lustrates with trees from the following Japanese sen-
Rule types 5 and 6 in Table 1 define the conditiondEnce meaningvhat’s the highest point in the USA?

probability of a wordword;, given an MR grammar (the third line gives the correct alignment of words

rule, and rule type 7 terminates generation by geneltrgafr?glpg;i?ésh%rggetrgg)lq MR, which cannot be

ating W in the input anc in the output. Using the o
same example as in the previous section, this yield@§koku no  mottomo takai chiten - wa nan desu ka

5117 symbols in the input tree and the string ‘meerf"€/c&s mosthigh — point ~whatis
- oc(america) highest() place() answer()
no porutorando’ in the output.

Rcityid *
qwords,O'W =€

ords1-W = ‘meen’ e

To address this problem, we modify the trans-
ducer to allow it to rotate parents with their chil-
dren in addition to re-ordering siblings. This change
qf,ffﬁfl.w X 'no’ € is easy within the transducer framework but would
Rpomm{d be difficult in the original implementation, requiring

a complete reworking of the training and decoding

Goioras1 W = ‘porutorando’e
Gwords,0-W = € algorithms. In the original transducer, rules oper-

Rcityz'd



answer

answer
highest mt?tg.
/ 'wa nan desu ka' ' . place
place | . /| 'wa nan desu ka'
""" __ loc_2(usa) highest
loc_2(usa) i TN
'mottomo takai' 'chiten’ 'beikoku no' 'mottomo takai' ‘chiten’
'‘beikoku no'

Figure 4: An example from Japanese illustrating head-$wvite The tree on the left attempts (and fails) to generate
the target sentence from the gold meaning representatiafitcting highestand place allows the correct MR-NL
map.

ate on tree fragments of depth 1. We implement probability over the parameters, which particularly
the change using extended left-hand-side transduafluence parameter estimates for sparse items and,
ers, which can operate on larger fragments as lordepending on the choice of prior, may also assign
as the depth is bounded (Maletti et al., 2009). Isome non-zero probability to unseen items.

particular, we introduce rules like the following: We give a high-level outline of how a Dirichlet
- ) ) e prior can be incorporated into tree transducer train-
C C (63 C . . n " . .
Gorder-P(Wp, (WG, TG, WT), W) = Gwords,io- W0 ing using Variational Bayes, drawing heavily on the

quvzrdS’il wh qf:g,ﬂ"r(c) quVZrds,iz'wzl) qv}s%/:)rds,ig'wij es_septial similarity of inside-outside for PCFGs and
training for tree transducers. We direct the reader
This rule begins the word generation process sto Kurihara and Sato (2006) for the details of PCFG
multaneously for both the parent and child, retraining using VB, and to Graehl et al. (2008) for
ordering the words to simulate the new nesting strughe full treatment of the basic EM algorithm for tree
ture, and then proceeds to choose the child fun¢ransducers, on which our VB training algorithm is
tion’s argument. We add similar rules for the variclosely based. See Bishop (2006) for a general in-
ous cases where the child and parent have multipieoduction to VB and Beal (2003) for a derivation of
arguments. VB as applied to Dirichlet-multinomials.

o i . The objective of training is to find an estimate for
7 Varitional Bayes parameter estimation the weightsd of the transducer rules given some

Tree transducer derivations are themselves tre€ymmetric Dirichlet prior with hyperparameter
allowing for the computation of inside and out-and observed pairs of natural language sentelices

side probabilities much as for the derivation tree§Nd meaning representation trées
of PCFGs. EM can then be applied in much the g V) — p(W, Y, 0|c)
same way as for PCFGs, substituting the tree-to- p(fle, W,Y) = p(W, Y |a)

string derivation algorithm for standard PCFG pars- The tree transducer defines the probability

ing (Graehl et al., 2008). Note that while EM maxi- (W, X,Y|0), where X is a vector of derivations

mizes the “ke.“hOOd .of the tralplng data, |tems.r'10€uch thatr; € X is the derivation from MRL tree
observed during training receive zero probability, . .
limiting the ability of models to generalize to newy"..e Yio ’\.”' stringw; € W. We put a _symmetnc
data sets. Furthermore, many items that are actD—IrIChIEt prior over¢ so that the probability (6])
e S y follows directly from the definition of the Dirichlet
ally present in the training data are only seen a very.

. . ’ istribution. Thus, computing the denominator of
few times, which can lead to a poor estimate of thelé Lation 8 involves intearating o@and X
distribution in the target data set. Bayesian estima:] g g '

tion techniques such as Variati_onal Bayes (VB) a_d— p(W,Y|a) = /p(W, X, Y|0)p(0]a)dXdo
dress these problems by allowing us to place a prior

(8)



However, this integral is intractable, so insteading this ratio with the following alternative quantity
following from Variational Bayes, we make an ap-r, whereV is the digamma function.
proximation ¢(X, 6) for the posterior probability

p(X, 9|W, Y, Oé). Ts k = €XP (\If(cs’k + a) - v (Z Cs k! + Oé))

k,/
log (W, Y|a) =log [ p(W, X.Y.0la)dxds
For each step of EM, the updatedrectors from

the previous M-step are then used to compute the
expected countsduring the current E-step.

p(W, X,Y,0|a)
:10/ X, ) 2 X dg
g [ q¢(X,0) (X.0)

> /q(X, 0) log WdXd@ 8 Experimental setup
=F We use Tiburon (May and Knight, 2006), a tree
o ] transducer toolkit, to train our transducer using 40 it-
We can minimize the KL divergence betweery aiigns of its inside-outside-like EM training proce-
q(X,0) and p(W,Y|a) by maximizing the lower 1o and modify it slightly to include the mean field
bound 7, called the variational free energy. Sinceg gnproximation for a symmetric Dirichlet prior
' is afunction ofg, this amounts to maximizing. e the multinomial parameters as just described.
Following from Kurihara and Sato (2006)'s treat-  peding is handled the same by Tiburon for both
ment of PCFGs, we employ the mean field aPgaining procedures, producing the MR input tree
proximation that assumes the posterior is well aRgjith the tree transducer derivation that maximizes
proximated by a factorized function(X,0) = e probability over derivations of equation 2.
q1(X)q2(0), which treats the derivation& and the |, keeping with the original hybrid tree, we run
rule weightsf as independent. This allows us t04( iterations of IBM alignment model 1 (Brown
maximizingg by alternately updating parameters forg al., 1993) to initialize the word distribution pa-
q1 With ¢, fixed, and then updating parameters fof,meters.  Also in keeping with Lu et al. (2008),

g2 With ¢, fixed, essentially in the same manner thaye se the standard noun phrase list from the given
E and M steps alternate in EM. The mathematicgl, g age to help initialize the word distributions for

derivation of the modified inside-outside algorithmy,qir counterparts in the meaning representation lan-
then follow directly from Kurihara and Sato (2006). uage.

In practice, VB requires only a slight modifica-
tion to the basic EM algorithm, and we refer thed Results
reader to Graehl et al. (2008) for the details of EM

for tree transducers. As in inside-outside for PCFGQ:O evaluate our models, we use the the GeoQuery

the E-step involves computing estimated rule countg,orpus' a standard benchmark data set. The corpus

weighted using inside and outside probabilities. Thgontains English s_entences (questions aboutU.S. ge-
ography) paired with an MR in a database query lan-

M-step resolves to calculating the vector parame=- 250 of which ( lated into J
ters of the multinomial distributions over transduce429¢: of which were transiated Into Japanese

rules using these count estimates. That igifs (among other languages) yielding two training sets

a multinomial parameter vector for transducer rule¥>'"NY the_ same MR.S' For testing we run 10-fold
with states on the left hand sideg, ,, is its k' cross validation, using the standard train and test
57

component (i.e., the weight of thé” rule with s splits of Wong and Mooney (2006), and micro-

on the left hand side), and , is the corresponding average our performance metrics across folds.

expected count, we have the following equation for We measure performgnce using precision, recall,
straight EM. and f-score (the harmonic mean of precision and re-

call) as standardly defined in the semantic parsing
Osp = —=—— literature. Recall is simply the raw accuracy: the
Dok Co ke percentage of correct parses found out of all test sen-
Incorporating a Dirichlet prior with parameter tences (where a parse is considered correct if it re-
using our VB approximation simply requires replactrieves the same results from the GeoQuery database

Cs.k



English Japanese As expected, the basic EM-trained transducer gets
Pre. Rec. F1| Pre. Rec. F1| numbers thatare similar, though notidentical, to Lu-
UBL-s | 80.8 80.4 80.6 80.6 80.5 80.6 uni. The main reason for the discrepancy is that
WASP | 954 70.0 80.8/ 920 74.4 829 | Lu etal. (2008) use custom smoothing methods for
Lu-uni | 80.2 71.2 75.4 79.7 73.6 76.5 the source tree language model and word probabil-
Lu-dis | 91.5 72.8 81.1] 87.6 76.0 81.4 ities. While these could be emulated in a trans-

System

trs 88.3 69.6 77.9 824 67.2 74.0 ducer, we instead use a more general approach, VB,
trsVB | 82.0 82.0 82.0 78.0 78.0 78.0 with better pay-off. Lu-uni was the simplest model
hs 895 716 79.6 84.3 68.8 75.8 presented by Lu et al. (2008), yet applying VB to

hsvB | 82.8 828 828 | 80.8 80.8 80.8| our transducer implementation yields a fully gen-
erative model whose performance rivals their best-
berforming system that uses discriminative rerank-

ing.

Table 2: Performance of the various models on the mu
tilingual section of GeoQuery.

as the gold MR). Precision is the percentage of cod0 Conclusion

rect parses out of all sentences for which we find any . paper, we have shown how to formulate se-

parse at all. . . . .
, mantic parsing as tree transduction. This formula-
Table 2 compares our models’ performance t . .
. : . ) lon is more general than previous approaches and
previously published results. We list two versions o : N
allows us to exploit the rich literature on transduc-

our model: the direct adaptation of the hybrid tree . . ,
_ _ _ ers, including theoretical results as well as standard
and the transducer with parent-child swapping rules

We train each version with both standard EM and th?Igorlthms and toqlklts. we focus_ed h_ere on ex-
) . ended left hand side, root-to-frontier, linear, non-
VB approximation (hyperparameter 0.1). The other,

state-of-the-art systems shown are: 1) wo versio deleting, tree-to-string transducers (Maletti et al.,
- ys ' . r5:009), using them to reformulate and extend an ex-
of the original hybrid tree (Lu et al., 2008):u-uni,

) . A Jisting model (Lu et al., 2008). Although we tried
which uses a unigram distribution over words, and is . . :

o . only one simple extension, our purely generative
therefore the most similar to our transducer imple-

. . . , model already outperforms all previous models on
mentation, andLu-dis the best-performing version, y P P

i . . . raw accuracy, with comparable f-score. Since the
which uses a mixture of unigram and bigram modetl .
ransducer framework makes modifications easy, we

with discriminative re-ranking; 2) WASP (Wong andanticipate further gains in future, especially if we
Mooney, 2006), which uses a synchronous grammar ’ y

_ : : add a discriminative reranking step as in Lu et al.
approach; ar_md 3) UB!‘_S (KW'atk.OWSk' etal, 2010)'(2008). We also hope to investigate other transducer
the model with the highest published raw accurac

dlasses. Finally, we note that working with a gen-
(recal)). ral framework encourages the development of algo-
The transducers are competitive with the state-o%a

the-art, especially when using VB. VB smooths th rithms that are widely applicable, even if developed

. SM%ora particular application. The VB training algo-
parameter estimates, so there are no parse failures_in o
. rithm presented here is just one example of such a
the test set due to unseen words or functions; pre- ..~ .
. contribution.
cision, recall, and f-score all reduce to raw accu-

racy. The basic transducer with VB has higher accuAcknowledgments

racy (recall) than all other models except for UBL- e would like to thank Wei Lu and Jon May

S, which does better on Japanese. The head-SWitﬁh generous|y providing source code and Support
transducer is better St|”, with the hlgheSt recall Ofor the hybnd tree parser and Tiburon’ respec-
both languages. Although the improvement over thgyely. Also, this work was supported under the Aus-
basic transducer is small, we anticipate that using thealian Research Council’s Discovery Projects fund-

transducer framework will allow us to easily exploreing scheme (project number DP110102506).
many other possible extensions that could increase

performance further.
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