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Abstract
Unsupervised segmentation and clustering of unlabelled speech
are core problems in zero-resource speech processing. Most com-
petitive approaches lie at methodological extremes: some follow
a Bayesian approach, defining probabilistic models with conver-
gence guarantees, while others opt for more efficient heuristic
techniques. Here we introduce an approximation to a segmen-
tal Bayesian model that falls in between, with a clear objective
function but using hard clustering and segmentation rather than
full Bayesian inference. Like its Bayesian counterpart, this
embedded segmental k-means model (ES-KMeans) represents
arbitrary-length word segments as fixed-dimensional acoustic
word embeddings. On English and Xitsonga data, ES-KMeans
outperforms a leading heuristic method in word segmentation,
giving similar scores to the Bayesian model while being five
times faster with fewer hyperparameters. However, there is a
trade-off in cluster purity, with the Bayesian model’s purer clus-
ters yielding about 10% better unsupervised word error rates.
Index Terms: zero-resource speech processing, word discovery,
word segmentation, unsupervised learning, acoustic embeddings

1. Introduction
The growing area of zero-resource speech processing aims to
develop unsupervised methods that can learn directly from raw
speech audio in settings where transcriptions, lexicons and lan-
guage modelling texts are not available. Such methods are cru-
cial for providing speech technology in languages where tran-
scribed data are hard or impossible to collect, e.g., unwritten or
endangered languages [1]. In addition, such methods may shed
light on how human infants acquire language [2, 3].

Several zero-resource tasks have been studied, including
acoustic unit discovery [4–6], unsupervised representation learn-
ing [7–9], query-by-example search [10, 11] and topic mod-
elling [12,13]. Early work mainly focused on unsupervised term
discovery, where the aim is to automatically find repeated word-
or phrase-like patterns in a collection of speech [14–16]. While
useful, the discovered patterns are typically isolated segments
spread out over the data, leaving much speech as background.
This has prompted several studies on full-coverage approaches,
where the entire speech input is segmented and clustered into
word-like units [17–20].

Two such full-coverage approaches have recently been ap-
plied to the data of the Zero Resource Speech Challenge 2015
(ZRSC), giving a useful basis for comparison [21]. The first
is the Bayesian embedded segmental Gaussian mixture model
(BES-GMM) [22]: a probabilistic model that represents potential
word segments as fixed-dimensional acoustic word embeddings,
and then builds a whole-word acoustic model in this space while
jointly doing segmentation. The second is the recurring syllable-
unit segmenter (SylSeg) [23], which is a cognitively motivated,

fast, heuristic method that applies unsupervised syllable seg-
mentation and clustering and then predicts recurring syllable
sequences as words. These two models are representative of two
methodological extremes often used in zero-resource systems:
either a Bayesian approach is used, defining probabilistic models
with convergence guarantees [6, 19, 22], or heuristic techniques
are used in pipeline approaches [18, 23].

Here we introduce an approximation to BES-GMM that
falls in between these two extremes. The embedded segmental
k-means (ES-KMeans) algorithm uses hard clustering and seg-
mentation, rather than full Bayesian inference. Nevertheless, it
has a clear objective function, in contrast to heuristic methods
such as SylSeg. Compared to BES-GMM, it has the advantage
of fewer hyperparameters and a simpler optimization algorithm
since probabilistic sampling is not necessary; ES-KMeans is
therefore more efficient, while still having a principled objective.

Hard approximations have been used since the start of proba-
bilistic modelling in supervised speech recognition [24–26], and
also in more recent work to improve the efficiency of an unsuper-
vised Bayesian model [27]. We are therefore following in a long
tradition of using hard approximation. However, all of these stud-
ies applied it in frame-by-frame modelling approaches, while
our approach operates on embedded representations of whole
speech segments. There is a growing focus on such acoustic
word embedding methods [11, 28–32], since they make it pos-
sible to easily and efficiently compare variable-duration speech
segments in a fixed-dimensional space.

We analyze how this approximation affects speed and accu-
racy relative to the original BES-GMM and the SylSeg method.
On English and Xitsonga data, we show that ES-KMeans outper-
forms SylSeg in word segmentation and gives similar scores to
BES-GMM, while being five times faster. However, the cluster
purity of ES-KMeans falls behind that of the other two models.
We show that the higher purity for BES-GMM results from a
tendency towards smaller clusters which, unlike in ES-KMeans,
can also be varied using hyperparameters.

2. The embedded segmental k-means model
Starting from standard k-means, we describe the embedded seg-
mental k-means (ES-KMeans) objective function and algorithm.

2.1. From k-means to ES-KMeans objective function

Given a speech utterance consisting of acoustic frames y1:M =
y1,y2, . . . ,yM (e.g., MFCCs), our aim is to break the sequence
up into word-like segments, and to cluster these into hypothe-
sized word types.

If we knew the segmentation (i.e., where word boundaries
occur), the data would consist of several segments of different
durations, as shown at the bottom of Figure 1. To cluster these,



we need a method to compare variable-length vector sequences.
One option would be to use an alignment-based distance mea-
sure, such as dynamic time warping. Here we instead follow
an acoustic word embedding approach [11, 28]: an embedding
function fe is used to map a variable length speech segment to a
single embedding vector x ∈ RD in a fixed-dimensional space,
i.e., segment yt1:t2

is mapped to a vector xi = fe(yt1:t2
), il-

lustrated as coloured horizontal vectors. The idea is that speech
segments that are acoustically similar should lie close together
in RD , allowing segments to be efficiently compared directly in
the embedding space without requiring alignment.

Embedding all segments in the data set would give a set of
vectors X = {xi}Ni=1, which could be clustered intoK hypothe-
sized word classes using k-means, as shown at the top of Figure 1.
Standard k-means aims to minimize the sum of squared euclidean
distances to each cluster mean: minz

∑K
c=1

∑
x∈Xc

||x−µc||2,
where {µc}

K
c=1 are the cluster means,Xc are all vectors assigned

to cluster c, and element zi in z indicates which cluster xi be-
longs to. The standard algorithm alternates between reassigning
vectors to the closest cluster means, and then updating the means.

Standard k-means would be appropriate if the segmentation
was known, but this is not the case in this zero-resource setting.
Rather, the embeddings X can change depending on the current
segmentation. For a data set of S utterances, we denote the seg-
mentations asQ = {qi}Si=1, where qi indicates the boundaries
for utterance i. X (Q) is used to denote the embeddings under
the current segmentation. Our aim now is to jointly optimize
the cluster assignments z and the segmentationQ. Under what
objective should these be optimized?

One option would be to extend the standard k-means objec-
tive and optimize min(Q, z)

∑K
c=1

∑
x∈Xc∩X (Q) ||x − µc||2,

where Xc ∩ X (Q) are embeddings assigned to cluster c under
segmentation Q. But this is problematic: imagine the extreme
of inserting no boundaries over an utterance, resulting in a sin-
gle embedding and only a single term in the summation; any
other segmentation would result in more terms in the summation,
likely giving an overall worse score—even if all embeddings are
close to cluster means. Instead of assigning a score per segment,
we deal with this by assigning a score per frame. This score is
given by the score achieved by the segment to which that frame
belongs, implying that segment scores are weighed by duration:

min
Q , z

K∑
c=1

∑
x∈Xc∩X (Q)

len(x) ||x− µc||
2 (1)

where len(x) is the number of frames in the sequence on which
embedding x is calculated.

The overall ES-KMeans algorithm initializes word bound-
aries randomly, and then optimizes (1) by alternating between
optimizing segmentationQ while keeping cluster assignments z
and means {µc}

K
c=1 fixed (top to bottom in Figure 1), and then

optimizing the cluster assignments and means while keeping the
segmentation fixed (bottom to top in the figure).

2.2. Segmentation

Under a fixed clustering z, the objective (1) becomes

min
Q

∑
x∈X (Q)

len(x) ||x− µ∗x||
2 = min

Q

∑
x∈X (Q)

d(x) (2)

where µ∗x is the mean of the cluster to which x is currently
assigned (according to z), and d(x) , len(x) ||x− µ∗x||2 is the
“score” of embedding x (lower d is better).
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Figure 1: The embedded segmental k-means model for unsuper-
vised segmentation and clustering of speech.

Equation (2) can be optimized separately for each utterance,
so we want to find the segmentation q for each utterance that
gives the minimum of the sum of the scores of the embeddings
under that segmentation. This is exactly the problem addressed
by the shortest-path algorithm (Viterbi) which uses dynamic
programming to solve this problem efficiently [33, §21.7].

Let qt be the number of frames in the hypothesized segment
(word) that ends at frame t: if qt = j, then yt−j+1:t is a word.1

We define forward variables γ[t] as the optimal score up to
boundary position t: γ[t] , minq:t

∑
x∈X (q:t)

d(x), with q:t
the sequence of segmentation decisions (the q’s) that have been
made up to t. These can be recursively calculated [33, §21.7]:

γ[t] =
t

min
j=1

{
d
(
fe(yt−j+1:t)

)
+ γ[t− j]

}
(3)

Starting with γ[0] = 0, we calculate (3) for 1 ≤ t ≤ M − 1.
We keep track of the optimal choice (argmin) for each γ[t], and
the overall optimal segmentation is then given by starting from
the final position t = M and moving backwards, repeatedly
choosing the optimal boundary.

2.3. Cluster assignments and mean updates

For a fixed segmentationQ, the objective (1) becomes

min
z

K∑
c=1

∑
x∈Xc∩X (Q)

len(x)||x− µc||
2 (4)

When the means {µc}
K
c=1 are fixed, the optimal reassignments

(5) follow standard k-means, and are guaranteed to improve
(1) since the distance between the embedding and its assigned
cluster mean never increases:

zi = argmin
c

{
len(xi) ||xi − µc||

2} = argmin
c
||xi − µc||

2

(5)
Finally, we fix the assignments z and update the means:

µc =
1∑

x∈Xc
len(x)

∑
x∈Xc

len(x)x ≈ 1

Nc

∑
x∈Xc

x (6)

The exact equation is the mean of the vectors assigned to cluster
c weighed by duration, and is guaranteed to improve (1). We use

1For a an utterance with frames y1:M , a sequence of q’s ending with
qM specifies a unique segmentation; boldface q is this sequence of q’s.



the approximation, which is exact if all segments have the same
duration, to again match standard k-means, with Nc the number
of embeddings currently assigned to cluster c.

The complete ES-KMeans algorithm is given below. Since
the segmentation, clustering and mean updates each improve (1),
the algorithm will converge to a local optimum.

Algorithm 1 The embedded segmental k-means algorithm.

1: Initialize segmentationQ randomly.
2: Initialize cluster assignments z randomly.
3: repeat . Optimization iterations
4: for i = randperm(1 to S) do . Select utterance i
5: Calculate γ’s using (3). . Segmentation variables
6: t←Mi

7: while t ≥ 1 do . Perform segmentation
8: qt ← argmintj=1

{
d
(
fe(yt−j+1:t)

)
+ γ[t− j]

}
9: t← t− qt

10: end while
11: Assign new embeddings X (qi) to clusters using (5).
12: Update means using (6).
13: end for
14: until convergence

2.4. The Bayesian embedded segmental GMM

In previous work [20, 22], we proposed a very similar model,
but instead of k-means, we used a Bayesian GMM as whole-
word clustering component (top of Figure 1). This Bayesian
embedded segmental GMM (BES-GMM) served as inspiration
for ES-KMeans; we briefly discuss their relationship here.

A Bayesian GMM treats its mixture weights π and com-
ponent means {µc}

K
c=1 as random variables rather than point

estimates, as is done in a regular GMM. We use conjugate priors:
a Dirichlet prior over π and a spherical-covariance Gaussian
prior over µc. All components share the same fixed spherical
covariance matrix σ2I. The model is then formally defined as:

π ∼ Dir (a/K1) (7)
zi ∼ π (8)

µc ∼ N (µ0, σ
2
0I) (9)

xi ∼ N (µzi
, σ2I) (10)

Under this model, component assignments and a segmentation
can be inferred jointly using a collapsed Gibbs sampler [34]. Full
details are given in [20], but the Gibbs sampler looks very similar
to Algorithm 1: the Bayesian GMM gives likelihood terms
(“scores”) in order to find an optimal segmentation, while the
segmentation hypothesizes the boundaries for the word segments
which are then clustered using the GMM. However, for BES-
GMM, component assignments and segmentation are sampled
probabilistically, instead of making hard decisions.

The link between the two models emerges asymptomatically.
It can be shown that standard k-means results from a GMM as the
variances approach zero [35, §20.3.5], [36]. In a similar way it
can be shown that the Gibbs sampling equations for segmentation
and component assignments for BES-GMM (as given in [20])
approach (3) and (5), respectively, in the limit σ2 → 0, when all
other hyperparameters are fixed.

Without giving a full complexity analysis, we note that be-
cause ES-KMeans only considers the closest cluster, it is more
efficient than BES-GMM, where all components are considered
when assigning embeddings to clusters and during segmenta-
tion (since embedding “scores” are obtained by marginalizing
over all components). ES-KMeans can also be trivially paral-
lelized, since both segmentation and cluster assignment can be
performed in parallel for each utterance. This parallelized al-
gorithm is still guaranteed to converge, though possibly to a

different local optimum than Algorithm 1 since updates are in
a different order. Parallelizing BES-GMM is also possible, but
the guarantee of converging to the true posterior distribution is
lost [27]. We do not consider parallelization in this work, but
rather keep the two algorithms as close as possible (using the
same update order) to allow for direct comparison.

2.5. Heuristic recurring syllable-unit word segmentation

We also compare to the ZRSC submission of Räsänen et al. [23].
Their system, which we refer to as SylSeg, relies on a novel
cognitively motivated unsupervised method that predicts bound-
aries for syllable-like units, and then clusters these units on a
per-speaker basis. Using a bottom-up greedy mapping, recurring
syllable cluster sequences are then predicted as words.

SylSeg has the benefit of being much simpler in terms of
computational complexity and implementation than ES-KMeans
or BES-GMM. But, in contrast to the heuristic methodology
followed in SylSeg, both ES-KMeans and BES-GMM have clear
overall objective functions that they optimize, the one using hard
clustering, the other using Bayesian inference.

3. Experiments
3.1. Experimental setup and evaluation

Evaluation is performed on the two ZRSC data sets: an English
corpus of around 5 hours of speech from 12 speakers, and a Xit-
songa corpus of around 2.5 hours from 24 speakers [37]. We also
use a separate English set of around 6 hours for development.

As in [20, 22, 38], we use several metrics to evaluate against
ground truth forced alignments. By mapping every discovered
word token to the ground truth token with which it overlaps
most and then mapping every cluster to its most common word,
average cluster purity and unsupervised word error rate (WER)
can be calculated.2 By instead mapping every token to the true
phoneme sequence with which it overlaps most, the normalized
edit distance (NED) between all segments in the same cluster
can be calculated; lower NED is better, with scores from 0 to
1. Word boundary F -score evaluates segmentation performance
by comparing proposed and true word boundaries; similarly,
word token F -score measures the accuracy of proposed word
token intervals. Word type F -score compares the set of unique
phoneme mappings (obtained as for NED) to the set in the true
lexicon. See [38] for full details.

Our implementation of ES-KMeans follows as closely as
possible that of BES-GMM in [22]. Both use uniform down-
sampling as embedding function fe: a segment is represented
by keeping 10 equally spaced MFCCs and flattening these [39].
Both models use unsupervised syllable pre-segmentation [23] to
limit allowed word boundaries. K is set to 20% of the number
of first-pass segmented syllables. Word candidates are limited to
span at most 6 syllables, and at least 200 ms. For BES-GMM we
use simulated annealing, an all-zero vector for µ0, σ2

0 = σ2/κ0,
κ0 = 0.05, a = 1, σ2 = 0.001. See [22] for full details.

3.2. Results and analysis

Table 1(a) shows the performance of the three models on the
English and Xitsonga corpora. Some of the SylSeg scores are
unknown since these were not part of the ZRSC evaluation [23].
Compared to BES-GMM, ES-KMeans achieves worse purity,
WER and NED, but similar boundary, token and type F -scores.
This comes with a 5× improvement in runtime. ES-KMeans

2We allow more than one cluster to be mapped to the same word.



Table 1: (a) Performance of models on the two test corpora. Lower NED is better. Runtimes for SylSeg∗ are rough estimates, obtained
from personal communication with the authors [23]. (b) English development set performance of BES-GMM as the variance is varied.

(a)

English (%) Xitsonga (%)

SylSeg ES-KMeans BES-GMM SylSeg ES-KMeans BES-GMM

Cluster purity - 42.8 56.1 - 40.5 49.8
WER - 73.2 68.3 - 80.3 71.6

NED 71.1 71.6 55.5 62.8 70.4 58.4
Boundary F 55.2 62.2 62.0 33.4 42.1 43.1
Token F 12.4 18.1 17.9 2.7 3.7 4.0
Type F 12.2 18.9 18.6 3.3 4.9 5.2

Runtime (s) 100∗ 193 1052 20∗ 44 196

(b)

BES-GMM on dev. (%)

σ2 Cluster purity WER

0.00001 56.1 68.9
0.0001 55.7 69.0
0.001 56.9 67.7
0.0015 51.9 69.8
0.00175 41.1 75.8
0.002 35.1 86.8

ES-KMeans BES-GMM

yeah

um just

um um
just its be

just um

Figure 2: The 5 biggest clusters for ES-KMeans and BES-GMM.
Circle radii are according to cluster size; shading indicates
purity. The cluster-to-true-word mapping is also shown.

achieves worse NED than SylSeg, but much better word bound-
ary, token and type F -scores. SylSeg, however, is twice as fast.

ES-KMeans is therefore competitive in terms of word seg-
mentation scores (boundary, token F -scores) and lexicon quality
(type F -score), but falls behind in the purity-based metrics (pu-
rity, WER, NED). The difference with BES-GMM is particularly
interesting since σ2 is set to be quite small, and ES-KMeans
results from BES-GMM in the limit σ2 → 0 (see §2.4). To
understand the discrepancy in purity, we analyzed ES-KMeans
and BES-GMM on a single English development speaker.

For a qualitative view, Figure 2 shows the 5 biggest clusters
for the two models. BES-GMM outputs more smaller clusters
with a higher purity (often separating the same word over differ-
ent clusters) compared to ES-KMeans. By listening to tokens
assigned to the same cluster by ES-KMeans, we found that al-
though tokens overlap with different ground truth labels, cluster
assignments are qualitatively sensible, capturing similarity in
acoustics or prosody. For example, Figure 3 shows spectrograms
for tokens assigned to the “be” cluster in Figure 2. The ground
truth word labels with maximal overlap are also shown. For the
“seventy” and “already” tokens, the segments only cover part of
the true words (shown in bold), and the “that you” token is actu-
ally pronounced in context as [dh uw]. So despite mapping to
different true labels, these segments form a reasonable acoustic
group. Nevertheless, they are penalized under purity and WER.

By spreading out its discovered tokens more evenly over
clusters (Figure 2), BES-GMM produces a clustering that is
better-matched to the evaluation metrics, although the ES-
KMeans clustering might be subjectively reasonable. This
spreading (or sparsity) of BES-GMM can be controlled through
the fixed spherical covariance parameter σ2, which impacts both
the soft assignments of an embedding to a cluster and the segmen-
tation (§2.4). Table 1(b) shows performance on the development
set as σ2 is varied. There is a sweet spot: when σ2 is too big,
most tokens are sucked up by a number of large garbage clusters;
when σ2 is smaller, more tokens are assigned to separate clusters.
In contrast, ES-KMeans has no σ2 parameter and considers only
the single closest cluster.

be seventy

that you be

be

already

Figure 3: Spectrograms for random tokens from the cluster of
ES-KMeans mapped to “be” in Figure 2. The portion of each
true word which is covered by the segment is shown in bold.

When reading the results in Table 1(b) from bottom to top,
note that the results of BES-GMM do not seem to converge to
ES-KMeans, even though σ2 is tending towards 0 (where the
two models should be equivalent). This is because, based on the
recommendation in [40], we set the variance of the prior on the
component means of BES-GMM as σ2

0 = σ2/κ0 (see end of
§3.1), so the prior variance on the component means is tied to
the fixed data variance. Under these conditions, the asymptotic
equivalence of BES-GMM and ES-KMeans no longer holds.
Murphy [40] explains that this coupling is a sensible way to
incorporate prior knowledge of the typical spread of data, and
here we indeed show how this helps our Bayesian model; this
principled way of including priors is not possible in ES-KMeans
or SylSeg. When setting σ2

0 = 1 (rather than tying it), the results
of BES-GMM match ES-KMeans when σ2 = 0.00001.

4. Conclusion
We introduced the embedded segmental k-means model (ES-
KMeans), a method that falls in between the fully Bayesian
embedded segmental GMM (BES-GMM) and the cognitively
motivated heuristic SylSeg method. Its word segmentation per-
formance is on par with BES-GMM and superior to SylSeg, but
cluster purity is worse than both other methods. In terms of
efficiency, it is 5 times faster than BES-GMM, but half as fast
as SylSeg. Despite using hard clustering and segmentation, ES-
KMeans still has a clear objective function and it is guaranteed
to converge (to a local optimum), in contrast to SylSeg. It also
has far fewer hyperparameters than BES-GMM, although we
show that this is what gives the latter the upper hand. How to
balance these trade-offs between speed, performance and having
a clear objective will ultimately depend on the downstream task
on which the model is applied.

Acknowledgements: We would like to thank Shreyas Seshadri
for helpful feedback on the SylSeg model.
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