
Blocked Inference in Bayesian

Tree Substitution Grammars

Trevor Cohn and Phil Blunsom

Talk by Sharon Goldwater, Edinburgh

ACL, July 2010

Department of Computer Science

University of Sheffield

Computing Laboratory

University of Oxford

Overview

• Builds on work of Cohn, Goldwater, & Blunsom (2009)

• Infinite Bayesian model for learning a tree substitution

grammar from parsed corpus.

• There: used a Gibbs sampler for inference.

• Samples a single variable at a time.

• Simple, but slow to converge.

• Here: develop a blocked Metropolis-Hastings sampler.

• Samples groups of variables at a time.

• Technical challenges, but faster convergence and better F1.

• General point: in models with strong dependencies

between variables (e.g. structured models), need to

sample groups of variables together.

Task: supervised TSG parsing

3

Training input: Inferred TSG:

Task: supervised TSG parsing

4

Training input: Inferred TSG:

Elementary

trees

Task: supervised TSG parsing

5

Training input: Inferred TSG:

Substitution

site

Model: probabilistic TSG

• Weighted grammar; productions are elementary trees.

• Infinite model uses Dirichlet process prior over

productions for each non-terminal c.

• For elementary trees e1...en:

6

)|(),,,...|(0,011 cePnPceeeP iccecii i

(Cohn, Goldwater, & Blunsom, NAACL ’09;
also Post & Gildea ’09, O’Donnell, Goodman, & Tenenbaum ’09)

• Weighted grammar; productions are elementary trees.

• Infinite model uses Dirichlet process prior over

productions for each non-terminal c.

• For elementary trees e1...en:

Model: probabilistic TSG

7

)|(),,,...|(0,011 cePnPceeeP iccecii i

previous # of

ei rooted at c

Prob. of elem. tree roughly proportional to # of

previous occurrences.

• Weighted grammar; productions are elementary trees.

• Infinite model uses Dirichlet process prior over

productions for each non-terminal c.

• For elementary trees e1...en:

Model: probabilistic TSG

8

)|(),,,...|(0,011 cePnPceeeP iccecii i

base distribution over

all possible elem. trees

But all elem. trees have non-zero prob.
(P0 uses PCFG rules to generate elem. trees)

Inference

• Segment treebank into high probability e1...en :

• Which nodes are substitution sites?

9

Inference

• Use Markov Chain Monte Carlo.

• Sample a few hidden variables (nodes) at a time, conditioned

on values of all others.

• Iterate to convergence: Samples from posterior P(e1...en|d).

10

Inference

• Use Markov Chain Monte Carlo.

• Sample a few hidden variables (nodes) at a time, conditioned

on values of all others.

• Iterate to convergence: Samples from posterior P(e1...en|d).

• Easy method: Gibbs sampler.

• But: poor mixing!
11

...

Inference

• Use Markov Chain Monte Carlo.

• Sample a few hidden variables (nodes) at a time, conditioned

on values of all others.

• Iterate to convergence: Samples from posterior P(e1...en|d).

• Better method: blocked sampler.

• But: tricky to compute!
12

Problems with blocked sampling

• Exponentially many segmentations of each tree.

• Dynamic programming is possible using Metropolis-

Hastings sampler (Johnson et al., 2007).

• ...But only for finite PCFG.

13

MH for Bayesian TSG

• TSG model is infinite; how to apply dynamic

programming?

• Key insight: Infinite grammar can be represented as a

finite PCFG!

14

)|(),,,...|(0,011 cePnPceeeP iccecii i

Non-zero prob. for any tree

generated by PCFG rules.

Grammar transform

• Convert infinite TSG to finite PCFG:

• Sub-grammar A contains PCFG productions for all elem.

trees with count > 0.

• Sub-grammar B is a PCFG representing P0 .

• Rule with prob. proportional to αc connects the two sub-

grammars.

15

)|(),,,...|(0,011 cePnPceeeP iccecii i

Grammar transform

• Convert infinite TSG to finite PCFG:

• Sub-grammar A contains PCFG productions for all elem.

trees with count > 0.

• Sub-grammar B is a PCFG representing P0 .

• Rule with prob. proportional to αc connects the two sub-

grammars.

16

)|(),,,...|(0,011 cePnPceeeP iccecii i

Grammar transform

• Convert infinite TSG to finite PCFG:

• Sub-grammar A contains PCFG productions for all elem.

trees with count > 0.

• Sub-grammar B is a PCFG representing P0 .

• Rule with prob. proportional to αc connects the two sub-

grammars.

17

)|(),,,...|(0,011 cePnPceeeP iccecii i

Grammar transform

• Convert infinite TSG to finite PCFG:

• Sub-grammar A contains PCFG productions for all elem.

trees with count > 0.

• Sub-grammar B is a PCFG representing P0 .

• Rule with prob. proportional to αc connects the two sub-

grammars.

18

)|(),,,...|(0,011 cePnPceeeP iccecii i

Grammar transform

• Convert infinite TSG to finite PCFG:

• Sub-grammar A contains PCFG productions for all elem.

trees with count > 0.

• Sub-grammar B is a PCFG representing P0 .

• Rule with prob. proportional to αc connects the two sub-

grammars.

• Now can use MH for Bayesian PCFG.

• Bonus: can use for unsupervised training.

19

Faster convergence

20

Blocked MH

Local Gibbs

(Penn WSJ, Sec. 2)

Higher parsing accuracy

21

• Improved F-score on small and large training sets:

Training set ’09 best New best

WSJ sec. 2 77.6 78.4

WSJ sec. 2-21 84.0 85.3

Conclusions

• Local Gibbs sampling mixes poorly for structured

prediction models; better to use blocked sampling.

• Grammar transform represents infinite TSG as finite

PCFG, making blocked sampling possible.

• Blocked sampler: faster training and better parsing.

• See poster or paper for more details/results.

• Future extensions:

• Use Pitman-Yor process instead of Dirichlet process.

• Unsupervised dependency grammar TSG induction.
22

23

