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Overview

• Builds on work of Cohn, Goldwater, & Blunsom (2009)

• Infinite Bayesian model for learning a tree substitution 

grammar from parsed corpus.

• There: used a Gibbs sampler for inference.

• Samples a single variable at a time.

• Simple, but slow to converge.

• Here: develop a blocked Metropolis-Hastings sampler.

• Samples groups of variables at a time.

• Technical challenges, but faster convergence and better F1.

• General point: in models with strong dependencies 

between variables (e.g. structured models), need to 

sample groups of variables together.



Task: supervised TSG parsing

3

Training input: Inferred TSG:
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Elementary

trees



Task: supervised TSG parsing
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Training input: Inferred TSG:

Substitution 

site



Model: probabilistic TSG

• Weighted grammar; productions are elementary trees.

• Infinite model uses Dirichlet process prior over 

productions for each non-terminal c.

• For elementary trees e1...en:
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(Cohn, Goldwater, & Blunsom, NAACL ’09; 
also Post & Gildea ’09, O’Donnell, Goodman, & Tenenbaum ’09)



• Weighted grammar; productions are elementary trees.

• Infinite model uses Dirichlet process prior over 

productions for each non-terminal c.

• For elementary trees e1...en:

Model: probabilistic TSG
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previous # of 

ei rooted at c

Prob. of elem. tree roughly proportional to # of 

previous occurrences.



• Weighted grammar; productions are elementary trees.

• Infinite model uses Dirichlet process prior over 

productions for each non-terminal c.

• For elementary trees e1...en:

Model: probabilistic TSG
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base distribution over 

all possible elem. trees

But all elem. trees have non-zero prob.
(P0 uses PCFG rules to generate elem. trees)



Inference

• Segment treebank into high probability e1...en :

• Which nodes are substitution sites?
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Inference

• Use Markov Chain Monte Carlo.

• Sample a few hidden variables (nodes) at a time, conditioned 

on values of all others.

• Iterate to convergence: Samples from posterior P(e1...en|d).
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Inference

• Use Markov Chain Monte Carlo.

• Sample a few hidden variables (nodes) at a time, conditioned 

on values of all others.

• Iterate to convergence: Samples from posterior P(e1...en|d).

• Easy method: Gibbs sampler.

• But: poor mixing!
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Inference

• Use Markov Chain Monte Carlo.

• Sample a few hidden variables (nodes) at a time, conditioned 

on values of all others.

• Iterate to convergence: Samples from posterior P(e1...en|d).

• Better method: blocked sampler.

• But: tricky to compute!
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Problems with blocked sampling

• Exponentially many segmentations of each tree.

• Dynamic programming is possible using Metropolis-

Hastings sampler (Johnson et al., 2007).

• ...But only for finite PCFG.
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MH for Bayesian TSG

• TSG model is infinite; how to apply dynamic 

programming?

• Key insight: Infinite grammar can be represented as a 

finite PCFG!
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Non-zero prob. for any tree 

generated by PCFG rules.



Grammar transform

• Convert infinite TSG to finite PCFG:

• Sub-grammar A contains PCFG productions for all elem. 

trees with count > 0.

• Sub-grammar B is a PCFG representing P0 .

• Rule with prob. proportional to αc connects the two sub-

grammars.
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Grammar transform

• Convert infinite TSG to finite PCFG:

• Sub-grammar A contains PCFG productions for all elem. 

trees with count > 0.

• Sub-grammar B is a PCFG representing P0 .

• Rule with prob. proportional to αc connects the two sub-

grammars.
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Grammar transform

• Convert infinite TSG to finite PCFG:

• Sub-grammar A contains PCFG productions for all elem. 

trees with count > 0.

• Sub-grammar B is a PCFG representing P0 .

• Rule with prob. proportional to αc connects the two sub-

grammars.

• Now can use MH for Bayesian PCFG.

• Bonus: can use for unsupervised training.
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Faster convergence
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Blocked MH

Local Gibbs

(Penn WSJ, Sec. 2)



Higher parsing accuracy
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• Improved F-score on small and large training sets:

Training set ’09 best New best

WSJ sec. 2 77.6 78.4

WSJ sec. 2-21 84.0 85.3



Conclusions

• Local Gibbs sampling mixes poorly for structured 

prediction models; better to use blocked sampling.

• Grammar transform represents infinite TSG as finite 

PCFG, making blocked sampling possible.

• Blocked sampler: faster training and better parsing.

• See poster or paper for more details/results.

• Future extensions:

• Use Pitman-Yor process instead of Dirichlet process.

• Unsupervised dependency grammar TSG induction.
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