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Abstract

In this paper we present a fully unsupervised
syntactic class induction system formulated as
a Bayesian multinomial mixture model, where
each word type is constrained to belong to a
single class. By using a mixture model rather
than a sequence model (e.g., HMM), we are
able to easily add multiple kinds of features,
including those at both the type level (mor-
phology features) and token level (context and
alignment features, the latter from parallel cor-
pora). Using only context features, our sys-
tem yields results comparable to state-of-the
art, far better than a similar model without the
one-class-per-type constraint. Using the addi-
tional features provides added benefit, and our
final system outperforms the best published
results on most of the 25 corpora tested.
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et al., 2010). This fact suggests that we should con-

sider which features of the older systems led to their

success, and attempt to combine these features with
some of the machine learning methods introduced

by the more recent systems. We pursue this strat-
egy here, developing a system based on Bayesian
methods where the probabilistic model incorporates

several insights from previous work.

Perhaps the most important property of our model
is that it istype-basedmeaning that all tokens of
a given word type are assigned to the same clus-
ter. This property is not strictly true of linguistic
data, but is a good approximation: as Lee et al.
(2010) note, assigning each word type to its most
frequent part of speech yields an upper bound ac-
curacy of 93% or more for most languages. Since
this is much better than the performance of cur-
rent unsupervised syntactic class induction systems,
constraining the model in this way seems likely to
improve performance by reducing the number of

Research on unsupervised learning for NLP has bparameters in the model and incorporating useful
come widespread recently, with part-of-speech ininguistic knowledge. Both of the older systems
duction, or syntactic class induction, being a particdiscussed by Christodoulopoulos et al. (2010), i.e.,
ularly popular task. However, despite a recent pro-Clark (2003) and Brown et al. (1992), included this
liferation of syntactic class induction systems (Bieconstraint and achieved very good performance rel-
mann, 2006; Goldwater and Griffiths, 2007; Johnative to token-based systems. More recently, Lee et
son, 2007; Ravi and Knight, 2009; Berg-Kirkpatrickal. (2010) presented a new type-based model, and
et al., 2010; Lee et al., 2010), careful comparialso reported very good results.

son indicates that very few systems perform better A second property of our model, which distin-
than some much simpler and quicker methods datinglishes it from the type-based Bayesian model of
back ten or even twenty years (Christodoulopoulogee et al. (2010), is that the underlying probabilistic

'The task is more commonly referred to as part-of-speecWOdeI Is aclustering model(specifically, a multino-

induction, but we prefer the term syntactic class induction sincBli@l mixture model) rather than a sequence model
the induced classes may not coincide with part-of-speech tag§HMM). In this sense, our model is more closely re-



lated to several non-probabilistic systems that clus-

ter context vectors or lower-dimensional represen-
tations of them (Redington et al., 1998; Sitte, 0
1995; Lamar et al., 2010). Sequence models are

by far the most common method of supervised part- PR S
of-speech tagging, and have also been widely used

for unsupervised part-of-speech tagging both with G)
and without a dictionary (Smith and Eisner, 2005;

Haghighi and Klein, 2006; Goldwater and Griffiths,
2007; Johnson, 2007; Ravi and Knight, 2009; Lee et

al., 2010). However, systems based on context vec-,
tors have also performed well in these latter scenar@»@ ‘
ios (Sclitze, 1995; Lamar et al., 2010; Toutanova Z n;

and Johnson, 2007) and present a viable alternative M
to sequence models.

One advantage of using a clustering model ratheéfigure 1: Plate diagram of the basic model with a single
than a sequence model is that the features used feature per token (the observed variaffle M, Z, and
clustering need not be restricted to context wordgy; are the number of word types, syntactic classesnd
Additional types of features can easily be incorpofeatures (= tokens) per word type, respectively.
rated into the model and inference procedure using

the same general framework as in the basic m_OdmuItinomial class output parametess The model
that uses only context word features. In partiCUis gefined so that all observations associated with
lar, we present two extensions to the basic model, single word type are generated from the same
The first usesnorphological featureswhich serve mixing component (syntactic class). In the basic
as cues to syntactic class and seemed to partly €pqel, these observations are token-level features:
plain the success of two best-performing systemge morphology model adds type-level features as
analysed by Christodoulopoulos et al. (2010). Thg,e)| we begin by describing the simplest version of

second extension to our model usdignment fea- o, model, where each word token is associated with
turesgathered from parallel corpora. Previous work, single feature, for example its left context word

suggests that using parallel text can improve perfofghe word that occurs to its left in the corpus). We

mance on various unsupervised NLP tasks (Nasegffy show how to generalise the model to multiple

etal., 2009; Snyder and Barzilay, 2008). token-level features and to type-level features.
We evaluate our model on 25 corpora in 20 lan-

guages that vary substantially in both syntax ang 1 Basic model

morphology. As in previous work (Lee et al., 2010),

we find that the one-class-per-type restriction boost8 the basic model, each word token is represented
performance considerably over a comparable tokeRY @ Single feature such as its left context word.
based model and yields results that are comparabl&€se features are the observed data; the model ex-
to state-of-the-art even without the use of morpholPl2ins the data by assuming that it has been gener-
ogy or alignment features. Including morphology""ted from some set of latent syntactic classes. The
features yields the best published results on 14 or 781 class is associated with a multinomial parameter
of our 25 corpora (depending on the measure) argctor ¢; that defines the distribution over features

alignment features can improve results further. ~ 9enerated from that class, and with a mixing weight
0; that defines the prior probability of that clags.

2 Modes andg; are drawn from symmetric Dirichlet distribu-
tions with parameters and respectively.

Our model is a multinomial mixture model with The generative story goes as follows: First, gen-

Bayesian priors over the mixing weights and erate the prior class probabiliti#s Next, for each




word typej = 1... M, choose a class assignment wheref; are the features associated with word type
from the distributiord. For each class = 1...7, j (one feature for each token ¢f. The first (prior)
choose an output distribution over featurgs Fi- factor is easy to compute due to the conjugacy be-
nally, for each tokerk = 1...n; of word typej, tween the Dirichlet and multinomial distributions,
generate a featurg;;, from ¢, the distribution as- and is equal to

sociated with the class that word typés assigned

to. The model is illustrated graphically in Figure 1 P(zj=z|z_j,a) = neta (3)
and is defined formally as follows: , n.+Za
wheren, is the number of types in clagsandn.
0la  ~ Dirichlet(c) is the total number of word types in all classes. All
zj|0  ~ Multinomial(6) counts in this and the following equations are com-
¢i|B ~ Dirichlet(3) puted with respectta_; (e.g.,n. = M —1).

. : Computing the second (likelihood) factor is
fi| &= ~ Multinomial(¢.; ) slightly more complex due to the dependencies be-
In addition to the variables defined above, we wiltween the different variables ify that are induced
use F' to refer to the number of different possiblepy integrating out they parameters. Consider first a
values a feature can take on (so thas aZ x F' simple case where word tygeoccurs exactly twice
matrix). Thus, one way to think of the model is as an the corpus, sd; contains two features. The prob-
vector-based clustering system, where word tyjge  ability of the first featuref; is equal to
associated with & x F' vector of feature counts rep- ng.+f
resenting the features of all tokens ofj, and these  P(fj1 = f |2z = z,2-;,f;,0) = n.1FD
vectors are clustered into similar classes. The differ- ] ] i
ence from other vector-based syntactic class indulNereny.: is the number of times featuyehas been
tion systems is in the method of clustering. HereS€€N In class, n.; is the total number of feature
we define a Gibbs sampler that samples from tH@kens in the class, anfl is the number of different
posterior distribution of the clusters given the obPOSSible features.
served features; other systems have used various! Ne Probability of the second featufe, can be
standard distance-based vector clustering method&/culated similarly, except that it is conditioned on
Some systems also include dimensionality reductiofy1 In @ddition to the other variables, so the counts
(Schitze, 1995; Lamar et al., 2010) to reduce th&or previously observed features must include the
size of the context vectors; we simply use fhenost ~ COUNts due tqf;, as well as those due fo;. Thus,

(4)

common words as context features. the probability is

2.2 Inference P(fj2 = flfin,zj = 2,2_j,f;,0)

At inference time we want to sample a syntactic _ Nyt 0(fjr, f2) + 13 (5)
class assignment from the posterior of the model. n.:+1+Fp

We use a collapsed Gibbs sampler, integrating omthered is the Kronecker delta function, equal to 1

the parameter8 and ¢ and sampling from the fol- if its arguments are equal and 0 otherwise.

lowing distribution: Extending this example to the general case, the

probability of a sequence of featurgsis computed
P(zlf, 0, §) o P(z|a) P(E|z, §). (1) using the chain rule, where the counts used in each

Rather than sampling the joint class assignmeffiéctor are incremented as necessary for each addi-

P(zlf, a, B) directly, the sampler iterates over eachional conditioning feature, yielding the following

word type j, resampling its class assignment expression:

given the current assignmerds; of all other word

types. The posterior over; can be computed as

P(z |5 £, 0. 9) I I (e i)
x P(z|zj,0,8)P(f £ j,2,0,8) (2) T2y (n.:+i+ Fp)

Pt [fj,2j = z,2—j, B)




wheren;;, is the number of instances of featurén Note that this model with multiple context fea-
word type;j.2 tures is deficient: it can generate data that are in-

consistent with any actual corpus, because there is
2.3 Extended models no mechanism to constrain the left context word
We can extend the model above in two differentf token e¢; to be the same as the right context
ways: by adding more features at the word tokeword of tokene;_; (and similarly with alignment
level, or by adding features at the type level. To adfkatures). However, deficient models have proven
more token-level features, we simply assume thaifseful in other unsupervised NLP tasks (Klein and
each word token generates multiple features, orManning, 2002; Toutanova and Johnson, 2007). In
feature from each of several different kintisFor  particular, Toutanova and Johnson (2007) demon-
example, the left context word might be one kind oktrate good performance on unsupervised part-of-
feature and the right context word another. We aspeech tagging (using a dictionary) with a Bayesian
sume conditional independence between the genenodel similar to our own. If we remove the part of
ated features given the syntactic class, so each kirigeir model that relies on the dictionary (the mor-
of featuret has its own output parametes§). A  phological ambiguity classes), their model is equiv-
plate diagram of the model with kinds of features alent to our own, without the restriction of one class
is shown in Figure 2 (a type-level feature is also inper type. We use this token-based version of our
cluded in this diagram, as described below). model as a baseline in our experiments.

Due to the independence assumption between theThe final extension to our model introduces type-
different kinds of features, the basic Gibbs sampldevel features, specifically morphology features.
is easy to extend to this case by simpling multiplyingrhe model is illustrated in Figure 2. We assume
in extra factors for the additional kinds of featuresconditional independence between the morphology
with the prior (Equation 3) unchanged. The likeli-features and other features, so again we can simply

hood becomes: multiply another factor into the likelihood during in-
. o ference. There is only one morphological feature per
P(f; ), . ,f]( ) yfﬁj“' ), zj = 2,2_j, ) type, so this factor has the form of Equation 4. Since

T frequent words will have many token-level features
= H P(f;t) | ff])., zj = zz_j,() (7) contributing to the likelihood and only one morphol-
t=1 ogy feature, the morphology features will have a
where each factor in the product is computed usin§1reater effept for mfrgquent words (as approprlz_;lte,
. ince there is less evidence from context and align-
Equation 6. . .
" . ments). As with the other kinds of features, we use
In addition to monolingual context features, we -
. only a limited numbeftF;,, of morphology features,
also explore the use of alignment features for those .
as described below.
languages where we have parallel corpora. Thesé
features are extracted for languageby word-
aligning ¢ to another languagé’ (details of the
alignment procedure are described in Section 3.13.1 Experimental setup
The features used for each tokein ¢ are the left . We evaluate our models using an increasing level

ar_1d right cor_1text wor ds of the wor_d token that Sof complexity, starting with a model that uses only
aligned toe (if there is one). As with the mono-

i I text feat v tf monolingual context features. We use thie= 100
Ingual contex /ea ures, we use only thamostre- 5t frequent words as features, and consider two
guent words irt’ as possible features.

versions of this model: one with two kinds of fea-
2One could approximate this likelihood term by assumingures (one left and one right context word) and one
independence between all; feature tokens of word typg.  \ith four (two context words on each side).

This is the approach taken by Lee et al. (2010). .
3We use the wordind here to avoid confusion witktype For the model with morphOIOgy features we ran

which we reserve for the type-token distinction, which can apth€ unsupervised morphological segmentation sys-
ply to features as well as words. tem Morfessor (Creutz and Lagus, 2005) to get a

3 Experiments



above, we use two kinds of alignment features: the
left and right context words of the aligned token in
the other language. The feature space is set to the
F =100 most frequent words in that language.
Instead of fixing the hyperparameteraind3, we
@ used the Metropolis-Hastings sampler presented by
Goldwater and Griffiths (2007) to get updated values
based on the likelihood of the data with respect to
those hyperparametérdn order to improve conver-
@ gence of the sampler, we used simulated annealing
with a sigmoid-shaped cooling schedule from an ini-
M) tial temperature of 2 down to 1. Preliminary experi-
ments indicated that we could achieve better results
by cooling even further (approximating the MAP so-
lution rather than a sample from the posterior), so for
all experiments reported here, we ran the sampler for
a total of 2000 iterations, with the last 400 of these
Figure 2: Plate diagram of the extended model viith decreasing the temperature from 1 to 0.66.

kinds of token-level featureg(*) variables) and a single ~ Finally, we investigated two different initialisa-
kind of type-level feature (morphology;). tion techniques: First, we use random class as-

signments to word types (referred to as method 1)
W%nd second, we assign each of thenost frequent
word types to a separate class and then randomly
?&stribute the rest of the word types to the classes

method 2).
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segmentation for each word type in the corpus.
then extracted the suffix of each word t§@ad used
it as a feature type. This process yielded on avera
F,, = 110 morphological feature typesEach word

type generates at most one of these possible featurg® patasets
I_z,;h\,\e,;et:liz E[)r:/:rlloar?g;)elzrsl?p?(;)ssssilt?liltrlﬁztf;.g. Ingly andAIthough unsupervised systems should in principle

We also explore the idea of extending the mor2¢ 'anguage- and corpus-independent, most part-of-
speech induction systems (especially in the early lit-

phology f(_eature space peyond suffixes, py mCIUd”? rature) have been developed on English. Whether
features like capitalisation and punctuation. Specit: o :
. . . . because English is simply an easier language, or be-
ically we use the features described in Haghighi L .

) o . . cause of bias introduced during development, these
and Klein (2006), namelynitial-capital, contains- , ) . .

. - systems’ performance is considerably worse in other
hyphen contains-digitand we add an extra feature )
: . languages (Christodoulopoulos et al., 2010)

contains-punctuation

For the model with alignment features, we fol- Since we aim o use our system mostly on non-

low (Naseem et al., 2009) in using only bidirectionafEngIISh corpora, and ones that are significantly
. . . . smaller than the large English treebank corpora, we
alignments: using Giza++ (Och and Ney, 2003) .
. . Lo developed our models using one of the languages of
we get the word alignments in both directions be: .
. . the MULTEXT-East corpus (Erjavec, 2004), namely
tween all possible language pairs in our parallel cor- . .
. . Bulgarian. The other languages in the corpus were
pora (i.e., alternating the source and target languages . .
used during development as a source of word align-

within each pair). We then use only those align- . -
. S . ents, but otherwise were only used for testing final
ments that are found in both directions. As discusse . )
versions of our models. Since none of the authors

“Since Morfessor yields multiple affixes for each word wespeak any of the languages in the MULTEXT col-
concatenated all the suffixes into a single suffix.

There was large variance in the number of feature types for SFor simplicity, we tied the3 parameters for the two or four
each language ranging from 11 in Chinese to more than 350 kinds of context features to the same value, and similarly3the
German and Czech. parameters for the two kinds of alignment features.



lection, we also used the Penn Treebank WSJ cagls morphology and has produced very good results
pus (Marcus et al., 1993) for development. Folon multilingual corpora.

lowing Christodoulopoulos et al. (2010) we created _

a smaller version of the WSJ corpus (referred t¢ Resultsand Analysis

as wsj-s) to approximate the size of the corpora |2.1 Development results

MULTEXT-East. For comparison to other systems,
we also used the full WSJ at test time. Tables 1 and 2 present the results from develop-

For further testing’ we used the remaining MULment runs, which were used to decide which fea-

TEXT languages, as well as the languages of tH&lres to incorporate in the final system. We used V-
CONNL-X (Buchholz and Marsi, 2006) shared taskMeasure (Rosenberg and Hirschberg, 2007) as our
This dataset contains 13 languages, 4 of whicRrimary evaluation score, but also present many-to-
are freely available (Danish, Dutch, Portugues8n€ matching accuracy (M-1) scores for better com-

and Swedish) and 9 that are used with permissid®@rison with previously published results. We chose
from the creators of the corpora ( ArahjcBul- V-Measure (VM) as our evaluation score because it

gariarf, CzecH, German®, Chinesé!, Japanedg, s less sensitive to the number of classes induced by
Slovené3, Spanish?, Turkish'®). Following Lee et the model (Christodoulopoulos et al., 2010), allow-

al. (2010) we used only the training sections for eactd us to develop our models without using the num-
language. ber of classes as a parameter. We fixed the number

Finally, to widen the scope of our system, we gean classes in all systems to 45 during development;
erated two more corpora in Frer€hand Ancient note however that the gold standard tag set for Bul-
GreeK’, extracting the gold standard parts of speecBi@rian contains only 12 tags, so the results in Ta-

from the respective dependency treebanks. ble 1 (especially the M-1 scores) are not comparable
to previous results. For results using the number of
3.3 Basdines gold-standard tags refer to Table 4.

The first conclusion that can be drawn from these

We chose three baselines for comparison. The firil o e e large difference between the token-

is the basic k-means clustering algorithm, which We type-based versions of our system, which con-

applied to the same feature vectors we extracted Igf ¢ e one-class-per-type restriction is help-

our system (context + extended morphology), USING)| for unsupervised syntactic class induction. We

a Euclidean distance metric. This provides a ver}%so see that for both languages, the performance of

simple vector-based clustering baseline. The Second. 1 odel using 4 context words £ on each side) is

baseline is a more recent vector-based syntactic clav%rse than the 2 context words model. We therefore

induction method, the SVD approach of (Lamar e[[Jsed only two context words for all of our additional
al., 2010), which extends Sitze (1995)’s original

. test languages (below).
method and, like ours, enforces a one-class-per-tag .
We can clearly see that morphological features

restriction. As a third baseline we use the system of . .
Clark (2003) since it is a type-level system that mod@re helpful in both languages; however the extended
yp y features of Haghighi and Klein (2006) seem to help

"Part of the Prague Arabic Treebank (Hagt al., 2003; only on the English data. This could be due to the
Smiz and Pajas, 2004) fact that Bulgarian has a much richer morphology

®Part of the BulTreeBank (Simov et al., 2004). and thus the extra features contribute little to the

9 . .
Part of the Prague Dep. TreebanloBnoa et al., 2001) overall performance of the model.

Opart of the TIGER Treebank (Brants et al., 2002) L .
part of the Sinica Treebank (Keh-Jiann et al., 2003) The contribution of the alignment features on the

2part of the Tibingen Treebank of Spoken Japanese (forBulgarian corpus (aligned with English) is less sig-
merly VERMOBIL Treebank - Kawata and Bartels (2000)).  nificant than that of morphology but when com-
Bpart of the Slovene Dep. Treebankz@oski et al., 2006) bined, the two sets of features y|e|d the best per-

1part of the Cast3LB Treebank (Civit et al., 2006) . : ) : )
®part of the METU-Sabanci Treebank (Oflazer et al., 2003)f.0rm_ance' This provides evidence in favor of using
%French Treebank (Abedlet al., 2000) multiple features.

"Greek Dependency Treebank (Bamman et al., 2009) Finally, initialisation method 2 does not yield



system +1words +2words development results, adding morphology to the ba-
VM/M-1  VM/M-1 sic model is generally useful. The alignment results
base 58.1/70.8 55.4/67.6 are mixed: on the one hand, choosing the best pos-
base(tokens) 48.3/62.5 37.0/54.4 sible language to align yields improvements, which
base(init) 57.6/70.1 56.1/68.6 can be improved further by adding morphological
+morph 58.3/74.9 57.4/71.9 features, resulting in the best scores of all models
+morph(ext) 57.8/73.7 57.8/70.1 for most languages. On the other hand, without
(init)+morph 57.8/74.3 57.3/69.5 knowing which language to choose, alignment fea-
(init)+morph(ext) 58.1/74.3 57.2/71.3 tures do not help on average. We note, however,
+aligns(EN) 58.1/72.6 56.7/71.1 that three out of the seven languages have English
+aligns(EN)+morphl 59.0/ 754 57.5/69.7 as their best-aligned pair (perhaps due to its better

overall scores), which suggests that in the absence
on the MULTEXT-Bulgarian corpus for various mod-%f other knowledge, aligning with English may be a
els using either+1 or +2 context words as features. good choice.

base: context features only; (tokens): token-based model; The low average performance of the alignment
(init): Initialisation method 2—other results use methodeatures is disappointing, but there are many pos-
1; (ext): Extended morphological features. sible variations on our method for extracting these
features that we have not yet tested. For example,

Table 1: V-measure (VM) and many-to-one (M-1) result

system +1words +2words we used only bidirectional alignments in an effort to
VM/M-1 VM/M-1 improve alignment precision, but these alignments
base 63.3/64.3 62.4/63.3  typically cover less than 40% of tokens. It is pos-
base(tokens) 48.6/57.8 49.3/38.3  gjple that a higher-recall set of alignments could be
base(init) 62.7/62.9 62.2/62.4 more useful.
*morph 66.4/66.7 65.1/67.2 We turn now to our results on all 25 corpora,
Jr_rr?orph(ext) 67.7/720 65.6/67.0 shown in Table 4 along with corpus statistics, base-
(!n!t)+morph 64.8/66.9 64.2/66.0 line results, and the best published results for each
(ini)+morph(ext) | 67.4/71.3 65.7/67.1  |ghguage (when available). Our system, includ-

Table 2: V-measure and many-to-one results on the wsji-'gg morpholog){ feature§ in _a” Cqses' is listed as

corpus for various models, as described in Table 1.  BMMM (Bayesian Multinomial Mixture Model).
We do not include alignment features for the MUL-
TEXT languages since these features only yielded

. . improvements for the oracle case where we know
consistent improvements over the standard ran-

RN : L which aligned language to choose. Nevertheless, our

dom initialisation—if anything, it seems to perform
k MULTEXT scores mostly outperform all other sys-
worse. We therefore use only method 1 in the re- ) . .
maining experiments tems. Overall, we acheive the highest published re-
g exp ' sults on 14 (VM) or 15 (M-1) of the 25 corpora.
4.2 Overall results One surprising discovery is the high performance
of the k-means clustering system. Despite its sim-

Table 3 presents the results on our parallel corpora

We tested all possible combinations of two Ian_!olicity, it is competitive with the other systems and

. in a few cases even achieves the best published re-
guages to align, and present both the average scor
. sy ts.
over all alignments, and the score under the bes
choice of aligned languadé. Also shown are the

results of adding morphology features to the basi

model (context features only) and to the best alignpe have presented a Bayesian model for syntactic
ment model for each language. In accord with 0Ug|ass induction that has two important properties.

18The choice of language was based on the same test data,FébSt, it is type-based, assigning the same class to
the ‘best-language’ results should be viewed as oracle scoresevery token of a word type. We have shown by

% Conclusion



BASE ALIGNMENTS

Lang. base +morph Avg. Best +morph

VM/M-1  VM/M-1 VM/M-1 VM/M1 VM/M1
Bulgarian | 54.4/61.5 54.5/64.353.1/60.5 55.2/64.5(EN) 55.7/66.0
Czech 54.2/58.9 53.9/64.252.6/58.4 53.8/59.7(EN) 55.4/66.4
English 62.9/72.4 63.3/73.3625/72.0 63.2/71.9(HU) 63.5/73.7
Estonian | 52.8/63.5 53.367.4 | 52.8/63.9 53.5/65.0(EN) 54.3/66.9
Hungarian| 53.3/60.4 54.868.2 | 53.3/60.8 53.9/61.1(RO) 55.9/67.1
Romanian| 53.9/62.4 52.3/61.156.2/63.7 57.5/64.6(ES) 54.5/63.4
Slovene | 57.2/65.9 56.7/67.9 54.7/64.1 55.9/64.4(HU) 56.7%7.9
Serbian 49.1/56.6 49.0/62.0 | 47.3/55.6 48.9/59.4(Cz) 48.3/60.8

Table 3: V-measure (VM) and many-to-one (M-1) results on ldrguages in the MULTEXT-East corpus using
the gold standard number of classes shown in Table 4. BASHtsesse+1-word context features alone or with
morphology. ALIGNMENTS adds alignment features, repaytime average score across all possible choices of paired
language and the scores under the best performing pairgddge (in parens), alone or with morphology features.

Language | Types Tags| k-means SvD2 clark Best Pub. BMMM
B | wsj 49,190 45 |59.5/61.6 58.2/64.0 656/71.2 68.8/76.166.1/72.8
= wsj-s 16,850 45 | 56.7/60.1 54.3/60.7 63.8/68.8 62.3/70.767.7/72.0
Bulgarian | 16,352 12 | 50.3/59.3 41.7/51.0 55.6/66.5 - 54.5/64.4
‘g Czech 19,115 12 | 48.6/56.7 355/50.9 52.6/64.1 - 53.9/64.2
W | English 9,773 12 | 56.5/65.4 52.3/65.5 60.5/70.6 - 63.3/73.3
; Estonian 17,845 11 | 45.3/55.6 38.7/55.3 44.4/58.4 - 53.3/64.4
,"'_J Hungarian | 20,321 12 | 46.7/53.9 39.8/49.5 48.9/61.4 - 54.8/68.2
5' Romanian | 15,189 14 | 45.2/55.1 42.1/52.6 40.9/49.9 - 52.3/61.1
= | Slovene 17,871 12 | 46.9/56.2 39.5/54.2 54.9/69.4 - 56.7/67.9
Serbian 18,095 12 | 41.4/47.0 39.1/54.6 51.0/64.1 - 49.0/62.0
Arabic 12,915 20 | 433/60.7 27.6/49.0 40.6/59.8 - 42.4615
Bulgarian | 32,439 54 | 53.6/65.6 49.0/65.359.6/70.4 - 58.8/68.9
% | Chinese 40,562 15 | 326/61.1 245/54.6 31.8/56.7 - 42.6/69.4
£ | Czech 130,208 12 - - 47.1/655 - 48.4/65.7
@ Danish 18,356 25 | 51.7/61.6 40.8/57.6 52.7/653 -/66.7 59.0/71.1
8 | Dutch 28,393 13 | 45.3/60.5 36.7/52.4 52.2/679 -/6Y.3 547/711
g German 72,326 54 | 58.7/67.5 54.1/64.2630/739 -/684 61.9/744
S | Japanese | 3,231 80 | 76.1/76.2 74.4/755786/77.4 - 77.4 785
> | Portuguese 28,931 22 | 51.6/64.4 459/63.1 57.4/69.2 -/ 75.3 63.9/76.8
S | Slovene 7,128 29 | 52.6/642 44.0/60.3 53.9/63.5 - 49.4/56.2
Spanish 16,458 47 | 59.5/69.2 54.8/68.2 61.6/719 73.2f 63.2/71.7
Swedish 20,057 41 | 53.2/62.2 47.4/59.1589/68.7 -/60.6 58.0/68.2
Turkish 17,563 30 | 40.8/628 27.4/52.4 36.8/58.1 - 40.2/58.7
French 49,964 23 | 48.2/68.6 46.3/68.557.3/77.8 - 55.0/76.6
A.Greek 15,194 15 | 38.6/44.8 24.2/385 33.3b4 - 405/45.1

Table 4: Final results on 25 corpora in 20 languages, wittimber of induced classes equal to the number of gold
standard tags in all casdsmeans andSV D2 models could not produce a clustering in the Czech CoNLLu®gue

its size. Best published results are fré@hristodoulopoulos et al. (2010)Berg-Kirkpatrick et al. (2010) anéLee

et al. (2010). The latter two papers do not report VM scoresbbist published results are shown for the MULTEXT
languages; Christodoulopoulos et al. (2010) report redudsed on 45 tags suggesting ttatk performs best on
these corpora.



comparison with a token-based version of the model Ancient Greek dependency treebank. ThT 2009-
that this restriction is very helpful. Second, it is Eighth International Workshop on Treebanks and Lin-
a clustering model rather than a sequence model.guistic Theories

This property makes it easy to incorporate multiTaylor Berg-Kirkpatrick, Alexandre B. &e, John DeN-
ple kinds of features into the model at either the to- €0: @nd Dan Klein.  2010. Painless unsupervised

ken or the tvpe level. Here. we experimented with learning with features. IrProceedings of NAACL
yP ' ' P 201Q pages 582-590, Los Angeles, California, June.

token-level context features and alignment _featur%hris Biemann. 2006. Unsupervised part-of-speech tag-
and type-level morphology features, showing that ging employing efficient graph clustering. Froceed-

morphology features are helpful in nearly all cases, ings of COLING ACL 2006pages 712, Morristown,
and alignment features can be helpful if the aligned NJ, USA.

language is properly chosen. Our results even witlilena Bshmowa, Jan Hajt, Eva Hajtova, and Barbora
out these extra features are competitive with state- Hladka. 2001. The Prague dependency treebank:
of-the-art; with the additional features we achieve Three-level annotation scenario. In Anne Abigiled-

the best published results in the majority of the 25 itor, Treebanks: Building and Using Syntactically An-
corpora tested notated Corporapages 103 — 126. Kluwer Academic

Publishers.

Since it is .SO e'asy to add extra fgatures to OLgabine Brants, Stefanie Dipper, Silvia Hansen, Wolfgang
model, one direction for future work is to explore | . i s and George Smith. 2002. The TIGER tree-

other possible features. For example, it could be pank. InProceedings of the Workshop on Treebanks
useful to add dependency features from an unsuper-and Linguistic TheoriesSozopol.

vised dependency parser. We are also interestedmater F. Brown, Vincent J. Della Pietra, Peter V. Desouza,
improving our morphology features, either by con- Jennifer C. Lai, and Robert L. Mercer. 1992. Class-
sidering other ways to extract features during pre- based n-gram models of natural languag®mmputa-
processing (for example, including prefixes or not tional Linguistics 18(4):467-479.

concatenating together all suffixes), or by develop=aPiné Buchholz and Erwin Marsi. 2006. CoNLL-
ing a joint model for inducing both morphology and X shared task on multilingual dependency parsing.

tactic cl imult v Einall del In Proceedings of the Tenth Conference on Compu-
syntaclic classes simultaneously. Finally, our model o iqna) Natural Language LearningCoNLL-X '06,

could beiexteno'leql l_)y replacing the standard mixture paqes 149-164, Stroudsburg, PA, USA. Association
model with an infinite mixture model (Rasmussen, for Computational Linguistics.

2000) in order to induce the number of syntactiChristos Christodoulopoulos, Sharon Goldwater, and

classes automatically. Mark Steedman. 2010. Two decades of unsupervised
POS induction: How far have we come? Pmoceed-
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