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ABSTRACT

Recent work on unsupervised term discovery (UTD) aims to iden-
tify and cluster repeated word-like units from audio alone. These
systems are promising for some very low-resource languages where
transcribed audio is unavailable, or where no written form of the
language exists. However, in some cases it may still be feasible (e.g.,
through crowdsourcing) to obtain (possibly noisy) text translations
of the audio. If so, this information could be used as a source of side
information to improve UTD. Here, we present a simple method for
rescoring the output of a UTD system using text translations, and test
it on a corpus of Spanish audio with English translations. We show
that it greatly improves the average precision of the results over a
wide range of system configurations and data preprocessing methods.

Index Terms— Unsupervised term discovery, low-resource
speech processing, speech translation, weakly supervised learning

1. INTRODUCTION

High-quality automatic speech recognition (ASR) systems require
hundreds of hours of transcribed training data. As a result, they are
currently available for only a tiny fraction of the world’s several
thousand languages [1]. To broaden accessibility, research on zero-
resource speech technology aims to develop useful systems, such
as unsupervised term discovery [2—4] or query-by-example [5-7],
without the need for transcribed audio data. While considerable
progress has been made in this area recently [§—11], learning from
audio alone is very challenging. Here, we ask whether using side
information could improve performance.

In particular, we address the task of unsupervised term discovery
(UTD), which aims to identify and cluster repeated word-like units
from audio. We show that UTD can be improved using side informa-
tion from text translations of the audio into another language. Such
translations can often be obtained rapidly through crowd-sourcing,
for example in disaster relief scenarios such as the 2010 Haiti earth-
quake [12]. And when the low-resource language has no written form,
text translations (ideally into a related language, as in [13]) may be
considerably easier to obtain than a phonetic transcription.

In addition to improving UTD, our work may feed into the devel-
opment of cross-lingual tools for low-resource languages, in particular
systems for translating speech from a low-resource language to a
higher-resource language. A traditional pipeline would use ASR to
transcribe the audio, followed by machine translation of the transcrip-
tions. However, training such a system requires both transcribed audio
in the low-resource language and parallel text. Recent work [14] has
begun to explore how to translate key words and phrases based on

the kind of training data we use here. Our work could inform future
approaches to this task.

Although our ultimate goal is to work with truly low-resource
languages, ours is the first attempt we know of to address this task
setting, so as a proof of concept we present results using a dataset
of Spanish speech paired with English text translations [15]. We use
an open-source UTD system to discover potential word-like units
from the audio, then use a simple rescoring method to improve the
UTD output based on the translation information. Our results show
large improvements in average precision across a wide range of
hyperparameter settings, and also across cross-speaker matches.

2. UNSUPERVISED TERM DISCOVERY

Zero-resource speech technology addresses a number of different
problems, ranging from automatic discovery of subword units [16,17]
and improved feature representations [18, 19] to full segmentation
and clustering of the audio into word-like units [9, 11,20,21]. Un-
supervised term discovery is one of the most well-developed areas.
Essentially, UTD systems search for pairs of audio segments that
are similar, as measured by their dynamic time warping (DTW) [22]
distance. This task is inherently quadratic in the input size, and early
systems [2,23] were prohibitively slow. Here, we use the open-source
implementation in the Zero Resource Toolkit (ZRTools)l [4], a state-
of-the-art system which uses a more efficient two-pass approach. It is
also the only freely available UTD system we know of.

2.1. Overview of the ZRTools UTD system

In its first pass, ZRTools uses an approximate randomized algorithm
and image processing techniques to extract potential matching seg-
ments. Image processing is used based on the intuition that if we
plot the cosine similarity between every frame of the input feature
vector representation (e.g. MFCCs), any repeated segments in the
pair of utterances will show up as diagonal line patterns. Figure 1(a)
illustrates this, showing a clear diagonal pattern corresponding to
similar words in two utterances.

In its second pass, ZRTools computes a normalized DTW score
over potential matches to extract the final output. It returns segment
pairs longer than a minimum duration (we used the recommended
value of 500ms) along with their DTW score (between 0 and 1,
with higher scores indicating greater similarity). These word-like
or phrase-like segments can then be used for downstream tasks like
keyword search and topic modeling [2,23,24].

Full details of the system can be found in [4].

"https://github.com/arenjansen/ZRTools
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Fig. 1. Acoustic similarity for utterance pairs. Dark/Red regions indicate strong match, Light/Blue indicate weak match. Dotted boxes mark
the matching segments returned by UTD. (a) True Positive: Strong score for correct match. (b) False Positive: Strong score for incorrect match.
(c) False Negative: Weak score for correct match. (Utterances are cropped for space so not all words are shown.)

2.2. Limitations of UTD

Like all UTD systems, ZRTools identifies patterns using acoustic
information only. This can lead to various types of errors which we
hope to reduce using cross-lingual side information.

2.2.1. Mismatch between acoustic and semantic information

Some phonetically similar pairs identified by UTD are nevertheless
different semantically, as illustrated in Figure 1(b). The words in
the utterances are different, but UTD identifies similar phoneme
sequencesa n o p w eande n o p w e. Acoustic informa-
tion alone cannot overcome these errors, yet they will cause semantic
errors in downstream applications such as machine translation or
spoken document retrieval.

On the other hand, due to noise and variability (both within and
across speakers), not all semantically correct matches will be assigned
a high DTW score. The ZRTools documentation recommends using
a DTW score threshold of 0.88 to filter good matches, yet there
are many correct pairs with scores lower than 0.88. One example is
illustrated in Figure 1(c), where a correct match has a score just below
the cut-off threshold. Of course, we can lower the DTW threshold to
return more pairs (raise recall), but this will also increase the number
of incorrect pairs returned (lower precision).

2.2.2. Silence and filler words as valid matches

UTD is sensitive to silence regions, background noises, and filler
words, all three of which commonly occur in conversational speech.
We observed that these phenomena generate a large number of dis-
covered pairs, since they are frequent and are often good acoustic
matches with each other.

The number of non-word pairs found by UTD due to these phe-
nomena depends on the preprocessing of the data. To show that
our method improves UTD output regardless of preprocessing, we
experiment with two different preprocessing methods.

First, we use the automatic voice activity detection (VAD) script
that comes with ZRTools, which uses Root Mean Squared (RMS)
Energy detection to label VAD regions. Only these regions are then
used when searching for patterns. This method aggressively filters
out silence but removes a considerable amount of valid speech. It
also retains many filler words, which often have high energy and long
duration.

Alternatively, we can use a forced alignment (FA) of the speech
data with the transcripts to filter out non-speech regions. This method
would not be available in a true zero-resource situation, but might
better reflect the output of a more sophisticated automatic VAD sys-
tem, and has the advantage of retaining more of the training data.
However, we observed that it removes fewer silent regions than the
VAD system.

Regardless of which preprocessing method is used, UTD will
tend to find a large number of matches based on non-word regions.
However, the translations for such non-word pairs will rarely contain
any content words in common, so rescoring them based on their
translations should reduce these spurious matches.

3. IMPROVING UTD USING TRANSLATIONS

Given pair of speech utterances, we hypothesize that the similarity in
their translations provides a (noisy) signal of the semantic simi-
larity between the discovered acoustic units, and that this signal
can improve UTD.

Consider the examples in Table 1, which shows the English
translations of the utterances containing the segments depicted in
Figure 1. (The utterances are cropped, so not all Spanish words
are shown.) Stop words are shown in parentheses; we filter these
out using the NLTK toolkit> before computing translation similarity.
Notice that the two pairs (a and c¢) that have matching Spanish words
also have matching English content words, even though one of them
falls below the recommended 0.88 threshold for a UTD (acoustic)
match. On the other hand, pair (b) has a high UTD score due to
phonetic similarity, but there is no match between the English words.

To exploit these observations, we rescore the pairs returned by
ZRTools using their translation similarity. If dtw; is the acoustic sim-
ilarity score for pair ¢+ computed by ZRTools, and J; is the translation
similarity score (described below), then the new score of pair ¢ is
computed as the a-weighted mean between the two:

score; = (1 —a) x dtw; + a X J;

(€]

To compute the similarity J between a pair of English transla-
tions, we treat each translation as bag of words (after filtering for stop

’http://www.nltk.org/



Pair Seg English translation Acou. Transl.
sim. sim.
a 1 (to) tell (t'hem) (to) send (me) 093 0.125
(my) baptism act
2 (we) (are) going (to) need (the)
sacrament (of) baptism paper
b 3 (not) (now) (now) (then) (he) 088 0
cant anymore
4 yes well (its) good well yeah
c 5 okay (this) (the) address two 086 0.600

thousand two hundred
6 two thousand two hundred

Table 1. English translations for the utterance pairs shown in Figure 1.
The acoustic (DTW) similarity and translation (Jaccard) similarity
for each pair is also shown. Stop words (in parentheses) are not used
to compute translation similarity. Matching content words in bold.

# conversations  Preprocessing Active speech (hrs)
20 VAD 091
50 VAD 2.29
20 forced alignments (FA)  2.80
50 forced alignments (FA) 6.92

Table 2. The four sets of input speech data used for UTD showing
total speech after preprocessing by VAD or forced alignment.

words), and use Jaccard similarity [25]:

- |E1 n E2|

J_i
|E1 U Es|

@3]
where E; is the set of content words in translation 1 and E3 is the set
of content words in translation 2.

Note that even seemingly low translation similarity scores (such
as 0.125 for pair (a) in Table 1) are still a strong signal of semantic
similarity between acoustic matches, because any non-zero score
indicates some content words in common. Empirically we have
observed J > 0.1 to be a good indicator of a correct match (although
in practice we do not impose any threshold on .J).

4. EXPERIMENTAL SETUP AND EVALUATION

In all experiments, the input consists of speech from the CALLHOME
Spanish corpus and the crowdsourced English translations of [15].
The corpus consists of speech from telephone conversations between
native speakers. We use the default feature representation as used by
ZRtools: 39-dimensional Relative Spectral Transform - Perceptual
Linear Prediction (PLP) feature vectors.

We carry out four sets of experiments as summarized in Table 2.
Note that the energy-based VAD filters out far more of the data than
forced alignment. For each phone call, we have two channels of
audio, each with at least one speaker, but sometimes more. The same
speaker may be on multiple calls. However, for the purposes of our
cross-speaker evaluation, we assume that each channel corresponds
to a unique speaker.

To evaluate the results of the raw UTD system and our rescoring
method, we use the original Spanish CALLHOME transcripts to
check if a pair of discovered speech segments is actually a true match.
Note that the transcripts are not otherwise used as input to our system,
except to filter non-speech in the forced alignment setting, where
it serves as a kind of oracle for speech detection. For each pair

D =0.80 D =0.88
Config  Corr./ Tot. xspk Corr. / Tot. xspk
20, VAD  66/206 (.32) 5 52/90 (.58) 1
50, VAD  182/1330 (.14) 35 1387490 (.28) 11
20,FA  1064/7541 (.14) 114 728/2339 (.31) 18
50,FA  3119/43762 (.07) 963 1918/11114 (.17) 287

Table 3. Number of pairs returned by ZRTools for different thresholds
(D = 0.8, D = 0.88) and input configurations (20 or 50 conversa-
tions, with non-speech regions filtered using energy-based VAD or
forced alignments). Corr./Tot. is the number of correct and total
pairs discovered, yielding precision values in parentheses. xspk is
the number of correct pairs discovered across speakers.

of segments, we retrieve the corresponding words (as per the time
stamps) from the transcripts. We retrieve any words which either
partially or completely overlap with ZRTools output. The retrieved
words are then filtered for stop words using NLTK. A discovered pair
is marked as correct if the two segments have at least one content
word in common; otherwise, it is marked as incorrect.

To implement our rescoring method, we begin by running UTD
with an acoustic matching threshold of D = 0.8, which is consid-
erably lower than the ZRTools recommended level of D = 0.88.
An empirical check suggested that very few correct pairs had scores
below 0.8, and this value of D gives us enough potential pairs to
perform rescoring.

For evaluation, we treat the set of correct pairs returned with
D = 0.8 as the total number of possible correct pairs—that is, recall
values are computed with respect to this number. Therefore, a recall
value of 1 does not mean that all correct pairs in the entire dataset
have been identified, only those whose DTW score is above 0.8.

Using our recomputed scores (as defined in Equation 1) we can
choose a new threshold value S, and return pairs that score above S.
For each value of S, we can compute precision and recall:

Z;.N:l(correcti A score; > S)
SN (score; > S)

Precision@ S =

3

SN (correct; A score; > S)
N 1 (correct; A dtw; > 0.80)

1=

Recall@S = 4)

where correct; indicates if a UTD output pair is correct or not,
and N is the total number of pairs discovered with DTW threshold
D = 0.80. We find the Precision/Recall curve by considering all
possible values of S, and then compute the average precision (AP)
as the area under this curve.

5. RESULTS AND DISCUSSION

5.1. Baseline UTD system

Table 3 lists the number of pairs discovered by running the baseline
UTD system in each configuration. The number of pairs discovered
using energy-based VAD is low, as expected, due to large parts of
speech data being filtered out. Using forced alignments gives us a
higher number of discovered pairs, but at a cost of precision. The low
number of cross-speaker pairs listed in Table 3 highlights the diffi-
culty of discovering these, though they are important for downstream
tasks [26,27]. Translation information may be particularly helpful
for identifying cross-speaker pairs, but our method is limited by the
small number of pairs that are discovered in the first place, as shown
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Fig. 2. Precision/Recall curves for the 50, FA configuration, with
a = 0 (baseline UTD) and o = 0.4 (our system). AP is computed as
the area under the respective curves.
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Fig. 3. Average precision for various configurations, varying « from
0 (translations not used) to 1 (only using translation similarity).

in the xspk columns in Table 3. In future work we plan to investigate
whether translation information could be fed into the UTD system at
an earlier stage to help discover more cross-speaker pairs.

5.2. Improvements using translations

Figure 2 illustrates the benefit of our system, showing Preci-
sion/Recall curves for the (50, FA) setting. By using only acoustic
information and varying the value of D, only points on the lower
(blue) curve can be achieved (e.g., the red point is for D = 0.88).
Using translations (here o = 0.4) clearly improves results.

To show that these benefits are not highly sensitive to «, Figure 3
plots the AP for all configurations listed in Table 2, for a between 0
and 1. For every configuration and every a@ > 0 setting, we obtain
higher AP than the baseline & = 0, often by a large margin. AP
scores for o = 0.4, which is one of a range of good values, are listed
in Table 4. Note that the AP numbers are only comparable between
systems using the same data/preprocessing configuration, since the
total number of pairs that need to be discovered to achieve 100%
recall is different in each case (it is given by the number of correct
pairs at D = 0.8 in Table 3).

Figure 4 compares our system directly to the UTD system’s
recommended setting of D = 0.88, which returns about 11K matches
yielding a precision of 0.17. If we set S in our system to return the
same number of matches, the precision rises to 0.21. We similarly
found that for cross-speaker matches, at 6.9K predictions (the baseline
output), our system using translation improves precision from 0.04 to
0.07.

Figure 3 shows that at « = 1, the AP is higher than at o = 0,
which seems to imply that ignoring the DTW score and only using

AP: all matches AP: cross-spkr only

Config

a=0 a=04 a=0 a=04
20, VAD 0.694  0.806 0.089  0.375
50, VAD 0.368  0.672 0.066  0.322
20, FA 0.341 0.583 0.025 0.130
50, FA 0.185 0.454 0.036  0.128

Table 4. AP: Average precision results for o = 0 (baseline UTD)
and our system with a = 0.4. Including results for all matches, and
Cross-Speaker only.
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Fig. 4. Predictions/Precision plot for o = .4 (50 conversations, with
non-speech regions filtered using forced alignments). The dot marker
indicates the precision with recommended D = 0.88. The plot shows
that our system has better precision.

translation similarity yields better results. However, recall that we
started by pruning the ZRTools output using a DTW threshold of 0.80,
so even with & = 1, our system is not actually ignoring acoustic infor-
mation. In addition, the UTD system provides important information
about segment boundaries which translations alone cannot.

As discussed in Section 2.2.2, we observed that UTD discovers
many filler words with high DTW score, but their translation score
should be low. Unfortunately it is difficult to quantify how well our
system filters out these matches since filler words are usually not
transcribed in our data.

6. CONCLUSION

We have shown that side information in the form of translations
improves the output of UTD across a wide range of settings. In
future work, we will use the improved UTD output to learn better
cross-speaker speech features for low-resource settings, and explore
the use of translations as a preprocessing step for UTD, by helping
guide the search for matches. We also aim to expand this work into
a semi-supervised setting, using additional unlabeled speech data to
improve UTD. We believe this can be done using approaches such as
label propagation [28] and label spreading [29,30].
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