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Abstract
The success of supervised deep neural networks (DNNs) in
speech recognition cannot be transferred to zero-resource lan-
guages where the requisite transcriptions are unavailable. We
investigate unsupervised neural network based methods for learn-
ing frame-level representations. Good frame representations
eliminate differences in accent, gender, channel characteristics,
and other factors to model subword units for within- and across-
speaker phonetic discrimination. We enhance the correspon-
dence autoencoder (cAE) and show that it can transform Mel
Frequency Cepstral Coefficients (MFCCs) into more effective
frame representations given a set of matched word pairs from
an unsupervised term discovery (UTD) system. The cAE com-
bines the feature extraction power of autoencoders with the weak
supervision signal from UTD pairs to better approximate the ex-
trinsic task’s objective during training. We use the Zero Resource
Speech Challenge’s minimal triphone pair ABX discrimination
task to evaluate our methods. Optimizing a cAE architecture on
English and applying it to a zero-resource language, Xitsonga,
we obtain a relative error rate reduction of 35% compared to the
original MFCCs. We also show that Xitsonga frame representa-
tions extracted from the bottleneck layer of a supervised DNN
trained on English can be further enhanced by the cAE, yielding
a relative error rate reduction of 39%.
Index Terms: unsupervised speech processing, representation
learning, zero-resources, neural networks, autoencoders

1. Introduction
Automatic speech recognition systems are typically trained using
tens or hundreds of hours of hand-transcribed speech data and
often still have difficulty dealing with differences in accent, gen-
der, channel characteristics, and other factors. Yet months-old
human infants begin to solve the basic problems of identifying
phones and words with no comparable supervision. Recent work
on zero-resource speech technology asks: how can we build ar-
tificial systems that might approach the unsupervised learning
abilities of human infants? Solving this problem would provide
more universally available speech technology in under-resourced
languages, and could lead to novel methods that also improve
supervised speech recognition.

To promote work in this area, the INTERSPEECH 2015
Zero Resource Speech Challenge (ZRSC) defines two shared
tasks. We tackle Track 1, subword modeling, by using several
neural network based methods to learn frame-level representa-
tions that yield better phonetic discriminability than standard
Mel Frequency Cepstral Coefficients (MFCCs) [1]. We evaluate
our representations using the ZRSC’s Track 1 minimal triphone
pair ABX discrimination task.

We enhance the correspondence autoencoder (cAE) method
of Kamper et al. [2], which learns a nonlinear mapping from
MFCCs to latent distributed feature representations. Kamper et
al. trained their system on data from the Switchboard corpus and
evaluated it using the same-different discriminability task [3],
showing that the learned representations performed substantially
better than the original MFCCs, and also better than representa-
tions learned by a standard autoencoder (AE) [4]. Here, we show
that Kamper et al.’s model, with no additional tuning, generalizes
well to other data sets, languages, and tasks by evaluating it using
the ABX task with the two ZRSC datasets: Buckeye [5] (English,
but with different channel characteristics than Switchboard) and
the NCHLT Xitsonga1 Speech corpus [6].

While the cAE is a weakly supervised model, we train it
with correspondence pairs sourced from an unsupervised term
discovery (UTD) system [7] making the approach unsupervised
as a whole. Alternatives to the weakly supervised regularization
implicit in the cAE were not considered in [2]; we show here
that a standard unsupervised form of regularization, denoising
autoencoders [8], learns better representations than AEs, but
still not as good as cAEs. We also introduce an improved cAE
architecture and training method that reduces the number of hy-
perparameters to be tuned, and show that narrow architectures
work better, with reduced error rates on a zero-resource language
after tuning on English. Unlike similar previous work [9, 10, 11]
our cAE-based systems are fully unsupervised, train on individ-
ual frames without context, and use a loss function in the input
vector space instead of the representation vector space.

Finally, we explore whether ABX performance can be im-
proved on a zero-resource language by using representations
trained on large amounts of supervised data in a different lan-
guage. We use a deep neural network (DNN) trained on a large
amount of English data to extract bottleneck features (BNFs)
for the Xitsonga test data. We find that these cross-language
supervised representations perform comparably with the cAE
representations trained with in-language data and that further im-
provements can be achieved by combining the two approaches.

2. Models
2.1. Autoencoder

A single-layer autoencoder (AE) [4] has two components. The
encoder projects an input, e.g. an MFCC vector, x ∈ RD0 into
hidden representation h1 ∈ RD1 . The decoder projects the
hidden representation back into the original vector space y ∈
RD0 . We treat y as a reconstruction of x and train the network
to minimize the reconstruction error LAE =

∑D0
i=1 (yi − xi)

2.

1Xitsonga is a southern African Bantu language.
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(b) Correspondence autoencoder with shal-
low decoder.
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(d) Denoising autoencoder. x̃ is
an artificially noisy version of x.

Figure 1: Autoencoder model types. Directed arrows depict feedforward relations. Dashed lines indicate loss functions. Parameters in
use at each layer are given to the left of each directed arrow. Every layer uses a nonlinear activation function with the exception of the
top decoder, which is linear. In Figure 1b and Figure 1c, x and x̂ are examples drawn from the same class.

The encoder is implemented as a conventional feedforward
neural network layer, h1 = σ1 (U1x+ u1), with weights
U1 ∈ RD1×D0 , biases u1 ∈ RD1 , and nonlinear activation
function σ1 (we use the hyperbolic tangent). The decoder has
the same form as the encoder, y = ψ1 (V1h1 + v1), with ad-
ditional weights V1 ∈ RD0×D1 and biases v1 ∈ RD0 . To
reconstruct unbounded data, such as MFCCs, the decoder’s acti-
vation function ψ1 must have an unbounded range; we use the
identity function, ψ1 (a) = a, yielding a linear decoder.

Deep narrow AEs typically achieve lower reconstruction er-
ror than shallow wide AEs with the same number of parameters.
As shown in Figure 1a, each of a deep AE’s L encoders project
the output of the previous encoder into a new hidden represen-
tation, i.e. hi = σi (Uihi−1 + ui) ∈ Di for all i ∈ [1, L],
with h0 = x. Each of the L decoders reconstruct their respec-
tive hidden representations in turn, finally reconstructing the
input, i.e. zi−1 = ψi (Vizi + vi) ∈ Di−1 for all i ∈ [1, L],
with zL = hL and y = z0. We tie weights and use nonlin-
ear activation functions in all internal decoders, i.e. σi = ψi

and Vi = (Ui)
T for all i ∈ [2, L]. Our autoencoders use a

consistent hidden layer size, i.e. Di = Di−1 for all i ∈ [1, L].
Training all layers in a deep AE concurrently often yields

poor results due to the vanishing gradient problem [12, 13]. We
use the standard mitigation of pre-training the deep AE layerwise,
then fine-tuning the entire network [14].

2.2. Correspondence autoencoder

An AE is trained with an unsupervised objective. We can learn
better quality representations if we use an objective that better ap-
proximates the extrinsic task: learning features that discriminate
between different subword units. To this end, Kamper et al. [2]
introduced a weakly supervised AE variant: the correspondence
autoencoder (cAE). Instead of reconstructing its input, a cAE
is trained to ‘reconstruct’ an unseen example that is known to
be similar to the input. Four steps go into training a cAE for
unsupervised speech representation learning: (1) unsupervised
discovery of word pairs, (2) align word-pair frames, (3) pre-train
AE layerwise, (4) fine-tune whole network as a cAE.

We use a UTD system [7] to identify pairs of segments in the
corpus that are likely to be instances of the same word (uttered
by the same or different speakers). We obtain a frame-level align-
ment for each segment pair using dynamic time warping (DTW)
with cosine distance, yielding a set of frame pairs {(x, x̂)}. A

deep AE is trained layerwise on the entire corpus to initialize
the network’s parameters prior to cAE fine-tuning. The cAE
is then trained to minimize the reconstruction error of y rel-
ative to x̂ for each frame pair (x, x̂), yielding the cAE loss
LcAE =

∑D0
i=1 (yi − x̂i)

2. We obtain better results by using
every pair twice, once where the first item is input to the network
and a second time where the second item is input to the network.

In Kamper et al.’s previous work [2] the layerwise pre-
trained decoders were discarded and a single, randomly ini-
tialized, decoder trained during cAE fine-tuning, as in Figure 1b.
This approach has the advantage that the total number of layers is
reduced, mitigating the vanishing gradient problem, but a single
linear decoder is unable to undo the work of many nonlinear
encoders forcing some of the top encoder layers to be implicitly
retrained as decoders during fine-tuning. The layer to use for
representation must then be determined using a held-out valida-
tion set. In this work we use a deep nonlinear decoder during
cAE fine-tuning, as in Figure 1c, allowing the top encoding layer
to always be used as the input’s representation.

2.3. Denoising autoencoder

Although Kamper et al. showed that cAEs perform better than
AEs on the same-different task, AEs are not a strong baseline for
representation learning. Denoising autoencoders (dAEs) usually
perform better because they implicitly regularize the parame-
ters avoiding degenerate transformations, such as the identity
function, being learned [15]. Regularization is especially impor-
tant when training overcomplete AE architectures, i.e. where
Di ≥ D0 for all i ∈ [1, L], as was done by Kamper et al.

A dAE is trained to reconstruct the clean versions of artifi-
cially noisy inputs. Different types of noise may be applied. In
our case the input features, once normalized to zero mean and
unit variance, are approximately Gaussian distributed so additive
zero mean Gaussian noise is appropriate. A dAE, such as that
shown in Figure 1d, is identical to a conventional AE except
the input x̃ = x + N (0, γI) is a noisy version of x. γ is a
hyperparameter defining the standard deviation of the noise.

We can view the cAE as a version of a dAE where, instead
of artificial noise, the network is presented with input pairs that
differ only in nonlinguistic sources of variation, e.g. speaker or
channel. Denoising the true sources of extrinsic variability is a
more optimal method than introducing artificial sources, though
we are limited to what can be discovered with the UTD system.



3. Experiments
3.1. Data

We use two datasets. The first is a 5 hour portion of the Buckeye
corpus [5] distributed as part of the ZRSC. The second is a 2.5
hour portion of the NCHLT Xitsonga Speech corpus [6] consist-
ing of 16 kHz, close-talking microphone, prompted speech.

Using HTK [16], we extract MFCCs using 25 ms windows
with 10 ms step size, which are augmented with first and second
order derivatives to yield 39-dimensional feature vectors. The
MFCCs falling entirely within the speaker segments of interest–
the ZRSC’s evaluation intervals–are extracted and cepstral mean
and variance normalization is applied to those segments per
source file. All of the resulting frames are used during pre-
training of our networks.

In addition to raw acoustic features as input to the various
learning algorithms, we also evaluate the utility of data-driven
features that exploit out-of-domain and/or out-of-language su-
pervision. Specifically, we extract BNFs using the Kaldi speech
recognition toolkit [17]. Our DNN architecture takes a 9-frame
context window of MFCCs as input to 5 hidden layers of 5,000
units (2-norm maxout nonlinearity) followed by a linear bottle-
neck layer of 60 units (see [18] for details). The softmax output
layer consists of 7600 clustered context-dependent HMM state
targets. The DNN is trained using the Switchboard and Fisher
English corpora, which amount to approximately 1,500 hours
of English conversational telephone speech drawn from over
12,000 speakers. The resulting network thus encodes a detailed
knowledge of the speaker-independent acoustic-phonetic struc-
ture of English, which we expect to produce good BNFs when
applied to Buckeye data, despite the channel mismatch. We can
also apply the network to Xitsonga data to produce Xitsonga
BNFs. Here, any demonstrated improvement over the raw acous-
tic features would be derived from cross-lingual generalization
of the encoded English knowledge.

Correspondence pairs for the Buckeye and Xitsonga corpora
are extracted by the UTD system described in [7]. We use the
graph clustering method of [19] to group individual discovered
repetitions into term clusters from which we can derive more
extensive transitive matches. In this way, we recover 11,041
token pairs for the ZRSC Buckeye portion (57% across-speaker)
and 6,982 token pairs for Xitsonga (61% across-speaker).

3.2. Training

We have four sources of training data: pairing each language
(English and Xitsonga) with each input encoding (MFCC and
BNF). In the spirit of using zero-resources, we demonstrate the
effect of applying unsupervised models to domains/languages
that differ from those used to optimize the architecture.

Our neural networks, implemented in Theano [20, 21], are
trained via minibatch stochastic gradient descent backpropaga-
tion [22]. Weights and biases are random and zero initialized
respectively. The training data is shuffled prior to each epoch of
training. MFCC-based models include delta and double-delta
features unless otherwise stated.

The “original” model architecture is identical to Kamper et
al.’s 9× 100-layer model [2] (i.e. 9 encoder layers each of size
100) and is optimized for English Switchboard MFCCs on the
same-different task and then trained with the data from one of
the four sources. We initially layerwise AE pre-train over 30
epochs per layer at a learning rate of 0.00025 then cAE fine-tune
over 120 epochs at a learning rate of 0.008. We use minibatches
of size 256. A single randomly initialized linear decoder is used

during fine-tuning so we must select a representation layer; we
report results from using the Switchboard optimal layer, the 6th,
and the Buckeye optimal layer, the 9th (found by testing each
layer in the network).

The “optimal” model architecture is optimized for the ZRSC
Buckeye portion MFCCs on the ABX task and then trained with
the data from one of the remaining three sources. The optimal
network structure, 5 layers each of size 13, was found by grid
searching over the number of layers (1, 3, 5, 9) and layer sizes
(13, 39, 100). Unlike the “original” architecture, the “optimal”
architecture uses tied weights and a deep nonlinear decoder
to avoid the layer selection problem. We also use a different
training regime for the “optimal” architecture which was found
to improve the results. We initially layerwise AE pre-train over
4 epochs per layer at a learning rate of 0.1 then cAE fine-tune
over 320 epochs at a learning rate of 0.1. We use AdaGrad
[23], minibatches of size 2048, and the correspondence pairs are
presented in both directions. The use of AdaGrad allows the
learning rate to be set to a single large value eliminating much
of the advantage/cost of optimizing this hyperparameter.

Informal experience from our past uses of the cAE suggests
the optimal ratio between input size and hidden layer size is
similar across datasets and models. This ratio is 100

39
and 13

39
,

respectively, for the “original” and “optimal” approaches using
39-dimensional MFCC inputs, so we use hidden layer widths of
154 and 20 for models taking 60-dimensional BNF inputs.

The AE-only and dAE-only models are trained using the
same training regime as the “optimal” models and their architec-
tures are optimized via grid-search over the same layer widths
and counts using the ZRSC Buckeye portion MFCCs. The opti-
mal sizes are 1×13 and 1×200 for the AE and dAE respectively.
The dAE was trained with γ = 0.2.

3.3. Evaluation

Following the ZRSC’s protocol, we evaluate our frame represen-
tations using an ABX task [24, 25] which measures the discrim-
inability of frame representations by asking whether triphone
x is most like triphone a or triphone b, where a and x are dis-
tinct examples of the same triphone sequence and b is a triphone
sequence differing from a and x in only the middle phone. We
consider two variants: in the within-speaker case a, b, and x
belong to the same speaker and in the across-speaker case a and
b belong to one speaker and x belongs to a different speaker.

Triphones are compared by aligning their frame representa-
tions using DTW with cosine distance. If the minimum align-
ment cost between a and x is greater than that between b and
x then the model has made an error. The error rate is the mean
over all possible (a, b, x) triples in the test set.

3.4. Results

Our results are alphabetically labeled and presented in Table 1a
(English) and Table 1b (Xitsonga); we focus our discussion on
the more challenging across-speaker case. Comparisons are
made to the ZRSC official baselines (MFCCs, a and l) and
supervised toplines (Kaldi posteriorgrams with HMM-GMM,
b and m) [26]. An alternate baseline, using 39-dimensional
MFCCs enriched with delta and double delta features, performed
similarly to the official plain 13-dimensional MFCC baselines.

AE/dAE: As in previous work, we find that plain AEs (c
and n) barely outperform MFCCs (a and l). dAEs (d and o)
provide a bigger benefit, supporting previous work showing
the importance of regularization in unsupervised representation
learning, e.g. [15, 27]. Nevertheless, even dAEs do not match the



English models Within Across
a Official baseline (13-dim MFCCs) 15.6 28.1
b Official topline (HMM-GMM) 12.1 16.0

c Optimal AE 16.9 28.6
d Optimal dAE 15.8 25.3
e Original cAE (Switchboard layer: 6th) 15.8 24.7
f Original cAE (Buckeye layer: 9th) 15.1 23.2
g Optimal cAE 13.5 21.1

h BNFs from English DNN 12.8 18.1
i Original cAE (Switchboard layer: 6th) 14.1 19.2
j Original cAE (Buckeye layer: 8th) 13.7 18.8
k Optimal cAE 14.0 19.3

(a) English results. Bold indicates per-section best results.

Xitsonga models Within Across
l Official baseline (13-dim MFCCs) 19.1 33.8
m Official topline (HMM-GMM) 3.5 4.5

n Buckeye optimized AE 17.4 29.5
o Buckeye optimized dAE 15.8 25.9
p Original cAE (Switchboard layer: 6th) 13.4 22.0
q Original cAE (Buckeye layer: 9th) 12.1 19.6
r Buckeye optimized cAE 11.9 19.3
s Xitsonga optimized cAE 11.6 18.5

t BNFs from English optimized DNN 14.4 19.3
u Original cAE (Switchboard layer: 6th) 14.1 19.0
v Original cAE (Buckeye layer: 8th) 13.1 17.8
w Buckeye optimized cAE 13.0 18.2

(b) Xitsonga results. Bold indicates best zero-resource results (architectures
optimized on English data).

Table 1: Minimal triphone pairs ABX within-/across- speaker error rates. Top sections: official baseline (unsupervised) and topline
(supervised). Middle sections: models of MFCCs including delta and double-delta features unless otherwise stated. Bottom sections:
models of bottleneck features (BNFs) extracted from English trained DNN.

performance of any cAEs, supporting Kamper et al’s claim that
guiding the representation learning using UTD pairs provides a
major benefit over standard unsupervised methods. With further
optimization (e.g. different types and levels of noise) better dAE
results may be obtained which could be helpful in situations
where correspondence pairs are unavailable.

“Original” cAE: Despite having its architecture optimized
in a different domain, the “original” cAE (e) reduces Buckeye
error rates compared to MFCCs (a) by 17% relative. When we
use oracle layer selection (f), the relative error rate reduction
increases to 22%. These results are in line with previous work
showing layer selection is important for getting the best results
from a cAE that uses a single linear decoder during fine-tuning.
The same architecture trained on Xitsonga has the same pattern
of results but with larger relative error rate reductions of 26%
and 34% (p and q) compared to the baseline MFCCs (l). These
latter cross-language results are encouraging evidence that the
cAE could be applied productively to other zero-resource settings
without fearing the architecture is especially sub-optimal.

“Optimal” cAE: Optimizing the cAE architecture on the
Buckeye data increases the error rate improvement from 17%
(e) to 29% (g) relative to the MFCC baseline (a). Clearly,
the channel and task differences between Switchboard/same-
different and Buckeye/ABX are significant. In the zero-resource
case we find that the English improvements transfer to Xitsonga
without any further optimization; the Buckeye-“optimal” cAE
(r) reduces the Xitsonga error rate from the MFCC baseline
by 35% relative. Optimizing the architecture on Xitsonga (s; a
9×13 architecture was best here) yields an improvement but this
is not a zero-resource result. The greater reductions achieved
by the Buckeye/ABX-optimized architecture compared to the
Switchboard/same-different-optimized architecture may be due
to changes in architecture, to changes in training regime, or to
optimizing for a different task.

DNN BNFs: Unsurprisingly, for English, the supervised
BNFs (h) perform substantially better than the representations
found by the unsupervised cAE (g). Furthermore, the cAE
is unable to improve the English BNFs (i, j, k) suggesting
the two training objectives are not complementary in the same-
language setting. Pleasingly, applying the English DNN to Xit-
songa (t) produces representations that perform just as well as

the Buckeye-“optimal” cAE (r) representations. Our best zero-
resource result is obtained by applying the “optimal” cAE to the
Xitsonga BNFs (u, v, w) yielding representations of better qual-
ity than either approach achieves independently. By optimizing
the Xitsonga cAE architecture a little we found that a narrower
cAE network, 100 instead of 154, produced better results, reduc-
ing the error rate to 16.6% when using an “original” architecture,
but this is not a zero-resource result.

More training data: Training the optimal cAE architecture
on the entire Buckeye corpus, with more UTD pairs, did not
yield distinctly different results from (g).

4. Conclusions and future work
We have presented a selection of approaches for learning frame
representations using unsupervised methods in zero-resource
settings. Using a minimal triphone pair ABX discrimination task
we showed that correspondence autoencoders (cAEs) outperform
denoising autoencoders which outperform plain autoencoders.
Although the cAE is a weakly supervised model, we obtain the
correspondence data from a fully unsupervised term discovery
system making our approach, taken as a whole, fully unsuper-
vised. Compared to the original MFCCs, the cAE architecture
optimized on Switchboard English reduces ABX error rates by
17% (relative) on Buckeye English and 26% on Xitsonga. Opti-
mizing on Buckeye English instead yields a Xitsonga error rate
reduction of 35%. These results demonstrate that our unsuper-
vised system can be optimized in a high-resource setting and
then applied productively in a zero-resource setting.

We also found that applying the unsupervised cAE system
to Xitsonga bottleneck features obtained from a supervised DNN
trained on English yielded better results on Xitsonga than either
system alone: an overall relative error rate reduction of 39% over
MFCCs. This result suggests a promising future line of work
combining supervised training in a high-resource language with
unsupervised language adaptation to the zero-resource language.
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