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Abstract

A well-known effect in speech production is that more predictable linguistic constructions tend to be

reduced. Recent work has interpreted this effect in an information-theoretic framework, proposing that such

predictability effects reflect a tendency towards communicative efficiency. However, others have argued

that these effects are, in the terminology of Gould and Lewontin (1979), spandrels: incidental by-products

of other processes (such as a talker-oriented tendency for low production effort). This article develops the

information-theoretic framing more fully, showing that information-theoretic efficiency involves different

kinds of coding operations (predictability effects), not all of which are consistent with the spandrel account.

Using mixed effects regressions, we analyze word durations in several spontaneous speech corpora, comparing

predictability effects between infant-directed and adult-directed speech and between speech to visible and

invisible listeners. We find that talkers adjust the extent to which production varies with predictability

measures according to listener characteristics, and exploit an additional visual channel to eliminate phonetic

redundancy. This pattern would demand multiple independent spandrel accounts, but is unified by an adaptive

account. Our results broaden the scope of existing work on predictability effects and provide further evidence

that these effects are tied to communicative efficiency.

1. Introduction

Talkers can usually communicate a given message using many different linguistic forms: for a fixed

meaning or intention, talkers can produce different syntactic constructions, select different words with similar

meanings, and pronounce parts of the utterance more or less clearly. Some of these productions will be longer

and more distinct (overarticulated), while others will be shorter and more ambiguous (reduced). For example,
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the pronunciation of feline typically takes longer than a pronunciation of cat, but the pronunciation of cat is

more ambiguous (e.g. its phonological form is a substring of many other words).

Many researchers have argued that talkers make these choices, whether consciously or unconsciously, in

ways that lead to more efficient communication. Lindblom (1990), focusing on word production, observed

that speech appeared to vary on virtually every acoustic dimension according to a range of variables, including

local predictability, talker identity, listener needs, and so forth. Lindblom proposed that speech lacked reliable

invariants because the goal of speech is not the approximation of some ideal, but discrimination among

different items in a lexicon. His Hyper- & Hypo-articulation (H&H) theory proposed that talkers articulate

“just enough,” in terms of effort or acoustic distinctiveness, to enable reliable discrimination. Words that

can be discriminated from other possible words on the basis of non-acoustic grounds require less acoustic

distinctiveness, and so less articulatory effort, while talkers must provide more acoustic information for words

that are harder to identify.

Subsequent proposals (e.g. Aylett and Turk, 2004; Jaeger, 2010) have sought to elaborate what “just

enough” means in different ways, which we will discuss shortly, but they all similarly hinge on the observation

that talkers tend to produce more reduced (more ambiguous) forms for portions of their message that are more

probable. Such predictability effects are pervasive throughout language, resulting in shorter phonological

forms for more common words (Zipf, 1949), phonetic reduction of words that are discourse given or have

higher n-gram probabilities (Aylett and Turk, 2004; Bell et al., 2009; Seyfarth, 2014; Priva, 2008), and

reduction or omission of words that have higher syntactic probabilities (Levy and Jaeger, 2007; Frank and

Jaeger, 2008; Tily et al., 2009; Gahl and Garnsey, 2004; Gahl et al., 2006). Broadly, predictability effects

are information-theoretically efficient because they make shorter utterances more common than longer ones

while guarding against communication errors.

Although previous work has shown that predictability effects exist, and that they make speech more

efficient, it has not been established that predictability effects are an adaptation for efficient communication

for two reasons. First, it is difficult to measure how much more efficient communication is as a result of

predictability effects, and so we do not know if they have any practical impact. Second, it is possible to derive

at least some predictability effects as a consequence of how lexical and grammatical knowledge might be

stored and accessed. For example, Dell and Brown (1991) and Ferreira (2003) have highlighted the possibility

that some aspects of linguistic knowledge and processing are shared between production and comprehension.

With this kind of sharing, the same items that are hard to access in comprehension will be hard to access
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for production. If there is also some mechanism that lengthens the realization of hard-to-access items,

talkers would end up producing longer realizations for items that would be hard for them to comprehend,

if they were the listener. However, this situation would not necessarily lead to a practical improvement in

communication rate or reliability: the magnitude of this effect is not tuned for efficiency but is simply a

consequence of whatever system lengthens the realization of hard-to-access items. Thus, if predictability

effects make communication only negligibly more efficient, and result from architectural accidents, they

cannot be said to reflect adaptation to communicative efficiency in any real sense.

This example unearths the worry that predictability effects may be what Gould and Lewontin (1979) term

“evolutionary spandrels,” by analogy with a particular architectural feature of buildings with arches. Gould

and Lewontin observed that the most striking features of arches are the designs and mosaics that appear

in the roughly triangular region, called the spandrel, between arches at right angles. Despite the striking

appearance, the spandrels are not a driving feature of the architecture: they exist because arches must be

curved to support weight. Gould and Lewontin (1979) used this example to illustrate the point that even

very striking biological features may be evolutionary coincidences or by-products, without being adaptive

themselves. A general correlation between distinctiveness, or ease of perception, and coarse measures of

predictability is not sufficient to establish that language is adapted for communicative efficiency, no matter

how tantalizing the prospect.

One especially plausible spandrel account appeals to production or planning difficulty: people avoid

productions that require more effort, and these same productions tend to be rare. Under this account,

production difficulty alone is the driving force, and there should not be an independent effect of predictability.

However, recent experimental work has found an independent contribution of predictability, after controlling

for production difficulty (Jaeger, 2013). For example, Kurumada and Jaeger (2013) examined the production

of optional case markers in Japanese that are sometimes redundant with other grammatical function cues, and

found independent contributions of both production difficulty and predictability. Baese-Berk and Goldrick

(2009), with replications using different methodology by Peramunage et al. (2011), Kirov and Wilson (2012),

and Buz et al. (2014), looked at voice-onset time (VOT), an important cue to voicing contrasts in English

stops. They found that talkers produce a stronger VOT contrast when both words of a voicing minimal pair

have plausible referents in the current discourse context. Buz et al. (2014) additionally looked for an effect

of planning difficulty (as measured by production latency), but did not find one. Although this last result,

as all null results, should be interpreted with caution, these studies together begin to provide evidence that
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predictability effects on at least morphology and phonetic detail cannot be solely attributed to production

difficulty.

This paper provides a complementary line of evidence favoring the view that predictability effects reflect

an adaptation towards communication. We investigate how distinctiveness correlates with different sources

of predictability. These different sources are unified under an account that appeals to information-theoretic

efficiency, but, by virtue of their differences, would presumably require independent spandrel accounts. To do

this, we first develop the information-theoretic framework of recent work on predictability effects (Aylett

and Turk, 2004; Levy and Jaeger, 2007; Jaeger, 2010) to classify predictability effects into three kinds:

source coding from the talker’s perspective, source and channel coding specialized to listener characteristics,

and channel coding. These three kinds of predictability effects consider very different features, and so

would presumably involve independent spandrel accounts. They are unified, however, by their relevance to

information-theoretic optimization. With this theoretical framework in mind, we provide two corpus studies

that find evidence for the latter two kinds of predictability effects. Concretely, we use mixed-effects regression

models to analyze several corpora of spontaneous speech, examining predictability measures that have been

previously shown to correlate with changes in word duration (i.e., time between word onset and offset) (Aylett

and Turk, 2004; Bell et al., 2009; Gahl et al., 2012).

Our first analysis examines the relationship between these predictability measures and word duration in

speech directed to prelinguistic infants, as compared to speech directed to adults. We find, first, that many of

the patterns previously found in adult-directed speech also occur in infant-directed speech; this is, as far as we

know, the first analysis to find evidence of predictability effects in infant-directed speech. More importantly,

however, we also find a difference between adult-directed and infant-directed speech in how predictability

(as measured by contextual probability) affects word duration. This difference suggests that talkers adjust

predictability effects in response to listener characteristics.

Our second analysis compares predictability effects in speech directed to a visible listener and speech

directed to an invisible listener. Again, we find different effects of predictability in the two conditions:

specifically, a significantly weaker effect of unigram word probability on duration in the visible condition.

This difference is in the direction predicted by an information-theoretic efficiency strategy, where talkers

exploit the extra communicative capacity afforded by the visual channel. Together, these results suggest

that the effects of predictability on speech production differ according to communicative demands, both in

response to listener characteristics and to exploit increased channel capacity. These findings provide further
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evidence that predictability effects are not merely a ‘spandrel’ of language processing or general cognition,

but are an important part of a system adapted towards efficient communication in the information-theoretic

sense (Aylett and Turk, 2004; Levy and Jaeger, 2007; Jaeger, 2006).

It is important to note that we are making no claims about whether the differences in predictability

effects we see in different communicative scenarios are due to conscious behavior on the part of the talker,

or unconscious behavior. An effect can be deliberate without having a practical impact on communication.

Conversely, an effect can be automatic, but have arisen because of pressure towards communicative efficiency,

whether over the course of evolutionary time, language acquisition, or adaptation to a particular listener. How

effects are implemented and their availability to conscious awareness and deliberate manipulation is a different

question from their functional role and whether they exist due to pressure for efficient communication.

Before presenting our regression studies, we first review the information-theoretic foundations of effi-

ciency accounts and how these relate to the existing literature on predictability effects and adaptation towards

the listener and the communicative channel.

2. Background

Predictability effects have attracted attention because they reflect correlations that characterize information-

theoretically efficient systems. In this section, we further develop the theoretical framing to provide one way

of distinguishing between an adaptation account and a spandrel account. Efficient codes involve different cod-

ing operations (source and channel-coding) that have different functional roles (brevity and error-avoidance)

and are sensitive to very different aspects of the current communicative situation. Because they are sen-

sitive to such different kinds of information, if these different types of predictability effects exist but are

spandrels, they would have to be independent spandrels. Thus, if such predictability effects exist, then the

non-adaptive hypothesis would require multiple coincidences, making it less plausible than the hypothesis

that the predictability effects are unified by an adaptation towards efficient communication.

2.1. Information Theory

Previous efficiency accounts have appealed to the notion of efficiency in the sense of the noisy channel

theorem (Shannon, 1948) as an explanation for predictability effects (e.g. Aylett and Turk, 2004; Jaeger,

2010). This section outlines the relevant results from information theory, which formalizes communication as

the endeavor by a sender, our talker, to communicate a message to a receiver, our listener. By hypothesis, the

message cannot be sent directly to the receiver, so the sender encodes it into a different form, called the signal,
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that can be sent to the receiver. When analyzing linguistic communication, we may focus on many different

message/signal pairs. For example, phonetics typically takes the signal to be something like a spectrogram,

and the message to be variously segments, features, or gestures. Formal semantics, by contrast, typically

takes the signal to be some syntactic analysis and the message to be meaning representations in first-order

predicate logic.

From an information-theoretic point of view, a communication system is efficient to the extent that it

satisfies two requirements. First, it should have, on average, short signals for messages. Second, it should

also obtain a low probability of a communication error. To make this sense of efficiency concrete, and to see

how it actually incorporates two kinds of encoding schemes, consider briefly a communication system whose

messages are sequences of the 32 characters consisting of A-Z, space, and five punctuation symbols, and

whose signals are sequences of binary digits (bits). One way to encode messages in this system is to impose

an ordering on all of the characters (such as alphabetical ordering), and say that the signal for a character

is a sequence of 1’s equal to its position in the ordering followed by a 0 (so ‘AB’ is encoded ‘10110’). If

the message characters occur with equal probability, this code uses an average of
∑33

n=2 n 1
32 = 560

32 = 17.5

signal characters per message character. Alternatively, we can notice that there are 25 = 32 binary sequences

of length 5, and choose to encode a message character with the five-digit binary number that indicates its

position in the ordering. This second code uses only 5 signal characters per message character, and so is more

efficient.

Now consider an ‘ABC’ communication system that still has binary signal characters but whose messages

are just sequences of the characters ‘A’, ‘B’, and ‘C’. We can unambiguously encode these three message

characters with the signals ‘0’, ‘10’, and ‘11’; which message should be encoded with the short code? If the

message characters occur with equal probability, it does not matter, but if one message character is more

frequent than another, we can get shorter signal sequences, on average, by giving the short signal to the

frequent character. Giving shorter signals to more common messages is called source coding, and works

towards our first efficiency requirement of short signals. The minimum average number of signal characters

per message character is called entropy, and a code that uses more signal characters per message character

than the entropy is redundant. Effective source coding thus eliminates redundancy.

In particular, we can compute the entropy of a probability distribution over the set of possible messages
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M as H(M):

H(M) = −
∑
m∈M

P(m) log(P(m)) (1)

=
∑
m∈M

P(m) logb

(
1

P(m)

)
where b is the size of the signal alphabet. Equation 1 is the usual, concise presentation, but the version in the

second line makes an important fact explicit: entropy is just a (weighted) average. The log term, called the

Shannon information, is the length of the signal for each particular message m, using a signal alphabet with b

characters, under the shortest possible code. The minimum average number of signal characters per message

character is just the average of these lengths, weighted by their relative frequency P(m). One strategy for

good source coding (making a code shorter), then, would be to find messages whose Shannon information is

substantially different from their signal length, and assign those messages a different code that is closer in

length to their Shannon information.

However, up to this point we have not said anything about avoiding errors. Because source coding

focuses on finding the shortest code that unambiguously identifies each message, there will be no errors

if the receiver (listener) always correctly receives the signal that the sender (talker) transmits. However,

such perfect transmission does not occur in real communicative scenarios, linguistic or otherwise, and the

noisy channel model is an effort to reflect this imperfect transmission. It assumes that some of the signal

characters are randomly changed or deleted during transmission, with these modifications called noise.1 For

example, for our ‘ABC’ code, a signal that is sent as ‘10’ might be received as ‘11’ or ‘00’. Thus, under the

noisy channel, even if the talker produces a signal that unambiguously identifies a message, the signal that is

received may identify a different message (or even many or no messages).

We can avoid errors due to noise by introducing extra signal characters that encode which signal character

was intended. We might decide to reinforce the signal character ‘0’ by following it with ‘11’, and reinforce

the signal character ‘1’ by following it with ‘00’, and taking a majority vote for the intended signal character.

In this new code, the listener will recognize ‘011’, ‘111’, ‘010’, and ‘001’ all as the signal character ‘0’,

because they all have at least 2 bits of 3 that agree with the new code for ‘0’. Thus, this new code can tolerate

one bit flip per message character without resulting in an error, and we could make it tolerate more bit flips by

picking longer reinforcement codes. However, the code now produces longer signals without any change to

1If the changes are not random, for example ‘1111’ always changes to ‘0000’, then they are distortion rather than noise, and may

be recovered by the listener by simply using a different mapping from messages to signals, or codebook.
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the messages, meaning that it is redundant. Adding redundancy to the signal to avoid errors is called channel

coding.

We might be worried that reliable channel coding is going to introduce so much redundancy to avoid

errors that the nice short signals we got from the source coding become unmanageably long. The noisy

channel theorem (Shannon, 1948) proves that, in fact, it is possible to get an error rate arbitrarily close to

zero with a reasonably small amount of redundancy as long as we add in redundancy that anticipates the kind

of errors the communication channel introduces. If we subtract this minimum amount of redundancy from

the entropy of the source, we obtain the (fixed) channel capacity C which expresses the average length of the

shortest code, per message character, that can be achieved with an arbitrarily low error rate (intuitively, we

get the channel capacity by subtracting the amount of information that we must devote to reinforcing the

signal from the amount of information we can effectively transmit).

To perform optimal source coding, talkers need to know the probability distribution over messages, and

to perform optimal channel coding, they need to know the probability distribution over noise. In a practical

situation, talkers could only ever have an estimate of these probability distributions. To the extent that their

estimates are wrong, they will provide overly redundant messages.2 Speech communication, then, can be

made closer to optimal by considering more information in determining the probability of messages and

noise.

With this information-theoretic framework, we can classify potential predictability effects into three kinds.

First, some predictability effects could reflect source coding according to the general, overall probability of

linguistic elements. Second, some predictability effects could reflect an effort to use knowledge about the

listener to anticipate likely errors or messages. Third, some predictability effects could reflect an effort to

specialize their channel probability distributions according to the rate or kinds of errors that can be expected

under a given communicative scenario.

The considerations discussed so far address only communicative efficiency, and should be combined

with a model of the cost of utterance planning for a more complete account of efficient language production

strategies (Lindblom, 1990; Jaeger, 2013; Kurumada and Jaeger, To Appear). For example, Ferrer-i-Cancho

(2005) presented an ideal talker model that linearly trades off maximizing the achieved communication

rate with minimizing communication effort, operationalized as the entropy of the probability distribution

2Specifically, they will provide m more bits than necessary, where m is the Kullback-Leibler divergence of their estimated

distributions from the true distributions.
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over signals. By ignoring the cost of planning utterances, we here assume that the trade-off totally favors

communication rate.

In the following subsections, we first review recent work on predictability effects within the information-

theoretic framework, with an eye towards developing intuitions about these three types of effects. We then

focus in on the latter two types of effects, which is where our own investigations will be directed. We discuss

work from other traditions that can be re-interpreted through the lens of information theory, and the evidence

this work provides regarding listener-based and channel-based predictability effects.

2.2. Source versus channel coding in predictability effects

Recent work on predictability effects has referred to information-theoretic principles in the abstract, but

has not explicitly analyzed predictability effects in terms of different kinds of coding. Following the overview

of coding theory above, we can understand a predictability effect as reflecting source coding to the extent that

it eliminates redundancy for the purpose of giving shorter signals to common messages. Alternatively, we

can understand a predictability effect as reflecting channel coding to the extent that it preserves or introduces

redundancy for the purpose of avoiding communication errors.

One of the most well-known predictability effects in language is the inverse relationship between word

frequency and word length (Zipf, 1949). Recently, Piantadosi et al. (2011) showed that in English, German,

and Dutch, the average information content of a word (i.e., the average negative log probability given

its n-gram context) predicts word length (in orthography, phonemes, and syllables) even better than raw

frequency does; Manin (2006) found the same result for Russian. Piantadosi et al. argued that this result

strongly supports the idea of a lexicon optimized for communicative efficiency. Seyfarth (2014) further found

that talkers pronounce words with shorter duration (in seconds) if those words typically appear in highly

predictable contexts. These authors did not explicitly discuss the type of coding their results suggest, but

empirical results such as these, which relate the static forms of words to their probability of use, are clear

examples of what one would expect from source coding: a lexicon that uses shorter signals for high-probability

messages.

Other effects clearly reflect some degree of channel coding, because they introduce redundancy that is

especially likely to prevent communication errors. In the Lombard effect, talkers involuntarily produce more

intelligible speech when they hear noise (Lombard, 1911, 1910a,b). Such speech provides more acoustic

redundancy, such as greater amplitude, slower speech, and more energy at higher frequencies, precisely when

the received acoustic signal will be more ambiguous. Moreover, this speech is more intelligible than regular
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speech (Summers et al., 1988; Claude Junqua, 1996), while simply increasing vocal force, from whispering

through to shouting, results in less intelligible speech (Pickett, 1956).

Remember that the information-theoretic notion of noise is any kind of increased uncertainty about the

intended signal, not just acoustic noise. Other work suggests that talkers provide redundancy that guards

against non-acoustic noise, such as perceptual confusability and plausible minimal pairs. For example,

Zhao and Jurafsky (2009) found that speakers of Cantonese, a language with six lexical tones, produced

elevated f0 for all tones in the presence of noise (in an expected Lombard effect), but found an effect of word

frequency on f0 only for mid-level tones. Zhao and Jurafsky pointed out that these are the tones that are most

perceptually confusable (Khouw and Ciocca, 2007; Vance, 1977; Whitehill et al., 2000), and so benefit the

most from additional redundancy. Additionally, as mentioned in the introduction, Buz et al. (2014) found that

talkers produce stronger VOT contrasts when there is a plausible VOT-minimal-pair referent in the discourse

context, a result which Kirov and Wilson (2012) also found with a different experimental methodology. All

together, these effects suggest that talkers will provide redundancy that is especially suited to guarding against

a communication error when the channel degrades.

There is also some evidence that talkers take advantage of increased channel capacity. In “Map Task”

studies, a “guide” tells a “follower” how to draw a path on a map, and some landmarks on the guide’s map are

missing from the listener’s map (Bard et al., 2000). In Boyle et al.’s 1994 original Map Task dataset, some

pairs of talkers could see each other, and others could not. Boyle et al. found that talkers with the additional

visual channel completed the task more quickly and at the same level of accuracy than talkers without that

channel, communicating the same amount of information in less time. Moreover, Boyle et al. found that pairs

in the Visible condition sought to establish eye contact more often during periods of communicative difficulty,

suggesting that visibility increases channel capacity in a way that talkers seek to exploit.

It is worth noting that many predictability effects cannot be attributed unambiguously to either source or

channel coding, but could plausibly be the result of either, or both together. This ambiguity of interpretation is

due to a fundamental confound that arises in language behavior: redundancy is always present to some extent

in linguistic productions, and the elements that should receive longer signals under source coding should also

receive more redundancy under channel coding. To eliminate redundancy in source coding, we should seek

to pair probable meanings with short signals. At the same time, to avoid errors, we should strategically insert

redundancy to, or preserve pre-existing redundancy to, those parts of the signal that are most likely to give

rise to errors (channel coding). Since listeners likely have more trouble processing low-probability items, this
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means that channel coding should also make low-probability items longer and more redundant. Thus, simply

finding an inverse correlation between the probability of some linguistic element and its length or level of

redundancy, without determining whether the redundancy is especially effective at avoiding errors, is not

enough to determine whether the correlation reflects a tendency towards source coding, channel coding, or

both.

2.3. Predictability effects according to particular listener characteristics

As mentioned, an ideal talker could make speech more efficient by using listener characteristics (i.e.,

their knowledge of what the listener knows or is like) to inform both their assumptions about how probable

different messages are (for better source coding), and their estimates of how probable different errors are (for

better channel coding). The idea that talkers tailor their utterances to be understood by their audience, called

Audience Design, has its roots in Grice’s maxims that talkers endeavor to be unambiguous but not overly

informative (Grice, 1975). Clark and collaborators further developed this idea by proposing that talkers

maintain a model of the common ground, which consists of information that has been shared with all involved

interlocutors, and consult this common ground in designing utterances that can be understood easily (Clark

and Carlson, 1982; Clark, 1996; Clark and Marshall, 1981). The common ground represents knowledge of a

particular set of listener characteristics that talkers might use to modulate their productions—specific facts

the listener knows or perceives.

Brown and Dell (1987) and Dell and Brown (1991) elaborated on this idea to distinguish between generic

adjustments that adjust for an average listener, and particular adjustments that dynamically adjust to the

details of the current listener. Dell and Brown observed that generic adjustments could easily arise if talkers

use the same systems for accessing linguistic items for both production and comprehension: talker demands

will be similar to average listener demands, and items that are easy to understand will be the same as those

that are easy to produce. This possibility provides a plausible route for generic listener effects to arise not in

response to adaptive pressure but as a ‘spandrel’ side-effect of the same systems being involved in production

and comprehension. Particular listener effects, on the other hand, should not arise under this account.

Brown and Dell (1987) performed an experiment in which subjects read stories silently, and re-told the

stories to a confederate. Some stories involved typical instruments, such as ‘stabbing’ with a ‘knife,’ but

others involved unusual instruments, such as ‘stabbing’ with an ‘ice pick.’ The stories were accompanied

by illustrations that included the instrument. In the crucial manipulation, in one condition, both the subject

talker and confederate listener could see the illustrations, but in the other condition only the talker could see
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the illustrations. Brown and Dell (1987) found that talkers mentioned atypical instruments more often than

typical ones, but ignored the availability of the illustration to the listeners. This result suggested that talkers

responded to their own view of the typicality of the instrument, but did not care if the listener had access to

the typicality of the instrument. Lockridge and Brennan (2002) observed that confederate listeners who have

heard the same stories many times may appear unengaged to talkers, and repeated the experiment with naı̈ve

listeners. With this approach, contrary to Brown and Dell (1987), they found that talkers did provide more

information about atypical instruments when listeners could not see the illustrations. When listeners could not

see the illustration, talkers were more likely to mention atypical instruments at all, to mention them earlier,

and to use indefinite references. By providing evidence for particular listener adaptation in addition to generic

listener adaptation, this result supports the view that talker behaviors that appear to support communicative

efficiency reflect an overall pressure towards efficient communication. Also see Roche et al. (2010), who

found that talkers avoided ambiguity only when they believed a pre-scripted pseudo-confederate to be a real

person.

Many subsequent studies on audience design have focused on the case of referring expressions, where

results suggest that talkers sometimes seem to account for listener knowledge in determining the form of

these expressions, but not in all cases. For example, some studies found evidence for a more restricted notion

of audience design that relied on an “ego-centric” model of predictability. In an image description task,

Fukumura and van Gompel (2012) found that talkers tend to use pronouns, rather than definite noun phrases,

when a prompt mentioned the target, even if the listener did not hear the prompt (because the talker heard it

through headphones). In Bard et al.’s 2000 Map Task study mentioned above, they found that talkers tended

to refer to any given landmark on the map with shorter referring expressions after the landmark had already

been mentioned (and so was more probable). However, the extent of the guide’s reduction did not change

depending on who provided the initial mention, even though a guide-mentioned landmark may not be present

on the listener’s map.

Other studies have found evidence for a more expansive notion of audience design, in which predictability

is assessed from the listener’s perspective For example, talkers are more likely to include a disambiguating

adjective (“the large circle”) when a competitor referent (small circle) is visible to the audience (Horton and

Keysar, 1996), and are more likely to use a full noun, rather than a pronoun or null word, when the audience

cannot see the referents (Mathews et al., 2006). When talkers know a (short) name for a referent, they tend to

use the name if their listener also knows the name, but use a (long) description if the listener does not know
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the name (Heller et al., 2012). In addition, when talkers are asked to tell the same story twice, either to the

same listener or to different listeners, their second telling includes more narrative elements, and more words

per element, if the listener has not heard the story before (Galati and Brennan, 2010).

Overall, these results suggest that talkers can consider particular listener characteristics in determining the

probability of different elements, but that the computational difficulty of tracking very detailed characteristics

may interfere. Galati and Brennan (2010) proposed that their talkers exhibited audience design because they

need only a “one-bit” model that indicates whether the audience has heard the overall story, and Fukumura and

van Gompel (2012) proposed that their talkers did not exhibit audience design because doing so would involve

tracking the accessibility of each individual referent. Other studies have indicated that reducing the cognitive

load of a task (by giving participants more practice or allowing more time) can result in stronger effects

of audience design (Horton and Gerrig, 2002, 2005; Roche et al., 2010), supporting the idea that audience

design may be computationally expensive. In a refinement of this idea, Bard and Aylett (2005) proposed the

“Dual-Process” model in which listener characteristics can be considered in the utterance-planning stage, but

are too computationally expensive to consider during low-level articulation. Their proposal was based on

a reanalysis of the Map Task data (Bard et al., 2000) showing that speed of pronunciation did not change

according to the listener’s knowledge, but that the form of the referring expression (e.g., pronoun or full noun

phrase) did. Alternatively, we can turn to Jaeger and Ferreira’s (2013) proposal that efficient communication

involves context-specific learning. Under this account, decreased cognitive load eases audience design

because context-specific learning is easier, not because talkers manage to engage a discrete process. Roche

et al. (2010), in an object arranging task, and Roche et al. (2014) , in a collaborative toy construction task,

found that participants modified their referring expressions only after salient communication errors, providing

evidence that at least some audience design is a consequence of context-specific error-driven learning.

Together, these results indicate that talkers are capable of ‘particular listener’ audience design, but exhibit

audience design only if it is likely to have an impact (Jaeger and Ferreira, 2013; Jaeger, 2013; Kurumada and

Jaeger, To Appear). In some cases, assessing listener needs is either so easy or so hard that the choice is clear.

When it is easy to assess listener characteristics, as in the ‘one-bit’ case, talkers clearly commit to adjusting to

listener needs; when it is hard, requiring the talker to track the accessibility of a set of referents to a listener,

talkers do not commit. In cases where the decision is not so clear, talkers gather more information to evaluate

this trade-off. For example, talkers will visually assess the level of the listener’s engagement, and adjust to

engaged naı̈ve listeners but not to disengaged confederates.
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Nevertheless, for particular-listener characteristics that are easier to track, the results of these experiments

accord with the predictions of an information-theoretic account. On the other hand, there is so far little, if

any, evidence that talkers account for particular-listener characteristics in predictability effects at the phonetic

level. Our Analysis I looks at a listener characteristic that is extremely easy computationally: whether the

listener is an infant or an adult. This analysis arguably considers a third kind of listener adaptation. Infants

are certainly not the ‘average listener’ that a generic adjustment would target, but it is not clear that they

present the kind of specific information imbalance that the previous studies have considered. Instead, these

infants are overall not competent speakers. Regardless, we find evidence that this listener characteristic

affects not only overall phonetic realization (e.g., speech rate), but differentially affects high-probability and

low-probability words—that is, the effects of predictability differ depending on the listener, even on low-level

articulatory processes.

Having found an effect of listener characteristics on predictability effects, we will look for an effect

of channel characteristics. As discussed above, previous work on the Lombard effect shows that talkers

guard against degraded channels (whether consciously or not): when talkers hear noise, they produce louder,

more intelligible speech. Our Analysis II will consider whether talkers can also take advantage of enhanced

channels. Using the same Map Task dataset mentioned above, we will show that the talkers who could see

each other achieved their higher information rate in part by providing less acoustic redundancy. Together,

these results provide evidence that predictability effects reflect adaptation to efficient communication, and are

not simply an interesting, but ultimately unadaptive, side-effect of how neural hardware works.

3. Analysis I – infant- and adult-directed speech.

In this analysis, we will compare predictability effects in infant-directed speech (IDS) and adult-directed

speech (ADS) to see if coarse listener characteristics influence predictability effects at the phonetic level.

Our general methodology is borrowed from the corpus study of Bell et al. (2009) investigating predictability

effects. The current study differs from Bell et al. (2009) in comparing predictability effects in ADS and IDS,

using mixed effects regression rather than standard regression, and residualizing against a control model to

minimize collinearity between predictors of interest and control predictors.

3.1. Data

We use data from two corpora: swbdnxt (Calhoun et al., 2010), an edition of the Switchboard corpus

of telephone conversations between adults, and Large Brent (Rytting et al., 2010), a subset of the Brent
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Table 1: Statistics for the two datasets used in Analysis I.

# Sent # Words Word
Sent. # Talkers

swbdnxt 1,985 18,621 9.4 75

brent 2,254 14,148 6.3 4

corpus (Brent and Siskind, 2001) of spontaneous infant-directed speech. We describe these corpora and the

data extracted from them below.

3.1.1. swbdnxt

swbdnxt is an edition of the Switchboard corpus of telephone dialogues between adults. It integrates

several levels of annotation produced by different groups since the original Switchboard release. These

include prosodic and syntactic annotations, as well as a phonetic alignment created by correcting the output

of a forced alignment produced using a pronunciation dictionary. The prosodic annotations follow the Tones

and Break Indices (ToBI) transcription standard (Beckman et al., 2005); we use only the break indices in this

work.

To create the Switchboard dataset for our analysis, we used the Mississippi State transcript of the

Switchboard data, and began with all words that were annotated with Penn Treebank part-of-speech (POS)

tags and Mississippi State ToBI labels. The resulting corpus had 69, 887 words in 6, 593 utterances across 75

conversation. We used this dataset to compute the Adult-Directed version of the language model, as described

shortly.

We further processed the Switchboard data to produce a dataset that was as comparable to the Infant-

Directed corpus as possible. To avoid having to handle correlations between talkers in the same conversation,

we discarded all sentences from side B, producing a dataset with 36, 273 words in 3, 420 utterances. To avoid

disfluencies, we discarded all words that were annotated with a POS tag of “UH” or “XX”, eliminating 3, 006

words and 820 utterances. We then removed all words that were annotated as part of a ‘disfluent’ prosodic

phrase, discarding a further 6, 066 words and 108 utterances. Because formulaic backchannel responses

may have very different durational properties, we also discarded all words that were annotated as part of a

‘backchannel’ prosodic phrase, removing 701 words and 32 utterances. Finally, following Bell et al. (2009),

who note that short prosodic phrases are formulaic discourse responses, we discarded all prosodic phrases

that were shorter than 4 words. Table 1 shows statistics for the final swbdnxt corpus.
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3.1.2. Large Brent

Large Brent is a subset of the Brent Corpus of spontaneous IDS collected in a naturalistic setting. It

consists of the mothers’ utterances from four mother-infant dyads, and has a forced phone alignment based on

a modified version of the CMU pronunciation dictionary. Details of the corpus and alignment can be found

in Rytting et al. (2010). Large Brent has a 90%/10% train/test partition; for this study we use only the

training partition, which contains 22, 226 words from 7, 030 sentences. Rytting et al. have already excluded

utterances containing partial or unintelligible words, so we made no further effort to handle disfluencies.

Unlike swbdnxt, this corpus does not include talker’s ages; since all talkers are new mothers, we use an

estimate (based on personal communication with Michael Brent) of 27 years old for all talkers. There is also

no annotation of intonational phrase boundaries, which are known to affect word duration. However, in this

corpus every pause of 300 milliseconds or more is taken to be an utterance boundary, so we use the utterance

boundaries as a fairly robust approximation to intonational phrase boundaries. As in the ADS corpus, we

remove all prosodic phrases which are three words or shorter, resulting in the corpus statistics shown in

Table 1.

3.1.3. Pooled dataset

To facilitate direct comparison between predictability effects in ADS and IDS, we created a pooled dataset

containing the data from both swbdnxt and Large Brent. As can be seen in Table 1, the pooled dataset is

relatively balanced in terms of the number of sentences and words from each type of speech, but not in terms

of talkers. The imbalance in the number of talkers is handled by including random effects for Talker in our

model when the random effect is a significantly better fit (described below).

3.2. Models

All of our models are mixed-effects models. For general introductions to mixed effects models, we refer

readers to Baayen et al. (2008), and for an introduction to using mixed effects models with corpora, see

Bresnan et al. (2007) or Jaeger (2010). For the more specific case of using mixed effects models with phonetic

corpora, see Tily et al. (2009) or Kuperman and Bresnan (2012).

3.2.1. Approach

Word duration is affected by many factors other than word predictability, such as talker age, speech rate,

the word’s length in phones, and its position in the intonational phrase. To control for these kinds of factors,

we adopt a simple two-step regression procedure, illustrated in Figure 1. First, we build a single control
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Log Word Durations⇒

Control Model

Talker Age

Talker Sex

Speech Rate

. . .

⇒ Residuals⇒

Predictability Model

Unigram Probability

Preceding Context

Following Context

First Mention

Figure 1: Schematic of two-step modeling process.

model (using the model selection procedure described shortly), which regresses log word duration against

only control terms such as those above.3 The control model is fitted to the pooled dataset, and includes a

Speech Type term (ADS or IDS) to allow for effects on duration that are due to speech type but not related

to predictability. We also allow interactions between Speech Type and the other control factors. Next, we

take the residual log durations of this control model as the response variable for model selection among

predictability terms, so that these terms can only be used to explain the part of the variance that has not already

been accounted for by control factors. We perform three separate regressions on the residuals: one on the

residuals from the ADS subset of the data, one on the IDS subset, and one on the entire pooled dataset. The

ADS and IDS regressions allow us to assess which predictability terms are significant factors in predicting

word duration in ADS or IDS, while the pooled regression can show, through interactions with the Speech

Type term, whether a given predictability factor has different effects in ADS and IDS.

This two-step approach has the advantage that we do not need to worry about collinearity among our

control predictors. If two predictors are collinear, the parameters of the terms in the control model will be

unstable, but the overall variation explained, and the residuals, will be stable.

3.2.2. Fixed Effects: Control terms

We include nine terms in the control model, based on those of Bell et al. (2009). These are: Talker Age

(taken from metadata in swbdnxt; estimated as described in the Data section for Large Brent), Talker

Sex, Speech Rate (computed per utterance as log
(# Vowels

Second

)
), # Vowels (taken from annotation based on a

pronunciation dictionary), Log Average Expected Word Duration (a log-space uniphone model, computed

as the log of the sum of the average duration of each phone in the word, following Bell et al. (2009); average

3Like Bell et al. (2009), we take the log of the duration to avoid equating a 50ms difference in a word that is usually 60ms with a

50ms difference in a word that is usually 300ms.
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phone durations were computed separately for each dataset), Intonational Phrase Initial (indicates whether

a word is at the beginning of an intonational phrase; phrases are bounded by TOBI break indices of 4 in

swbdnxt and are assumed to coincide with utterances in Large Brent), Intonational Phrase Final (as

previous), Content or Function Word4 (based on POS tags), and Speech Type (ADS or IDS).

3.2.3. Fixed Effects: Predictability terms

We include four predictability terms, again following Bell et al. (2009): Log Unigram Probability,

Preceding Context (log probability of a word given the preceding two words), Following Context (log

probability of a word given the following two words), and First Mention (whether or not the word has

appeared in the transcript). While First Mention can be read off the transcripts, the first three predictors

are the output of language models that must be estimated from data. Because these measures should reflect

the predictability of these words for these talkers, we estimated the language models using transcripts from

the same corpora used in our analyses. We built one set of language models for ADS using the swbdnxt

data (including both sides A and B as noted in Section 3.1.1; the additional data will lead to better language

model estimates), and one set for IDS using a superset of the Large Brent data. Specifically, we used six

mother-child dyads (c1, f1, f2, i1, j1, and q1) from the Brent Corpus, which collectively contain roughly the

same number of words as were available for the ADS language model (75,184 words in 24,272 utterances

across 40 recording sessions).

We will be performing two kinds of regressions; an individual regression for each speech type, and a

pooled regression. For our individual regressions on one speech type only, we used Good-Turing smoothed

language models that were estimated from the corresponding corpus. For our pooled regression, we need

each predictability term to be based on a single language model, i.e., the Unigram Probability of a particular

word will not depend on whether it is from the IDS or ADS corpus. However, to avoid biasing the pooled

model, we also need each language model (the Unigram Probability model, the Following Context model,

and the Preceding Context model) to fit each corpus equally well.5 That is, the average probability of the

4Bell et al. (2009) investigate this term in interaction with predictability terms. We attempted to include it in our predictability

model, but it is highly collinear with other predictability terms and we failed to reduce collinearity to an interpretable level, so we

include it in the control model instead.
5See Fine et al. (2014) for evidence that language model bias can affect how well a language model predicts behavioral responses.

In practice, we found the same pattern of significant effects regardless of whether we used the procedure explained below to fit λ

interpolation parameters, or just weighted each model equally (λ = .5) in the pooled model.
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words in the IDS corpus (as estimated by the model) should be equal to the average probability of the words

in the ADS corpus. To achieve both of these goals at once, we created a single language model for each

predictability term by taking a weighted average of the IDS and ADS models. For example, for Preceding

Context, we computed:

Ppooled(wi|wi−1,wi−2) = λPIDS(wi|wi−1,wi−2) + (1 − λ)PADS(wi|wi−1,wi−2) (2)

where λ is a scalar between zero and one that is chosen to provide equal perplexities (a measure of model fit)

on the ADS and IDS data sets. For Unigram Probability, λ = 0.250; for Preceding Context, λ = 0.661; for

Following Context, λ = 0.667. Concretely, the ADS model is weighted more strongly in the pooled Unigram

model, while the IDS model is weighted more heavily in the pooled context models.

3.3. Model Selection

We employ a forward model selection procedure that closely follows an algorithm introduced by Coco

and Keller (2010), with only minor modifications to avoid specific interactions that lead to convergence errors

(all our IDS talkers are female, for example, so we avoid testing for an interaction between Speech Type and

Sex).6 For each round of model selection, we consider two random effects: Talker, and Sentence. We first

determine which of the two random effects (intercept only) produces a better initial model. We then determine

whether adding the other random effect (intercept only) produces a significant improvement in model fit. This

is followed by another series of model comparisons to add fixed main effects and random slopes for each

random effect (including random effects that are not already in the model). Finally, we perform another series

of model comparisons to add interactions.

In each step, a predictor is added if the model with that predictor is a significantly better fit to the data

than the model without that predictor, as assessed with the anova function for model comparisons in R. In the

results to be presented, we explored models that assumed random slopes and intercepts were conditionally

independent, given the random variable.

We are performing model selection only because a model that expresses the full range of interactions

and random effects does not converge. Our goal is then to obtain the largest (and so least anticonservative,

Harrell, 2001, Chapter 4) model that converges, not to find some “true” model. Accordingly, during model

selection we are eager to add terms, and set a relatively loose criterion for adding terms. If a larger model is

6The R implementation of the modified algorithm is available at http://jkpate.net/modelselect.R.
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a better fit with p < 0.1, we adopt the larger model. All predictors were centered except Speech Type; for

ease of interpretation, Speech Type was set to -1 for adult-directed Speech and 1 for infant-directed speech,

resulting in a mean value of ≈ −0.137.

To obtain p-values, we do one final round of model comparisons. For each fixed effect, we fit a model

that contains all selected predictors except that fixed effect, and compare that model with the full model. Our

presented tables contain the χ2 values and the corresponding p-values from this model comparison.

3.4. Results

3.4.1. ADS and IDS individually

Before performing a direct comparison of ADS and IDS data, we first build individual predictability

models for the two types of speech. The individual models serve two purposes. First, they tell us what kinds

of effects are evidently present in each kind of speech, allowing an informal comparison of the predictability

effects in ADS and IDS speech. Second, we can use the results of these individual models to inform model

selection when performing a direct comparison on the pooled data. In short, the individual models identify

patterns of significant effects, and the pooled model compares these patterns of significant effects in a

quantitative manner.

For the individual models, we take the residuals from the control model fitted on the entire pooled dataset,

and run model search on the IDS predictability terms to predict the residuals for IDS words, and then run

model search on the ADS predictability terms to predict the residuals for ADS words. We restrict model

search to main effects.

Results for ADS and IDS are presented in Tables 2a and 2b, respectively. As the response variable is

(residual) log duration, a negative coefficient corresponds to a shortening effect as the predictor increases, and

a positive coefficient corresponds to a lengthening effect. For both ADS and IDS, a number of predictability

effects are observed. For ADS, we find most of the expected predictability effects among the main effects:

frequent words and words predictable from context are shorter. However, there is no apparent effect of

First Mention.7 In IDS, we also find shortening effects of Unigram Probability and Following Context, but

7This conflicts with some previous work. Bard et al. (2000) and Bard and Aylett (2005) found that words were pronounced with

shorter duration the second time they appeared in the conversation, and Aylett and Turk (2004) and Bell et al. (2009) found an overall

shortening effect of repetition count and log repetition count, respectively. However, these studies did not use mixed effects models,

and considered a narrower range of control predictors. Gahl et al. (2012) performed a mixed effects analysis on the Buckeye corpus

(Pitt et al., 2007), and, similar to our results, did not find an effect of First Mention on word duration or vowel dispersion.
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Table 2: Fixed effects for individual ADS and IDS regressions, with χ2 statistics and p-values from model comparisons.

Predictability Term Coeff. χ2 p-val

(Intercept) 0.0097 15.9 0.0001

Unigram Prob -0.0225 58.9 0.0001

Prec. Context -0.0056 27.1 0.0001

Foll. Context -0.0062 37.8 0.0001

First Mention N/A N/A N/A

(a) Coefficients of the individual ADS model.

Predictability Term Coeff. χ2 p-val

(Intercept) 0.0197 18.1 0.0001

Unigram Prob. -0.0276 141.2 0.0001

Prec. Context N/A N/A N/A

Foll. Context -0.0069 13.3 0.0003

First Mention N/A N/A N/A

(b) Coefficients of the individual IDS model.

Preceding Context was not added to the model (and it is not significant if its addition is forced). We discuss

the implications of this difference in Section 3.5.

These individual models, however, only reveal whether we have enough evidence to determine that the

various coefficients are significantly different from zero, without comparing the effects in ADS with those in

IDS. A direct comparison accomplishes two goals. First, it can confirm that the effect of Preceding Context is

actually weaker in IDS than it is in ADS. Second, it is possible that an effect might be significant and in the

same direction in both types of speech, but be much stronger in one type of speech. A pooled model on the

entire dataset enables just such a direct comparison of effects in each Speech Type by examining interactions

with the Speech Type term. We now proceed to this pooled model.

3.4.2. Pooled comparison

In this section, we perform model search on the full pooled dataset, and include in the predictability

model the fixed effect “Speech Type” that indicates whether each word is from the ADS dataset or the IDS
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dataset. We will in particular be examining the interaction terms between Speech Type and the predictability

terms. Since we wish to verify different patterns of significant results in models containing only main effects,

we consider only interactions involving Speech Type. Thus, we fix in advance the main effects, and perform

model search only for interactions and random effects.

Table 3: Fixed effects for pooled regression, Speech Type coded with IDS as 1, with χ2 statistics and p-values from model

comparisons.

Predictability Term Coeff. χ2 p-val

M
ai

n
eff

ec
ts

(Intercept) 0.0021 0.7 0.4022

Unigram Prob. -0.0233 69.1 0.0001

Prec. Context -0.0027 4.6 0.0320

Foll. Context -0.0065 29.4 0.0001

First Mention 0.0050 2.9 0.0857

Speech Type -0.0001 0.1 0.9585

In
te

ra
ct

io
ns

Speech Type × Prec. Context 0.0041 10.8 0.0010

Speech Type × Unigram Prob. N/A N/A N/A

Speech Type × Foll. Context N/A N/A N/A

Speech Type × First Mention N/A N/A N/A

Table 3 presents the model coefficients and p-values from our final model. The table is separated into one

box for main effects, and another box for interactions between predictability terms and speech type. As our

Speech Type variable is approximately centered (IDS is 1 and ADS is −1), the main effects terms indicate

an approximate average over the entire pooled corpus (with a slight bias to ADS). We observe in the main

effects a shortening effect of Unigram Probability and both Preceding and Following Context. The coefficient

for First Mention, which was not significant in either individual regression, is positive, suggesting a trend

towards a lengthening effect for new items. However, the term again does not reach significance.

There is only one significant interaction with Speech Type; we see a significant and positive interaction

between Speech Type and Preceding Context, indicating that the shortening effect of Preceding Context is

stronger in ADS.

22



3.5. Discussion

These results show some similarities in the effects of predictability on word duration in IDS and ADS.

Both speech types exhibit significant shortening according to Unigram Probability and Following Context.

However, our results also revealed a difference: while there is a shortening effect of Preceding Context in

ADS, there is not an apparent effect of Preceding Context in IDS.

Before discussing this specific difference between ADS and IDS, we first comment on the fact that

IDS exhibits predictability effects at all. At first glance, this result might seem to support the idea that

predictability effects are not about efficient communication of linguistic messages, since it is not obvious that

efficiency in communication is a goal of parent-infant interactions—speech directed to pre-verbal infants may

be more about social bonding or communicating the nature of the grammar, for example. On the other hand,

predictability effects in IDS are not surprising in a ‘spandrel’ account where they are a side effect of general

cognitive mechanisms but carry little communicative benefit. Under such a theory, the same mechanisms

that cause predictability effects in ADS would also do so in IDS. Of course, this theory also predicts that we

should see the same predictability effects in ADS and IDS, which we did not. The difference we found does

not fall out simply because IDS is slower than ADS; we found a difference in the effect of Preceding Context

on word duration between the speech types, not merely an overall difference between the speech types.

To account for this difference according to listener, we would need more spandrel accounts. For example,

we may have found an effect of Preceding Context only in the ADS data because the ADS conversations

were more cognitively demanding overall and occupied enough resources to reveal an effect of production

ease, while the abundance of fungible computational resources for the IDS talkers (perhaps due to the slower

speech rate in IDS) led to a floor effect in production difficulty. In any event, the point is that while merely

observing predictability effects in IDS is not a problem for a spandrel account, the particular pattern of results

we obtained apparently demands multiple independent spandrel accounts.

Turning to the information-theoretic account, there are two possible explanations for why we might

observe predictability effects in IDS. It could be that efficient communication really is the goal of parent-

infant interactions, so many of the same effects we see in ADS will also appear in IDS (but potentially with

some differences due to the different linguistic capabilities of the listeners). Alternatively, even if efficient

communication is not the goal of IDS, it could be that our language production systems are optimized in

a “listener-general” way that is efficient for standard communicative scenarios (i.e., adult conversation),

but have difficulty adapting dynamically towards the efficiency needs (or lack thereof) of other “listener-
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specific” scenarios (Dell and Brown, 1991). Note that the latter hypothesis is very difficult to distinguish

empirically from the view that predictability effects are ‘spandrels’: whether they reflect generic adaptation or

no adaptation, we would expect to see no modulation of predictability effects in response to differences in the

listener or the channel. However, since we did find differences between ADS and IDS, predictability effects

apparently do vary according to the listener, at least to some extent. This result extends previous findings that

overall speech style varies for different listeners, such as foreigners (Uther et al., 2007; Papoušek and Hwang,

1991) and infants (Fernald and Simon, 1984; Werker et al., 1994; Martin et al., 2014), to suggest that the

details of how predictability influences word duration varies for different listeners. Thus, our findings cast

doubt not only on the spandrel theory but also on the theory of adaptation towards average scenarios with no

dynamic adaptation.

Regardless of whether IDS is subject to similar efficiency pressures as ADS, we are left with the task of

explaining why we obtained the particular pattern of differences that we did. Fully answering this question

will require considerable further research (which is also important to confirm the particular pattern of results

we found), but we provide a speculation here. The overall pattern we observe in the IDS is a diminished

effect of preceding context. This pattern may reflect different communicative goals for ADS and IDS: ADS is

focused on structures that involve several words, but such structures are less important in IDS. These results

suggest that talkers can, subconsciously, “turn off” at least some predictability effects, and the particular

pattern suggests that they may selectively turn off predictability effects that are not relevant to the demands of

the current situation.

Whether or not this explanation is correct, the results of Analysis I suggest that predictability effects

change for different listeners, bolstering the view that predictability effects reflect adaptation to communi-

cation. We will next consider how predictability effects change in the presence of a visual channel, which

presumably increases channel capacity. This second study also serves to control for a potential confound in

Analysis I, since the IDS talkers could see their listeners but the ADS talkers could not. In Analysis II, we

will examine the effect of listener visibility on predictability effects, comparing dialogues that were recorded

in identical conditions, except some talkers could see their listener, and some talkers could not.

4. Analysis II – The effect of speaker visibility

Under an information-theoretic efficiency account, communication with a visible partner presumably

increases the capacity of the communicative channel. For example, when giving directions, a talker may use
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hand gestures to reinforce the approximate angle of a particular turn as “veering” rather than simply turning.

Remember from the Background section that the capacity of a channel is the entropy of the source coding

distribution H(X), minus the entropy of the channel-coding probability distribution over signals after noise

has been applied H(X|Y):

H(X) − H(X|Y)

The second quantity, H(X|Y), reflects the average amount of reinforcement of the intended signal that is

needed to resist noise.

In the general case, the presence of a visual channel may change both H(X) (people who can see each

other may tend to talk about different things) and H(X|Y) (people who can see each other are subject to

different noise). If, for the purposes of argument, we hold H(X) fixed, however, then talkers with a visible

partner will enjoy an equal or increased channel capacity compared to talkers with a non-visible partner, for

the following reason. In the worst case, the visible cues, such as gestures and facial expressions, will be

completely uncorrelated with the linguistic signal, in which case H(X|Y) is the same in both situations, and

the channel capacities are equal. To the extent that visual cues do correlate with the linguistic signal, however,

H(X|Y) will be smaller (less ambiguous) with a visible partner, increasing the difference above and so the

channel capacity.

There are already reasons to think that gestures correlate with the linguistic signal. Cook et al. (2009)

elicited productions by asking participants to describe short videos, and recorded whether participants

produced a gesture when producing a dative verb. When talkers produced a verb in the verb’s dispreferred

form of the dative alternation, they were more likely to produce a hand gesture. Esteve-Gibert and Prieto

(2013) examined the time course of hand gestures during a point-and-name task in Catalán, and found that

the apex of the pointing gesture tended to align with the fundamental frequency peaks of stressed syllables,

although there was a complicated interaction with foot structure. Similarly, Graf et al. (2002) found that

talkers align the extrema of their head tilts with fundamental frequency peaks of English pitch accents. These

results suggest that talkers can use visual cues to provide redundancy, and so there is an opportunity for

talkers to offload redundancy from the acoustic channel to the verbal channel.

In the Map Task dataset we will use, described shortly, the messages will be controlled so that H(X) is

the same with and without a visual channel: the talkers are ultimately trying to communicate the same paths

on the same maps. Previous work has found that these Map Task talkers communicated more quickly with no

decrease in accuracy when they have a visible partner. We will replicate this finding, and also find evidence
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Table 4: Statistics for the Map Task dataset used in Experiment II.

# Sent # Words Word
Sent. # Talkers

maptask 7,592 77,485 10.2 64

that some predictability measures that correlate with phonetic redundancy in the non-visible condition show

no such correlation in the visible condition. This result indicates that the talkers rely mostly or entirely on

the visual channel for error avoidance redundancy when it is available, but will adapt their pronunciation to

provide the needed redundancy when a visual channel is not available.

4.1. Data

For this analysis, we use data from the same HCRC maptask corpus used by Boyle et al. (1994) and Bard

et al. (2000). This dataset is a collection of transcribed recordings of unscripted, task-oriented dialogue. Each

dialogue has two participants, and they are both given a cartoon map with several labeled landmarks. One

participant, the “guide,” is given a map with a route drawn on it, while the other participant, the “follower,” is

given a map with no route. The guide and follower then converse to help the follower draw the route on his or

her own map. In half of the dialogues, the guide and the follower can see each other, while in the other half

they cannot. In neither condition did they see each other’s maps. This dataset contains hand-annotated start

and end times for each word.

To prepare the corpus for our study, we started with all dialogues, forming an initial corpus with 20, 719

sentences (145, 483 words). We then discarded sentences with fewer than four words, producing a dataset

with 12, 025 sentences (132, 076 words). Next, we discarded any word that had been annotated as part of a

disfluency, producing a dataset with 11, 782 sentences (107, 759 words). Finally, we discarded all follower

utterances, leading to the dataset statistics in Table 4.

4.2. Models

We used the same basic modeling approach as in Analysis I, using the same model selection procedure

to first fit a control model, and then performing model selection to find a regression of the residual log

durations from the control model against the predictability factors. We estimated the language models in

the same fashion, using Good-Turing smoothing for the individual Visible and Non-visible regressions, and

interpolating language models to control for model fit for the pooled regression. For Unigram Probability,
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λ = 0.629 (the Visible model was weighted more heavily); for Preceding Context, λ = 0.489; and for

Following Context, λ = 0.484. The set of control predictors for Analysis II were essentially the same as the

control predictors for Analysis I. The corpus annotation provides the age of each talker, so we used the real

age of the talker. Only a small part of the maptask corpus has ToBI-style break index labels, so, as with the

Large Brent corpus, we assumed that utterance-final (-initial) words were the only prosodic phrase-final

(-initial) words. Because of the structure of the Map Task corpus and available metadata, Analysis II involved

more random effects. The model selection function considered random intercepts and slopes according to

sentence, talker, conversation, map, and talker birthplace.

4.3. Results

As in Analysis I, we first build individual predictability models for the Visible condition and the Non-

Visible condition. These individual models will provide an intuition for which effects are and are not present

in each Visibility condition. Similarly, to verify whether differences in patterns of significant effects are real,

we will fit a full model on both conditions, and see if interactions with Visibility are significant.

4.3.1. Visible and Non-Visible Individually

Results for the Non-Visible and Visible conditions are presented in Tables 5a and 5b, respectively. As

before, the response variable is (residual) log duration, and a negative coefficient corresponds to a shortening

effect as the predictor increases. Among the Non-Visible results of Table 5a, we see the expected shortening

effects of Unigram Probability, Preceding Context, and Following Context. Additionally, we see a lengthening

effect of First Mention, but it is not significant. Looking to the Visible results of Table 5b, we see what appears

to be a similar pattern, with shortening effects of Unigram Probability, Preceding Context, and Following

context, but First Mention was not added to the model.

These regressions suggest that the same effects exist, regardless of the presence of a visual channel.

However, it is still possible for there to be a difference in magnitude due to the presence of a visual channel.

We turn next to a pooled comparison to test for such a difference.

4.3.2. Pooled comparison

Similarly to Analysis I, we fit the pooled model on the concatenation of the Visible and Non-Visible

datasets, and set the fixed effects to be the predictability measures, Visibility, and interactions between the

fixed effects and Visibility, performing model search only among interactions and random effects.
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Table 5: Fixed effects for individual Visible and Non-Visible regressions, with χ2 statistics and p-values from model comparisons.

Predictability Term Coeff. χ2 p-val

(Intercept) 0.0002 0.1 0.9446

Unigram Prob. -0.0333 116.1 0.0001

Prec. Context -0.0109 89.1 0.0001

Foll. Context -0.0277 74.4 0.0001

First Mention 0.0053 2.9 0.0908

(a) Coefficients of the Invisible model.

Predictability Term Coeff. χ2 p-val

(Intercept) -0.0006 0.1 0.7770

Unigram Prob. -0.0261 61.0 0.0001

Prec. Context -0.0133 37.5 0.0001

Foll. Context -0.0257 128.0 0.0001

First Mention N/A N/A N/A

(b) Coefficients of the Visible model.

Table 6 presents coefficients and p-values from our final model. Among the main effects, representing an

average across the Visible and Non-Visible data, we see significant shortening effects of Unigram Probability,

Preceding and Following Context, but no effect of First Mention.

We see one interaction with Visibility, and it is a significant (p ≤ 0.05) positive interaction between

Visibility and Unigram Probability, indicating that any shortening effect of Unigram Probability is significantly

weaker in the Visible condition, and stronger in the Non-Visible condition. Thus, while all three predictability

measures have an effect, regardless of the presence or absence of a visual channel, Unigram Probability has a

weaker shortening effect in the presence of such a channel.

4.4. Discussion

This result reveals a difference in the magnitude of reduction between the Visible and Non-Visible cases;

while probable words are shorter in both cases, Unigram Probability has a smaller effect in the presence of a

visual channel. This result first indicates that the difference we found between ADS and IDS in Analysis I
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Table 6: Fixed effects, visibility coded with Visible as 1, with χ2 statistics and p-values from model comparisons.

Predictability Term Coeff. χ2 p-val

M
ai

n
eff

ec
ts

(Intercept) 0.0002 0.1 0.9176

Unigram Prob. -0.0280 197.5 0.0001

Prec. Context -0.0148 77.3 0.0001

Foll. Context -0.0288 240.7 0.0001

First Mention 0.0065 4.8 0.0280

Visibility -0.0001 0.1 0.9570

In
te

ra
ct

io
ns

Visibility × Unigram Prob. 0.0027 4.6 0.0318

Visibility × Prec. Context N/A N/A N/A

Visibility × Foll. Context N/A N/A N/A

Visibility × First Mention N/A N/A N/A

probably cannot be attributed to an effect of Visibility. The effect of Preceding Context appeared to disappear

in Visible IDS, but it did not change according to Visibility here; and the effect of Unigram Probability

weakened in Visible ADS compared to Non-Visible ADS, but did not change in the IDS/ADS regressions.

As with Analysis I, it is difficult to explain these results concisely with a spandrel account. We could

again propose that an effect, this time of Unigram Probability, weakened in the Visible condition, because

Visible dialogues are less cognitively demanding. However, in Analysis I, we saw that the effects of Local

Context disappeared for the putatively “easier” condition, while there was no change in the effect of Unigram

Probability. For this account to go through, then, we would need one version of it that explains why there is

a floor effect in production difficulty according to Local Context when the conversation topic is easy, and

a different version that explains why there is a floor effect in production difficulty according to Unigram

Probability when the listener is visible. Again, the spandrel view demands multiple accounts.

However, these results cohere under the efficiency account, because they suggest that these talkers

provided less redundancy overall in the Visible condition compared to the Non-Visible condition. As the

Visible condition is the condition with higher channel capacity, this result suggests that talkers provide more

acoustic redundancy to compensate for a lower channel capacity. Secondarily, we have established that the

differences between ADS and IDS cannot be attributed solely to visibility. Together, these results support a
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close relationship between predictability effects and communicative efficiency.

5. General Discussion

In our first analysis, we compared the predictability effects in speech directed to competent adult native

speakers to speech directed to prelinguistic infants, a difference of listener characteristics, and found reliable

differences according to listener type. In our second analysis, we compared the predictability effects that

arise when speech is the only communication channel to the predictability effects that arise when there is

an additional, specifically visual, communication channel. In this analysis, we found that the amount of

phonetic redundancy falls measurably when channel capacity increases. These results suggest that talkers

modulate predictability effects according to at least very coarse, salient, and easy-to-track listener and channel

characteristics, and that talkers can consider these characteristics in not just a high-level utterance planning

phase but during low-level articulation. This modulation is a natural prediction of efficiency accounts (Aylett

and Turk, 2004; Jaeger, 2010), but requires multiple independent spandrels under a non-adaptive account.

Thus, predictability effects probably reflect a tendency towards efficiency in an information-theoretic sense,

even if some talker-centric predictability effects might result from how neural hardware works.

5.1. Different notions of efficiency

The information-theoretic view of efficiency that we advocate here is not the only efficiency-based account

of predictability effects. In particular, Ferreira and Dell (2000) also appealed to efficiency in their explanation

of these effects. However, their notion of efficiency is different from the information-theoretic view, and

contrasts two different kinds of efficiency—efficiency “for the talker” and efficiency “for the listener.” To

illustrate, Ferreira and Dell focused on the case of optional function words (see also Ferreira, 2008; Roland

et al., 2006). For example, in English, the sentential complementizer that can often be omitted:

1. The coach knew you missed practice.

2. The coach knew that you missed practice.

Ferreira and Dell proposed two conflicting notions of efficiency that might drive talkers’ decisions. First,

“Availability Based Production” proposes that talkers choose between alternative forms by pronouncing the

one that is available first. If a talker can access you immediately after saying The coach knew, then the

talker pronounces it immediately (in “the principle of immediate mention,” Ferreira and Dell, 2000, p. 299),

and omits that. If, on the other hand, a talker cannot access you, they say that as “a grammatical ‘um’” to
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give their access system enough time to retrieve that. Ferreira and Dell interpret this as a strategy that is

efficient “for the talker,” because it minimizes production effort: pronouncing a word as soon as it is available

is presumably easier than accessing it and keeping it in storage for later pronunciation.

Second, “Ambiguity-Sensitive Production” points out that sentences are sometimes locally ambiguous

without the complementizer: the you of “The coach knew you” could be either a direct object or the subject

of a sentential complement, while the I of “The coach knew I” could only be the subject of a sentential

complement. Under Ambiguity-Sensitive Production, talkers pronounce complementizers in only those

sentences that would be locally ambiguous without one. Ferreira and Dell interpret this strategy as efficient

“for the listener,” because it reduces the amount of ambiguity a listener must deal with.

With these two notions of efficiency in hand, Ferreira and Dell propose that language production reflects

a trade-off between efficiency for the listener and efficiency for the talker, and conclude from a series

of experiments (also including Ferreira, 2003) that talkers do not consider potential ambiguities, instead

pronouncing “that” only to give access mechanisms enough time to provide the next word.

For the purposes of noisy-channel coding, however, we can see that what Availability Based Production

calls “efficiency for the talker” is not communicative efficiency. Optional that is a form of redundancy, since

it makes the signal longer without changing the message, and so, from an information-theoretic point of

view, serves the purpose of guarding against a communicative error in channel coding (Levy and Jaeger,

2007; Jaeger, 2010). If omitting that allows a talker to pronounce a subject immediately but leads to a

communication error, and the talker must speak again only to clarify the intended interpretation, then omitting

that was troublesome for both the talker and the listener. Moreover, clarifications will probably involve

signals that are longer than the original that because of the overhead of complying with grammaticality

constraints: saying that in at-risk sentences provides redundancy much more cleanly than a clarification with

the overhead, due to grammaticality, of starting with “No, I meant...” or similar. The “principle of immediate

mention” is thus at most about very short-term ease for the talker; it is not an efficiency principle.

While Ferreira and Dell (2000) and Ferreira (2003) do not find evidence that talkers pronounce redundant

that to avoid ambiguity, this result only holds when sentences are coded as “ambiguous” or “not ambiguous,”

a categorical notion of ambiguity that does not fit well with an information-theoretic approach. Studies that

rely on a gradient, statistical notion of ambiguity, such as the bias of a verb toward Direct Object or Sentential

Complement arguments, do find an effect of ambiguity on that-mentioning and other forms of syntactic

redundancy (Jaeger, 2006, 2010, 2011; Wasow et al., 2011). Additionally, while Jaeger (2006) and Jaeger
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(2010) do find effects of availability on that-mentioning, the magnitude of the availability effects is much

smaller than the effect of predictability (Jaeger, 2010, p. 35). Ferreira (2008) attributed this to a practice

effect (e.g. Sentential Complement structures are harder to access for a verb that rarely takes Sentential

Complements), but Jaeger (2013) pointed out that other similar phenomena (such as predictability-sensitive

contraction, Frank and Jaeger, 2008) cannot be understood as a practice effect.

5.2. Optimal or closer to optimal?

It should be noted that predictability effects reflect a tendency towards efficient codes. It is not at this

point clear that talkers actually achieve the optimal communication rate. In fact, there are reasons to think

it is unlikely that they do. Ferrer-i-Cancho et al. (2013) showed that, when communicating at the channel

capacity, signal characters are uniformly distributed and independent. We can view language as having

different notions of signal ‘character’ (e.g., phones, words, or something else), but all of the obvious options

are neither uniformly distributed nor independent. Moreover, this result implies that optimal codes cannot

be decoded incrementally, but humans do decode language incrementally (Altmann and Kamide, 1999;

Ito and Speer, 2008; Sedivy et al., 1999; Tanenhaus et al., 1995, 1996). Incremental decoding relies on

reliably associating sequences of signal characters with the same string of meaning characters across signals.

However, components of incremental linguistic meanings are not themselves uniformly and independently

distributed, so a reliable association between the same sequence of message characters and the same sequence

of signal characters would produce correlations between signal characters.

Another way of understanding this point about incrementality begins by noting that optimal encoding is

possible only by encoding an entire sequence of message characters at once (using a block code) and in fact

the proofs of optimality rely on encoding increasingly long sequences of message characters at once.8 If we

encode sequences of message characters, then the signal for one sequence may be completely different from

the signal for a very similar sequence. Such sequences must be encoded all at once, and also decoded all at

once, after observing the entire signal, rather than incrementally. To see why block coding is necessary to

approach optimality, remember from the Background section that the optimal code length for a message is its

negative log probability. This quantity will almost never be an integer, and so can be approached only by

8Arithmetic codes can be decoded incrementally while approaching optimality. However, arithmetic codes use a completely

different signal for the same message character in different parts of a message. Natural languages do not work like this. For example,

a word’s phonological form at the beginning of a sentence is largely the same as its form later in the sentence. If a code consistently

uses similar signals for the same component of a message, then block coding is necessary to approach theoretical limits.
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encoding multiple message characters at the same time. The same reasoning holds for channel coding, if

we view the “message characters” of channel coding to be the signal characters of the source code. Optimal

codes thus differ from human language in (at least) two important ways; the signal characters are uniformly

and independently distributed, and signals cannot be decoded incrementally.

One interesting point of speculation is that linguistic structure might result from a trade-off over evolution-

ary time between block-coding and incremental processing. Under this scenario, as our pre-linguistic ancestors

sought to communicate longer messages, the one-to-one symbol-meaning mapping of most non-linguistic

communication would be increasingly inadequate, introducing pressure towards information-theoretically

efficient communication. However, existing pressures for immediate interpretation would preclude fully

optimal block codes that cannot be decoded until the end of the utterance. These conflicting pressures were

adjudicated by developing a hierarchy of block codes operating over different time scales: a block code for

an entire turn would be optimal, but an amalgam of inter-related block codes for morphological paradigms,

syntactic categories, and so on, is pretty good. If this speculation is on the right track, communicative

pressures, in two fundamental and conflicting forms, would be central to the evolution of linguistic structure

rather than, as advocated by Berwick et al. (2013), “ancillary”.

In any case, the results presented above providing an important new view that the information-theoretic

framing of efficiency accounts provides the best explanation for predictability effects.

5.3. Future work

Our first analysis found that talkers considered listener characteristics in producing predictability effects.

While previous work had indicated that fine-grained listener characteristics may be too expensive to consider

during low-level articulation, our analysis indicated that coarser listener characteristics can be cheap enough

to consider during low-level articulation. One obvious future direction is to look at the ability of talkers to

consider less dramatic listener characteristics. For example, Uther et al. (2007) found that talkers produced

overall more redundant speech, with hyperarticulated vowels, when addressing foreigners. This suggests

some degree of adaptation of channel coding to foreignness, with talkers assuming a higher base-rate of noise,

and it would be interesting to see if talkers also adjust source-coding to foreignness.

Our second analysis found that talkers took advantage of the increased visual channel, but it remains

unclear how talkers used that channel. As mentioned in the introduction, Boyle et al. (1994) found that pairs

sought to establish eye contact during periods of difficulty; perhaps the visual channel simply allowed talkers

to identify when they had neglected to provide enough redundancy in advance.
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It is also unclear how the results from analysis 2 generalize to more realistic situations. The visual

arrangement of the Map Task set-up is fairly unnatural with the most useful visual information (the partner’s

map) hidden from view. More realistic studies on the use of the visual channel to communicate information

would investigate the role of gesture, for example, or the role of facial expressions.

5.4. Conclusion

Information theory provides a well-understood mathematical formalization for understanding language

behavior as a communicative endeavor. In this article, we have explored the implications of information

theory more fully, and shown how different kinds of predictability effects serve communicative goals in

different ways. Moreover, while some kinds of predictability effects are consistent with non-optimizing

access processes, others are more difficult to explain under this account, yet are closely tied to efficient

communication. We examined two kinds of communication-oriented predictability effects, and found evidence

that talkers adjust predictability effects according to listener characteristics and to the communicative scenario.

Our more detailed information-theoretic framing along with these results bolster the view that a drive towards

communication efficiency shapes language behavior, and fuels speculation that communicative pressures may

have precipitated linguistic structure itself.
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