
Journal of Machine Learning Research 11 (2010) 3053-3096 Submitted 5/10; Revised 9/10; Published 11/10

Inducing Tree-Substitution Grammars

Trevor Cohn tcohn@dcs.shef.ac.uk

Department of Computer Science

University of Sheffield

Sheffield S1 4DP, UK

Phil Blunsom pblunsom@comlab.ox.ac.uk

Computing Laboratory

University of Oxford

Oxford OX1 3QD, UK

Sharon Goldwater sgwater@inf.ed.ac.uk

School of Informatics

University of Edinburgh

Edinburgh EH8 9AB, UK

Editor: Dorota Glowacka

Abstract

Inducing a grammar from text has proven to be a notoriously challenging learning task
despite decades of research. The primary reason for its difficulty is that in order to induce
plausible grammars, the underlying model must be capable of representing the intricacies
of language while also ensuring that it can be readily learned from data. The majority of
existing work on grammar induction has favoured model simplicity (and thus learnability)
over representational capacity by using context free grammars and first order dependency
grammars, which are not sufficiently expressive to model many common linguistic con-
structions. We propose a novel compromise by inferring a probabilistic tree substitution

grammar, a formalism which allows for arbitrarily large tree fragments and thereby bet-
ter represent complex linguistic structures. To limit the model’s complexity we employ
a Bayesian non-parametric prior which biases the model towards a sparse grammar with
shallow productions. We demonstrate the model’s efficacy on supervised phrase-structure
parsing, where we induce a latent segmentation of the training treebank, and on unsuper-
vised dependency grammar induction. In both cases the model uncovers interesting latent
linguistic structures while producing competitive results.

Keywords: grammar induction, tree substitution grammar, Bayesian non-parametrics,
Pitman-Yor process, Chinese restaurant process

1. Introduction

Inducing a grammar from a corpus of strings is one of the central challenges of compu-
tational linguistics, as well as one of its most difficult. Statistical approaches circumvent
the theoretical problems with learnability that arise with non-statistical grammar learning
(Gold, 1967), and performance has improved considerably since the early statistical work of
Merialdo (1994) and Carroll and Charniak (1992), but the problem remains largely unsolved.
Perhaps due to the difficulty of this unsupervised grammar induction problem, a more recent

c©2010 Trevor Cohn, Phil Blunsom and Sharon Goldwater.

Cohn, Blunsom and Goldwater

line of work has focused on a somewhat easier problem, where the input consists of a tree-
bank corpus, usually in phrase-structure format, and the task is to induce a grammar from
the treebank that yields better parsing performance than the basic maximum-likelihood
probabilistic context free grammar (PCFG). Examples of work on this kind of grammar
induction, which we will refer to as grammar refinement because the learned grammars can
be viewed as refinements of the treebank PCFG, include the symbol-splitting approach of
Petrov and Klein (2007) and the tree-substitution grammars of Data-Oriented Parsing (Bod
et al., 2003; Bod, 2003). Although the grammars induced by these systems are latent, the
resulting parsers are supervised in the sense that the input to the learning system consists
of strings and parses, and the goal is to learn how to parse new strings. Consequently, these
systems do not remove the necessity of hand-annotating a large corpus, but they can po-
tentially reduce the amount of engineering effort required to develop a successful statistical
parser for a new language or domain, by obviating the need for complex hand-engineering
of features, independence assumptions, and backoff schemes.

The desire for automatic grammar refinement methods highlights one possible reason
why unsupervised grammar induction is so difficult. Simple models of syntactic structure
such as hidden Markov models (HMMs) or PCFGs make strong independence assumptions
that fail to capture the true complexity of language, so these models tend to learn something
other than the desired structure when used in an unsupervised way. On the other hand, more
complex models with, for example, head-lexicalized rules have too many free parameters
to be learned successfully from unannotated data without the use of sophisticated backoff
schemes. Thus, finding the right balance between learnability and complexity is critical to
developing a successful model of grammar induction. We posit that this balance can be
achieved by using a rich grammatical formalism coupled with a nonparametric Bayesian
prior to limit the model’s complexity. In this way the model can learn sufficiently complex
structure to model the data, but will only do so when there is enough evidence to support
such complexity; otherwise it will generalise to simpler structures. The model can therefore
learn plausible structures from either small or large training samples.

We present here a model for automatically learning a Probabilistic Tree Substitution

Grammar (PTSG) from either a treebank or strings. A PTSG is an extension to the PCFG
in which nonterminals can rewrite as entire tree fragments (elementary trees), not just im-
mediate children (Joshi, 2003; Bod et al., 2003). These large fragments can be used to
encode non-local context, such as argument frames, gender agreement and idioms. A fun-
damental problem with PTSGs is that they are difficult to estimate, even in the supervised
(grammar refinement) scenario where treebanked data is available. This is because tree-
banks are typically not annotated with their TSG derivations—how to decompose a tree
into elementary tree fragments—instead the derivation needs to be inferred.

Probably the best-known previous work on inducing PTSGs is within the framework of
Data-Oriented Parsing (DOP; Bod et al., 2003), which, like our model, has been applied in
both supervised and unsupervised settings (Bod, 2003; Prescher et al., 2004; Zollmann and
Sima’an, 2005; Zuidema, 2007; Bod, 2006).1 DOP seeks to use as TSG productions all sub-
trees of the training corpus, an approach which makes parameter estimation difficult and led
to serious problems with early estimation methods (Johnson, 2002), namely inconsistency

1. Tree adjoining grammar induction (Chiang and Bikel, 2002; Xia, 2002) tackles a similar learning problem
in the supervised case.

3054

Inducing Tree Substitution Grammars

for DOP1 (Bod, 2003) and overfitting of the maximum likelihood estimate (Prescher et al.,
2004). More recent work on DOP estimation has tackled these problems, drawing from
estimation theory to solve the consistency problem (Prescher et al., 2004; Zollmann and
Sima’an, 2005), or using a grammar brevity heuristic to avoid the degeneracy of the MLE
(Zuidema, 2007). Our work differs from DOP in that we use an explicit generative model of
TSG and a Bayesian prior for regularisation. The prior is nonparametric, which allows the
model to learn a grammar of the appropriate complexity for the size of the training data.
A further difference is that instead of seeking to use all subtrees from the training data in
the induced TSG, our prior explicitly biases against such behaviour, such that the model
learns a relatively compact grammar.2 A final minor difference is that, because our model
is generative, it assigns non-zero probability to all possible subtrees, even those that were
not observed in the training data. In practice, unobserved subtrees will have very small
probabilities.

We apply our model to the two grammar induction problems discussed above:

• Inducing a TSG from a treebank. This regime is analogous to the case of super-
vised DOP, where we induce a PTSG from a corpus of parsed sentences, and use this
PTSG to parse new sentences. We present results using two different inference meth-
ods, training on either a subset of WSJ or on the full treebank. We report performance
of 84.7% when training on the full treebank, far better than the 64.2% for a PCFG
parser. These gains in accuracy are obtained with a grammar that is somewhat larger
than the PCFG grammar, but still much smaller than the DOP all-subtrees grammar.

• Inducing a TSG from strings. As in other recent unsupervised parsing work,
we adopt a dependency grammar (Mel′čuk, 1988) framework for the unsupervised
regime. We use the split-head construction (Eisner, 2000; Johnson, 2007) to map
between dependency and phrase-structure grammars, and apply our model to strings
of POS tags. We report performance of 65.9% on the standard WSJ≤10 data set,
which is statistically tied with the best reported result on the task and considerably
better than the EM baseline which obtains 46.1%. When evaluated on test data with
no restriction on sentence length—a more realistic setting—our approach significantly
improves the state-of-the-art.

Our work displays some similarities to previous work on both the grammar refinement
and unsupervised grammar induction problems, but also differs in a number of ways. Aside
from DOP, which we have already discussed, most approaches to grammar refinement can be
viewed as symbol-splitting. That is, they allow each nonterminal to be split into a number of
subcategories. The most notable examples of the symbol-splitting approach include Petrov
et al. (2006), who use a likelihood-based splitting and merging algorithm, and Liang et al.
(2007) and Finkel et al. (2007), who develop nonparametric Bayesian models. In theory,
any PTSG can be recast as a PCFG with a sufficiently large number of subcategories
(one for each unique subtree), so the grammar space of our model is a subspace of the

2. The prior favours compact grammars by assigning the majority of probability mass to few productions,
and very little (but non-zero) mass to other productions. In practice we use Markov Chain Monte Carlo
sampling for inference which results in sparse counts with structural zeros, thus permitting efficient
representation.

3055

Cohn, Blunsom and Goldwater

symbol-splitting grammars. However, the number of nonterminals required to recreate our
PTSG grammars in a PCFG would be exorbitant. Consequently, our model should be
better able to learn specific lexical patterns, such as full noun phrases and verbs with their
subcategorisation frames, while theirs are better suited to learning subcategories with larger
membership, such as the days of the week or count versus mass nouns. The approaches
are largely orthogonal, and therefore we expect that a PTSG with nonterminal refinement
could capture both types of concept in a single model, thereby improving performance over
either approach alone.

For the unsupervised grammar induction problem we adopt the Dependency Model
with Valency (DMV; Klein and Manning, 2004) framework that is currently dominant for
grammar induction (Cohen et al., 2009; Cohen and Smith, 2009; Headden III et al., 2009;
Cohen et al., 2010; Spitkovsky et al., 2010). The first grammar induction models to surpass
a trivial baseline concentrated on the task of inducing unlabelled bracketings for strings and
were evaluated against treebank bracketing gold standard (Clark, 2001; Klein and Manning,
2002). Subsequently the DMV model has proved more attractive to researchers, partly
because it defined a well founded generative stochastic grammar, and partly due to the
popularity of dependency trees in many natural language processing (NLP) tasks. Recent
work on improving the original DMV model has focused on three avenues: smoothing the
head-child distributions (Cohen et al., 2009; Cohen and Smith, 2009; Headden III et al.,
2009), initialisation (Headden III et al., 2009; Spitkovsky et al., 2010), and extending the
conditioning distributions (Headden III et al., 2009). Our work falls into the final category:
by extending the DMV CFG model to a TSG we increase the conditioning context of head-
child decisions within the model, allowing the grammar to directly represent groups of linked
dependencies.

Adaptor Grammars (Johnson et al., 2007b) are another recent nonparametric Bayesian
model for learning hierarchical structure from strings. They instantiate a more restricted
class of tree-substitution grammar in which each subtree expands completely, with only
terminal symbols as leaves. Since our model permits nonterminals as subtree leaves, it is
more general than Adaptor Grammars. Adaptor Grammars have been applied successfully
to induce labeled bracketings from strings in the domains of morphology and word segmen-
tation (Johnson, 2008a,b; Johnson and Goldwater, 2009) and very recently for dependency
grammar induction (Cohen et al., 2010). The latter work also introduced a variational
inference algorithm for Adaptor Grammar inference; we use a sampling method here.

The most similar work to that presented here is our own previous work (Cohn et al.,
2009; Cohn and Blunsom, 2010), in which we introduced a version of the model described
here, along with two other papers that independently introduced similar models (Post and
Gildea, 2009; O’Donnell et al., 2009). Cohn et al. (2009) and Post and Gildea (2009) both
present models based on a Dirichlet process prior and provide results only for the problem of
grammar refinement, whereas in this article we develop a newer version of our model using
a Pitman-Yor process prior, and also show how it can be used for unsupervised learning.
These extensions are also reported in our recent work on dependency grammar induction
(Blunsom and Cohn, 2010), although in this paper we present a more thorough exposition
of the model and experimental evaluation. O’Donnell et al. (2009) also use a Pitman-Yor
process prior (although their model is slightly different from ours) and present unsupervised
results, but their focus is on cognitive modeling rather than natural language processing,

3056

Inducing Tree Substitution Grammars

so their results are mostly qualitative and include no evaluation of parsing performance on
standard corpora.

To sum up, although previous work has included some aspects of what we present here,
this article contains several novel contributions. Firstly we present a single generative model
capable of both supervised and unsupervised learning, to induce tree substitution grammars
from either trees or strings. We demonstrate that in both settings the model outperforms
maximum likelihood baselines while also achieving results competitive with the best current
systems. The second main contribution is to provide a thorough empirical evaluation in both
settings, examining the effect of various conditions including data size, sampling method
and parsing algorithm, and providing an analysis of the structures that were induced.

In the remainder of this article, we briefly review PTSGs in Section 2 before presenting
our model, including versions for both constituency and dependency parsing, in Section 3.
In Section 4 we introduce two different Markov Chain Monte Carlo (MCMC) methods for
inference: a local Gibbs sampler and a blocked Metropolis-Hastings sampler. The local
sampler is much simpler but is only applicable in the supervised setting, where the trees
are observed, whereas the Metropolis-Hastings sampler can be used in both supervised
and unsupervised settings and for parsing. We discuss how to use the trained model for
parsing in Section 5, presenting three different parsing algorithms. Experimental results for
supervised parsing are provided in Section 6, where we compare the different training and
parsing methods. Unsupervised dependency grammar induction experiments are described
in Section 7, and we conclude in Section 8.

2. Tree-substitution grammars

A Tree Substitution Grammar3 (TSG) is a 4-tuple, G = (T,N, S,R), where T is a set
of terminal symbols, N is a set of nonterminal symbols, S ∈ N is the distinguished root

nonterminal and R is a set of productions (rules). The productions take the form of el-

ementary trees—tree fragments4 of height ≥ 1—where each internal node is labelled with
a nonterminal and each leaf is labelled with either a terminal or a nonterminal. Nonter-
minal leaves are called frontier nonterminals and form the substitution (recursion) sites
in the generative process of creating trees with the grammar. For example, in Figure 1b
the S → NP (VP (V hates) NP) production rewrites the S nonterminal as the fragment
(S NP (VP (V hates) NP)).5 This production has the two NPs as its frontier nonterminals.

A derivation creates a tree by starting with the root symbol and rewriting (substituting)
it with an elementary tree, then continuing to rewrite frontier nonterminals with elementary
trees until there are no remaining frontier nonterminals. We can represent derivations as
sequences of elementary trees e, where each elementary tree is substituted for the left-most
frontier nonterminal of the tree being generated. Unlike Context Free Grammars (CFGs) a

3. A TSG is a Tree Adjoining Grammar (TAG; Joshi, 2003) without the adjunction operator, which allows
insertions at internal nodes in the tree. This operation allows TAGs to describe the set of mildly context
sensitive languages. A TSG in contrast can only describe the set of context free languages.

4. Elementary trees of height 1 correspond to productions in a context free grammar.
5. We use bracketed notation to represent tree structures as linear strings. The parenthesis indicate the

hierarchical structure, with the first argument denoting the node label and the following arguments de-
noting child trees. The nonterminals used in our examples denote nouns, verbs, etc., and their respective
phrasal types, using a simplified version of the Penn treebank tag set (Marcus et al., 1993).

3057

Cohn, Blunsom and Goldwater

(a)

S

NP

NP

George

VP

V

hates

NP

NP

broccoli

(b)

S

NP VP

V

hates

NP

NP

George

NP

broccoli

(c)

S

NP

George

VP

V

V

hates

NP

broccoli

(d)

S

NP

George

VP

V NP

broccoli

V

hates

Figure 1: Example derivations for the same tree, where arrows indicate substitution sites.
The left figures (a) and (c) show two different derivations and the right figures (b) and (d)
show the elementary trees used in the respective derivation.

syntax tree may not uniquely specify the derivation, as illustrated in Figure 1 which shows
two derivations using different elementary trees to produce the same tree.

A Probabilistic Tree Substitution Grammar (PTSG), like a PCFG, assigns a probability
to each rule in the grammar, denoted P (e|c) where the elementary tree e rewrites nontermi-
nal c. The probability of a derivation e is the product of the probabilities of its component
rules. Thus if we assume that each rewrite is conditionally independent of all others given
its root nonterminal c (as in standard TSG models),6 then we have

P (e) =
∏

c→e∈e

P (e|c) . (1)

The probability of a tree, t, and string of words, w, are given by

P (t) =
∑

e:tree(e)=t

P (e) and

P (w) =
∑

t:yield(t)=w

P (t) ,

respectively, where tree(e) returns the tree for the derivation e and yield(t) returns the
string of terminal symbols at the leaves of t.

6. Note that this conditional independence does not hold for our model because (as we will see in Section 3)
we integrate out the model parameters.

3058

Inducing Tree Substitution Grammars

George hates broccoli ROOT

Figure 2: An unlabelled dependency analysis for the example sentence George hates broccoli.
The artificial Root node denotes the head of the sentence.

Estimating a PTSG requires learning the sufficient statistics for P (e|c) in (1) based
on a training sample. Estimation has been done in previous work in a variety of ways,
for example using heuristic frequency counts (Bod, 1993), a maximum likelihood estimate
(Bod, 2000) and heldout estimation (Prescher et al., 2004). Parsing involves finding the
most probable tree for a given string, that is, arg maxt P (t|w). This is typically simplified to
finding the most probable derivation, which can be done efficiently using the CYK algorithm.
A number of improved algorithms for parsing have been reported, most notably a Monte-
Carlo approach for finding the maximum probability tree (Bod, 1995) and a technique for
maximising labelled recall using inside-outside inference in a PCFG reduction grammar
(Goodman, 1998).

2.1 Dependency Grammars

Due to the wide availability of annotated treebanks, phrase structure grammars have become
a popular formalism for building supervised parsers, and we will follow this tradition by
using phrase structure trees from the Wall Street Journal corpus (Marcus et al., 1993) as the
basis for our supervised grammar induction experiments (grammar refinement). However,
the choice of formalism for unsupervised induction is a more nuanced one. The induction
of phrase-structure grammars is notoriously difficult, since these grammars contain two
kinds of ambiguity: the constituent structure and the constituent labels. In particular,
constituent labels are highly ambiguous: firstly we don’t know a priori how many there are,
and secondly labels that appear high in a tree (e.g., an S category for a clause) rely on the
correct inference of all the latent labels above and below them. Much of the recent work
on unsupervised grammar induction has therefore taken a different approach, focusing on
inducing dependency grammars (Mel′čuk, 1988). In applying our model to unsupervised
grammar induction we follow this trend by inducing a dependency grammar. Dependency
grammars represent the structure of language through directed links between words, which
relate words (heads) with their syntactic dependents (arguments). An example dependency
tree is shown in Figure 2, where directed arcs denote each word’s arguments (e.g., hates has
two arguments, ‘George’ and ‘broccoli’). Dependency grammars are less ambiguous than
phrase-structure grammars since the set of possible constituent labels (heads) is directly
observed from the words in the sentence, leaving only the induction challenge of determining
the tree structure. Most dependency grammar formalisms also include labels on the links
between words, denoting, for example, subject, object, adjunct etc. In this work we focus on
inducing unlabelled directed dependency links and assume that these links form a projective
tree (there are no crossing links, which correspond to discontinuous constituents). We leave
the problem of inducing labeled dependency grammars to further work.

3059

Cohn, Blunsom and Goldwater

Although we will be inducing dependency parses in our unsupervised experiments, we
define our model in the following section using the formalism of a phrase-structure grammar.
As detailed in Section 7, the model can be used for dependency grammar induction by using
a specially designed phrase-structure grammar to represent dependency links.

3. Model

In defining our model, we focus on the unsupervised case, where we are given a corpus of
text strings w and wish to learn a tree-substitution grammar G that we can use to infer the
parses for our strings and to parse new data. (We will handle the supervised scenario, where
we are given observed trees t, in Section 4; we treat it as a special case of the unsupervised
model using additional constraints during inference.) Rather than inferring a grammar
directly, we go through an intermediate step of inferring a distribution over the derivations
used to produce w, that is, a distribution over sequences of elementary trees e that compose
to form w as their yield. We will then essentially read the grammar off the elementary trees,
as described in Section 5. Our problem therefore becomes one of identifying the posterior
distribution of e given w, which we can do using Bayes’ Rule,

P (e|w) ∝ P (w|e)P (e) .

Note that any sequence of elementary trees uniquely specifies a corresponding sequence of
words: those words that can be read off the leaves of the elementary trees in sequence.
Therefore, given a sequence of elementary trees e, P (w|e) either equals 1 (if w is consistent
with e) or 0 (otherwise). Thus, in our model, all the work is done by the prior distribution
over elementary trees,

P (e|w) ∝ P (e) δ(w(e),w) ,

where δ is the Kronecker delta and w(e) = yield(tree(e)) returns the string yield of the tree
defined by the derivation e.

Because we have no way to know ahead of time how many elementary trees might be
needed to account for the data, we use a nonparametric Bayesian prior, specifically the
Pitman-Yor process (PYP) (Pitman, 1995; Pitman and Yor, 1997; Ishwaran and James,
2003), which is a generalization of the more widely known Dirichlet process (Ferguson,
1973). Drawing a sample from a PYP (or DP) yields a probability distribution G with
countably infinite support. The PYP has three parameters: a discount parameter a, a
strength parameter b, and a base distribution PE. Informally, the base distribution deter-
mines which items will be in the support of G (here, we will define PE as a distribution over
elementary trees, so that G is also a distribution over elementary trees), and the discount
and strength parameters a and b determine the shape of G. The discount parameter a

ranges from 0 to 1; when a = 0, the PYP reduces to a Dirichlet process, in which case the
strength parameter b is known as the concentration parameter and is usually denoted with
α. We discuss the roles of a and b further below.

Assuming an appropriate definition for PE (we give a formal definition below), we can
use the PYP to define a distribution over sequences of elementary trees e = e1 . . . en as

3060

Inducing Tree Substitution Grammars

5

5−a
9+b

1−a
9+b

2−a
9+b

1−a
9+b

4a
9+b

. . .1 2 3 4

Figure 3: An example of the Pitman-Yor Chinese restaurant process with z−10 =
(1, 2, 1, 1, 3, 1, 1, 4, 3). Black dots indicate the number of customers sitting at each table,
and the value listed below table k is P (z10 = k|z−10).

follows:

G|a, b, PE ∼ PYP(a, b, PE)

ei|G ∼ G . (2)

In this formulation, G is an infinite distribution over elementary trees drawn from the
PYP prior, and the ei are drawn iid from G. However, since it is impossible to explicitly
represent an infinite distribution, we integrate over possible values of G, which induces
dependencies between the ei. Perhaps the easiest way to understand the resulting distri-
bution over e is through a variant of the Chinese restaurant process (CRP; Aldous, 1985;
Pitman, 1995) that is often used to explain the Dirichlet process. Imagine a restaurant
with an infinite number of tables, each with an infinite number of seats. Customers enter
the restaurant one at a time and seat themselves at a table. If zi is the index of the table
chosen by the ith customer, then the Pitman-Yor Chinese Restaurant Process (PYCRP)
defines the distribution

P (zi = k|z−i) =

n−

k
−a

i−1+b
1 ≤ k ≤ K−

K−a+b
i−1+b

k = K− + 1
,

where z−i is the seating arrangement of the i − 1 previous customers, n−
k is the number of

customers in z−i who are seated at table k, K− = K(z−i) is the total number of tables
in z−i, and z1 = 1 by definition. Figure 3 illustrates. When a = 0, this process reduces
to the standard Chinese restaurant process. Like the CRP, the PYCRP is exchangeable
and produces a power-law distribution on the number of customers at each table (Pitman,
2006). The hyperparameters a and b together control the manner of the clustering, although
the difference between the two is rather subtle. A high value of b will bias towards more
clusters irrespective of their individual sizes, only accounting for their aggregate size. In
contrast a large a → 1 will bias the clustering towards smaller individual clusters.

3061

Cohn, Blunsom and Goldwater

The PYCRP produces a sequence of integers z whose joint probability is

P (z) =
n∏

i=1

P (zi|z1...i−1)

= 1 ·

n∏

i=2

P (zi|z1...i−1)

=

n−1∏

j=1

1

j + b

K(z)−1
∏

k=1

(ka + b)

K(z)
∏

k=1

n−

k
−1
∏

j=1

(j − a)

=
Γ(1 + b)

Γ(n + b)

(
K−1∏

k=1

(ka + b)

)(
K∏

k=1

Γ(n−
k − a)

Γ(1 − a)

)

, (3)

where K is the total number of tables in z and Γ is the gamma function. In order to produce
a sequence of elementary trees e we need to introduce a second step in the process. We
can do so by imagining that each table in the restaurant is labelled with an elementary
tree, with ℓ(z) = ℓ1 . . . ℓK being the trees labelling each table. Whenever a customer sits
at a previously unoccupied table, a label is chosen for that table according to the base
distribution PE, and this label is used by all following customers at that table, as illustrated
in Figure 4. We define ei to be ℓzi

, the label of the table chosen by the ith customer. This
yields the following conditional distribution on ei:

P (ei = e|z−i, ℓ(z−i)) =

K(z−i)∑

k=1

δ(ℓk, e)
n

(z−i)
k − a

i − 1 + b
+

K(z−i)a + b

i − 1 + b
PE(e)

=
n−

e − Ke(z−i)a + (K(z−i)a + b)PE(e)

i − 1 + b
, (4)

where K−
e is the number of tables labelled with e in z−i, and δ is the Kronecker delta. The

probability of an entire sequence of elementary trees is

P (e) =
∑

z,ℓ

P (e, z, ℓ) ,

where P (e, z, ℓ) = 0 except when ℓzi
= ei for all i, in which case

P (e, z, ℓ) = P (z, ℓ) = P (z)P (ℓ|z)

=
Γ(1 + b)

Γ(n + b)

(
K−1∏

k=1

(ka + b)

)(
K∏

k=1

Γ(n−
k − a)

Γ(1 − a)
PE(ℓk)

)

,

where K is the total number of tables in z.

Equation 4 shows that, like other PYP and DP models, this model can be viewed as
a cache model, where ei can be generated in one of two ways: by drawing from the base
distribution or by drawing from a cache of previously generated elementary trees, where the
probability of any particular elementary tree is proportional to the discounted frequency of

3062

Inducing Tree Substitution Grammars

S

NP VP
. . .

S

NP VP

VP

V NP

broccoli

PP

IN

in

NP

Figure 4: The Pitman-Yor process, illustrated as a labelled Chinese restaurant pro-
cess. In this example, z−10 = (1, 2, 1, 1, 3, 1, 1, 4, 3) and each table k is labelled with
an elementary tree ℓk. Black dots indicate the number of occurrences of each tree in
e = (ℓ1, ℓ2, ℓ1, ℓ1, ℓ3, ℓ1, ℓ1, ℓ4, ℓ3). In this illustration, which corresponds to the model given
in (2), a single Pitman-Yor process is used to generate all elementary trees, so the trees
do not necessarily fit together properly. Our complete model, defined in (5), would have a
separate Pitman-Yor restaurant for each root category.

that tree. This view makes it clear that the model embodies a “rich-get-richer” dynamic
in which a few elementary trees will occur with high probability, but many will occur only
once or twice, as is typical of natural language.

In the model just defined, a single PYP generates all of the elementary trees in e. Notice,
however, that these elementary trees might not tile together properly to create full syntax
trees. For example, in Figure 4, e1 = (S NP VP) and e2 = (PP (IN in) NP), where the first
substitution site in e1 is an NP, but the root of e2 is a PP, so e2 cannot be used to expand
e1. To solve this problem, we modify the model so that there is a separate PYP for each
non-terminal category c, with a base distribution conditioned on c. The distribution over
elementary trees with root category c is defined as

Gc|ac, bc, PE ∼ PYP(ac, bc, PE(·|c))

e|c,Gc ∼ Gc , (5)

where PE(·|c) is a distribution over the infinite space of elementary trees rooted with c, and
ac and bc are the PYP hyper-parameters for non-terminal c. We elect not to tie together the
values of these hyper-parameters as these control the tendency to infer larger or smaller sets
of elementary trees from the observed data; we expect the distribution over productions to
differ substantially between non-terminals. To generate e, we now draw e1 from GS , giving
us an elementary tree with frontier nodes c1 . . . cm. We then draw e2 . . . em in turn from
Gc1 . . . Gcm . We continue in this fashion until a full tree is generated, at which point we
can start again with a draw from GS .

Integrating over Gc, we obtain the following distribution over ei, now conditioned on its
root category as well as the previously generated table labels and assignments:

P (ei = e|c, z−i, ℓ(z−i)) =
n−

e − K−
e ac + (K−

c ac + bc)PE(e|c)

n−
c + bc

, (6)

where K−
c =

∑

e:root(e)=c K−
e is the total number of tables for nonterminal c, n−

e is the

number of times e has been used to rewrite c and n−
c =

∑

e:root(e)=c n−
e is the total count of

3063

Cohn, Blunsom and Goldwater

rules rewriting c. As before, the − superscript denotes that the counts are calculated over
the previous elementary trees, e−i, and their seating arrangements, z−i.

Finally, we turn to the definition of the base distribution over elementary trees, PE.
Recall that in an elementary tree, each internal node is labelled with a non-terminal category
symbol and each frontier (leaf) node is labelled with either a non-terminal or a terminal
symbol. Given a probabilistic context-free grammar R, we assume that elementary trees are
generated (conditioned on the root non-terminal c) using the following generative process.
First, choose a PCFG production c → α for expanding c according to the distribution given
by R. Next, for each non-terminal in α decide whether to stop expanding (creating a non-
terminal frontier node, also known as a substitution site) or to continue expanding. If the
choice is to continue expanding, a new PCFG production is chosen to expand the child,
and the process continues recursively. The generative process completes when the frontier
is composed entirely of substitution sites and terminal symbols.

Assuming a fixed distribution PC over the rules in R, this generative process leads to
the following distribution over elementary trees:

PE(e|c) =
∏

i∈I(e)

(1 − sci
)
∏

f∈F (e)

scf

∏

c′→α∈e

PC(α|c′) , (7)

where I(e) are the set of internal nodes in e excluding the root, F (e) are the set of frontier
non-terminal nodes, ci is the non-terminal symbol for node i and sc is the probability of
stopping expanding a node labelled c. We treat sc as a parameter which is estimated during
training, as described in Section 4.3. In the supervised case it is reasonable to assume that
PC is fixed; we simply use the maximum-likelihood PCFG distribution estimated from the
training corpus (i.e., PC(α|c′) is simply the relative frequency of the rule c′ → α). In the
unsupervised case, we will infer PC; this requires extending the model to assume that PC is
itself drawn from a PYP prior with a uniform base distribution. We describe this extension
below, along with its associated changes to equation 14.

The net effect of our base distribution is to bias the model towards simple rules with a
small number of internal nodes. The geometric increase in cost associated with the stopping
decisions discourages the model from using larger rules; for these rules to be included
they must occur very frequently in the corpus. Similarly, rules which use high-probability
(frequent) CFG productions are favoured. It is unclear if these biases are ideal: we anticipate
that other, more sophisticated distributions would improve the model’s performance.

In the unsupervised setting we no longer have a training set of annotated trees and
therefore do not have a PCFG readily available to use as the base distribution in Equation 7.
For this reason we extend the previous model to a two level hierarchy of PYPs. As before, the
topmost level is defined over the elementary tree fragments (Gc) with the base distribution
(PE) assigning probability to the infinite space of possible fragments. The model differs from
the supervised one by defining PC in (7) using a PYP prior over CFG rules. Accordingly
the model can now infer a two level hierarchy consisting of a PCFG embedded within a
TSG, compared to the supervised parsing model which only learnt the TSG level with a

3064

Inducing Tree Substitution Grammars

fixed PCFG. Formally, each CFG production is drawn from7

Hc|a
′
c, b

′
c ∼ PYP(a′c, b

′
c,Uniform(·|c))

α|c,Hc ∼ Hc , (8)

where a′c and b′c are the PYP hyper-parameters and Uniform(·|c) is a uniform distribution
over the space of rewrites for non-terminal c.8 As before, we integrate out the model
parameters, Hc. Consequently draws from PC are no longer iid but instead are tied in the
prior, and the probability of the sequence of component CFG productions {c′ → α ∈ e}
now follows a Pitman-Yor Chinese Restaurant Process.

The CFG level and TSG level PYCRPs are connected as follows: every time an ele-
mentary tree is assigned to a new table in the TSG level, each of its component CFG rules
are drawn from the CFG level prior. Note that, just as elementary trees are divided into
separate restaurants at the TSG level based on their root categories, CFG rules are divided
into separate restaurants at the CFG level based on their left-hand sides. Formally, the
probability of rj , the jth CFG rule in the sequence, is given by

PC(rj = r|cj = c, z′−j , ℓ
′
−j) =

n′−
r − K ′−

r a′c + (K ′−
c a′c + b′c)

1
|Rc|

K ′−
c + b′c

, (9)

where cj is the left-hand side of rj; z′−j and ℓ
′
−j are the table assignments and table labels

in the CFG-level restaurants (we use prime symbols to indicate variables pertaining to the
CFG level); n′−

r is the number of times rule r is used in any table label in a TSG restaurant
(equivalently, the number of customers at tables labelled r in the CFG restaurants); K ′−

r

and K ′−
c =

∑

r:root(r)=c K ′−
r are the CFG-level table counts for r and all rules rewriting c,

respectively; and Rc is the set of CFG productions which can rewrite c. This formulation
reflects that we now have multiple tied restaurants, and each time an elementary tree opens
a new table in a top-level restaurant all its rules are considered to have entered their own
respective PC restaurants (according to their root c). Accordingly the CFG-level customer
count, n′−

r , is the number of occurrences of r in the elementary trees that label the tables
in the TSG restaurants (excluding rj). Thus, in the unsupervised case, the product of
rule probabilities (the final factor) in Equation (7) is computed by multiplying together the
conditional probability of each rule (9) given the previous ones.

4. Training

We present two alternative algorithms for training our model, both based on Markov chain
Monte Carlo techniques, which produce samples from the posterior distribution of the model
by iteratively resampling the values of the hidden variables (tree nodes). The first algorithm
is a local sampler, which operates by making a local update to a single tree node in each
sampling step. The second algorithm is a blocked sampler, which makes much larger moves

7. As we are using a finite base distribution over CFG productions, we could use a Dirichlet instead of the
PYP presented in (8). However we elect to use a PYP because it is more general, having additional
expressive power from its discounting behaviour.

8. In our experiments on unsupervised dependency parsing the space of rewrites varied depending on c,
and can be as large as the set of part-of-speech tags. See Section 7 for details.

3065

Cohn, Blunsom and Goldwater

(a)

S

NP

NP

George

VP

V

hates

NP

NP

broccoli

(b)

S

NP,1

George

VP,0

V,0

hates

NP,1

broccoli

Figure 5: Gibbs sampler state (b) corresponding to the example derivation (a) (reproduced
from Figure 1a). Each node is labelled with its substitution variable.

by sampling analyses for full sentences, which should improve the mixing over the local
sampler. Importantly the blocked sampler is more general, being directly applicable to both
supervised and unsupervised settings (and for parsing test sentences, which is equivalent to
an unsupervised setting) while the local sampler is only applicable for supervised learning,
where the trees are observed. We now present the two sampling methods in further detail.

4.1 Local Sampler

The local sampler is designed specifically for the supervised scenario, and samples a TSG
derivation for each tree by sampling local updates at each tree node. It uses Gibbs sampling
(Geman and Geman, 1984), where random variables are repeatedly sampled conditioned on
the current values of all other random variables in the model. The actual algorithm is anal-
ogous to the Gibbs sampler used for inference in the Bayesian model of word segmentation
presented by Goldwater et al. (2006); indeed, the problem of inferring the derivations e
from t can be viewed as a segmentation problem, where each full tree must be segmented
into one or more elementary trees. To formulate the local sampler, we associate a binary
variable xd ∈ {0, 1} with each non-root internal node, d, of each tree in the training set,
indicating whether that node is a substitution point (xd = 1) or not (xd = 0). Each substi-
tution point forms the root of some elementary tree, as well as a frontier nonterminal of an
ancestor node’s elementary tree. Conversely, each non-substitution point forms an internal
node inside an elementary tree. Collectively the training trees and substitution variables
specify the sequence of elementary trees e that is the current state of the sampler. Figure 5
shows an example tree with its substitution variables and its corresponding TSG derivation.

Our Gibbs sampler works by sampling the value of the xd variables, one at a time,
in random order. If d is the node associated with xd, the substitution variable under
consideration, then the two possible values of xd define two options for e: one in which d is
internal to some elementary tree eM , and one in which d is the substitution site connecting
two smaller trees, eA and eB . In the example in Figure 5, when sampling the VP node,
eM = (S NP (VP (V hates) NP)), eA = (S NP VP), and eB = (VP (V hates) NP). To
sample a value for xd, we compute the probabilities of eM and (eA, eB), conditioned on
e−: all other elementary trees in the training set that share at most a root or frontier
nonterminal with eM , eA, or eB . These probabilities are easy to compute because the PYP

3066

Inducing Tree Substitution Grammars

is exchangeable, meaning that the probability of a set of outcomes does not depend on their
ordering. Therefore we can treat the elementary trees under consideration as the last ones
to be sampled, and apply Equation (6). We then sample one of the two outcomes (merging
or splitting) according to the relative probabilities of these two events. More specifically,
the probabilities of the two outcomes, conditioned on the current analyses of the remainder
of the corpus, are

P (eM |cM) =
n−

eM
− K−

eM
acM

+ (K−
cM

acM
+ bcM

)PE(eM |cM)

n−
cM + bcM

and

P (eA, eB |cA, cB) =
∑

zeA

P (eA, zeA
|cA)P (eB |eA, zeA

, cA, cB)

=
n−

eA
− K−

eA
acA

n−
cA

+ bcA

×
n−

eB
+ δe − K−

eB
acB

+ (K−
cB

acB
+ bcB

)PE(eB |cB)

n−
cB

+ δc + bcB

+
(K−

cA
acA

+ bcA
)PE(eA|cA)

n−
cA

+ bcA

×
n−

eB
+ δe − (K−

eB
+ δe)acB

+
(
(K−

cB
+ δc)acB

+ bcB

)
PE(eB |cB)

n−
cB

+ δc + bcB

, (10)

where cy is the root label of ey, the counts n− and K− are derived from z−M and ℓ(z−M)
(this dependency is omitted from the conditioning context for brevity), δe = δ(eA, eB) is
the Kronecker delta function which has value one when eA and eB are identical and zero
otherwise, and similarly for δc = δ(cA, cB) which compares their root nonterminals cA and
cB . The δ terms reflect the changes to n− that would occur after observing eA, which
forms part of the conditioning context for eB . The two additive terms in (10) correspond to
different values of zeA

, the seating assignment for eA. Specifically, the first term accounts
for the case where eA is assigned to an existing table, zeA

< K−
eA

, and the second term
accounts for the case where eA is seated at a new table, zeA

= K−
eA

. The seating affects
the conditional probability of eB by potentially increasing the number of tables K−

eA
or K−

cA

(relevant only when eA = eB or cA = cB).

4.2 Blocked Sampler

The local sampler has the benefit of being extremely simple, however it may suffer from
slow convergence (poor mixing) due to its very local updates. That is, it can get stuck
because many locally improbable decisions are required to escape from a locally optimal
solution. Moreover it is only applicable to the supervised setting: it cannot be used for
unsupervised grammar induction or for parsing test strings. For these reasons we develop
the blocked sampler, which updates blocks of variables at once, where each block consists
of all the the nodes associated with a single sentence. This sampler can make larger moves
than the local sampler and is more flexible, in that it can perform inference with both string
(unsupervised) or tree (supervised) input.9

9. A recently-proposed alternative approach is to perform type-level updates, which samples updates to
many similar tree fragments at once (Liang et al., 2010). This was shown to converge faster than the
local Gibbs sampler.

3067

Cohn, Blunsom and Goldwater

The blocked sampler updates the analysis for each sentence given the analyses for all
other sentences in the training set. We base our approach on the algorithm developed by
Johnson et al. (2007a) for sampling parse trees using a finite Bayesian PCFG model with
Dirichlet priors over the multinomial rule probabilities. As in our model, they integrate out
the parameters (in their case, the PCFG rule probabilities), leading to a similar caching
effect due to interdependences between the latent variables (PCFG rules in the parse).
Thus, standard dynamic programming algorithms cannot be used to sample directly from
the desired posterior, p(t|w, t−), that is, the distribution of parse trees for the current
sentence given the words in the corpus and the trees for all other sentences. To solve this
problem, Johnson et al. (2007a) developed a Metropolis-Hastings (MH) sampler. The MH
algorithm is an MCMC technique which allows for samples to be drawn from a probability
distribution, π(s), by first drawing samples from a proposal distribution, Q(s′|s), and then
correcting these to the true distribution using an acceptance/rejection step. Given a state s,
we sample a next state s′ ∼ Q(·|s) from the proposal distribution; this new state is accepted
with probability

A(s, s′) = min

{
π(s′)Q(s|s′)

π(s)Q(s′|s)
, 1

}

and is rejected otherwise, in which case s is retained as the current state. The Markov
chain defined by this process is guaranteed to converge on the desired distribution, π(s).
Critically, the MH algorithm enables sampling from distributions from which we cannot
sample directly, and moreover, we need not know the normalisation constant for π(·), since
it cancels in A(s, s′).

In Johnson et al.’s (2007a) algorithm for sampling from a Bayesian PCFG, the proposal
distribution is simply Q(t′|t) = P (t′|θMAP), the posterior distribution over trees given fixed
parameters θMAP , where θMAP is the MAP estimate based on the conditioning data, t−.
Note that the proposal distribution is a close fit to the true posterior, differing only in
that under the MAP the production probabilities in a derivation are iid, while for the true
model the probabilities are tied by the prior (giving rise to the caching effect). The benefit
of using the MAP is that its independences mean that inference can be solved using dynamic
programming, namely the inside algorithm (Lari and Young, 1990). Given the inside chart,
which stores the aggregate probability of all subtrees for each word span and rooted with a
given nonterminal label, samples can be drawn using a simple top-down recursion (Johnson
et al., 2007a).

Our model is similar to Johnson et al.’s, as we also use a Bayesian prior in a model
of grammar induction and consequently face similar problems with directly sampling due
to the caching effects of the prior. For this reason, we use the MH algorithm in a similar
manner, except in our case we draw samples of derivations of elementary trees and their
seating assignments, p(zi, ℓi|w, z−i, ℓ−i), and use a MAP estimate over (z−i, ℓi−) as our
proposal distribution.10 However, we have an added complication: the MAP cannot be
estimated directly. This is a consequence of the base distribution having infinite support,
which means the MAP has an infinite rule set. For finite TSG models, such as those used
in DOP, constructing a CFG equivalent grammar is straightforward (if unwieldy). This can

10. Calculating the proposal and acceptance probabilities requires sampling not just the elementary trees,
but also their table assignments (for both levels in the hierarchical model). We elected to simplify the
implementation by separately sampling the elementary trees and their table assignments.

3068

Inducing Tree Substitution Grammars

be done by creating a rule for each elementary tree which rewrites its root nonterminal as
its frontier. For example under this technique S → NP (VP (V hates) NP would be mapped
to S → NP hates NP.11 However, since our model has infinite support over productions, it
cannot be mapped in the same way. For example, if our base distribution licences the CFG
production NP → NP PP then our TSG grammar will contain the infinite set of elementary
trees NP → NP PP, NP → (NP NP PP) PP, NP → (NP (NP NP PP) PP) PP, . . . , each with
decreasing but non-zero probability. These would all need to be mapped to CFG rules in
order to perform inference under the grammar, which is clearly impossible.

Thankfully it is possible to transform the infinite MAP-TSG into a finite CFG, using
a method inspired by Goodman (2003), who developed a grammar transform for efficient
parsing with an all-subtrees DOP grammar. In the transformed grammar inside inference is
tractable, allowing us to draw proposal samples efficiently and thus construct a Metropolis-
Hastings sampler. The resultant grammar allows for efficient inference, both in unsupervised
and supervised training and in parsing (see Section 5).

We represent the MAP using the grammar transformation in Table 1, which separates
the count and base distribution terms in Equation 6 into two separate CFGs, denoted A
and B. We reproduce Equation 6 below along with its decomposition:

P (ei = e|c, z−i, ℓ(z−i)) =
n−

e − K−
e ac + (K−

c ac + bc)PE(e|c)

n−
c + bc

=
n−

e − K−
e ac

n−
c + bc

︸ ︷︷ ︸

count

+
K−

c ac + bc

n−
c + bc

PE(e|c)

︸ ︷︷ ︸

base

. (11)

Grammar A has productions for every elementary tree e with n−
e ≥ 1, which are as-

signed as their probability the count term in Equation 11.12 The function sig(e) re-
turns a string signature for elementary trees, for which we use a form of bracketed no-
tation. To signify the difference between these nonterminal symbols and trees, we use
curly braces and hyphens in place of round parentheses and spaces, respectively, for exam-
ple, the elementary tree (S NP (VP (V hates) NP)) is denoted by the nonterminal symbol
{S-NP-{VP-{V-hates}-NP}}. Grammar B has productions for every CFG production li-
censed under PE; its productions are denoted using primed (’) nonterminals. The rule c → c′

bridges from A to B, weighted by the base term in Equation 11 excluding the PE(e|c) factor.
The contribution of the base distribution is computed recursively via child productions. The
remaining rules in grammar B correspond to every CFG production in the underlying PCFG
base distribution, coupled with the binary decision of whether or not nonterminal children
should be substitution sites (frontier nonterminals). This choice affects the rule probability
by including an s or 1− s factor, and child substitution sites also function as a bridge back
from grammar B to A. There are often two equivalent paths to reach the same chart cell

11. Alternatively, interspersing a special nonterminal, for example, S → {S-NP-{VP-{V-hates}-NP} → NP hates NP,
encodes the full structure of the elementary tree, thereby allowing the mapping to be reversed. We use
a similar technique to encode non-zero count rules in our grammar transformation, described below.

12. The transform assumes inside inference, where alternate analyses for the same span of words with the
same nonterminal are summed together. In Viterbi inference the summation is replaced by maximisation,
and therefore we need different expansion probabilities. This requires changing the weight for c → sig(e)
to P (ei = e|c, z−i, ℓ(z−i)) in Table 1.

3069

Cohn, Blunsom and Goldwater

G
ra

m
m

ar
A For every ET, e, rewriting c with non-zero count:

c → sig(e) n−

e −K−

e ac

n−

c +bc

For every internal node ei in e with children ei,1, . . . , ei,n

sig(ei) → sig(ei,1) . . . sig(ei,n) 1
A
→

B For every nonterminal, c:

c → c′ K−

c ac+bc

n−

c +bc

G
ra

m
m

ar
B

For every pre-terminal CFG production, c → t:

c′ → t PC(c → t)

For every unary CFG production, c → a:

c′ → a PC(c → a)sa

c′ → a′ PC(c → a)(1 − sa)

For every binary CFG production, c → ab:

c′ → ab PC(c → ab)sasb

c′ → ab′ PC(c → ab)sa(1 − sb)

c′ → a′b PC(c → ab)(1 − sa)sb

c′ → a′b′ PC(c → ab)(1 − sa)(1 − sb)

Table 1: Grammar transformation rules to map an infinite MAP TSG into an equivalent
CFG, separated into three groups for grammar A (top), the bridge between A → B (middle)
and grammar B (bottom). Production probabilities are shown to the right of each rule. The
sig(e) function creates a unique string signature for an ET e (where the signature of a frontier
node is itself) and sc is the probability of c being a substitution variable, thus stopping the
PE recursion.

using the same elementary tree—via grammar A using observed TSG productions and via
grammar B using PE backoff—which are summed to yield the desired net probability. The
transform is illustrated in the example in Figures 6 and 7.

Using the transformed grammar we can represent the MAP grammar efficiently and
draw samples of TSG derivations using the inside algorithm. In an unsupervised setting,
that is, given a yield string as input, the grammar transform above can be used directly
with the inside algorithm for PCFGs (followed by the reverse transform to map the sampled
derivation into TSG elementary trees). This has an asymptotic time complexity cubic in
the length of the input.

For supervised training the trees are observed and thus we must ensure that the TSG
analysis matches the given tree structure. This necessitates constraining the inside algo-
rithm to only consider spans that are present in the given tree and with the given nonter-
minal. Nonterminals are said to match their primed and signed counterparts, for example,
VP′ and {VP-{V-hates}-NP} both match VP. A sample from the constrained inside chart
will specify the substitution variables for each node in the tree: For each node d if it has
a non-primed category in the sample then it is a substitution site, xd = 1, otherwise it is
an internal node, xd = 0. For example, both trees in Figure 7 encode that both NP nodes

3070

Inducing Tree Substitution Grammars

S → {NP-{VP-{V-hates}-NP}} n−

e −K−

e aS

n−

S
+bS

{NP-{VP-{V-hates}-NP}} → NP {VP-{V-hates}-NP} 1
{VP-{V-hates}-NP} → {V-hates} NP 1
{V-hates} → hates 1

S → S’
K−

S
aS+bS

n−

S
+bS

S’ → NP VP’ PC(S → NP VP)sNP (1 − sV P)
VP’ → V’ NP PC(VP → V NP)(1 − sV)sNP

V’ → hates PC(V → hates)

Figure 6: Example showing the transformed grammar rules for the single elementary tree
e = (S NP (VP (V hates) NP)) and the scores for each rule. Only the rules which corre-
spond to e and its substitution sites are displayed. Taking the product of the rule scores
above the dashed line yields the count term in (11), and the product of the scores below
the line yields the base term. When the two analyses are combined and their probabilities
summed together, we get P (ei = e|c, z−i, ℓ(z−i)).

S

{S-NP-{VP-{V-hates}-NP}}

NP

George

{VP-{V-hates}-NP}

{V-hates}

hates

NP

broccoli

S

S’

NP

George

VP’

V’

hates

NP

broccoli

Figure 7: Example trees under the grammar transform, which both encode the same TSG
derivation from Figure 1a. The left tree encodes that the S → NP (VP (V hates) NP elemen-
tary tree was drawn from the cache, while for the right tree this same elementary tree was
drawn from the base distribution (the count and base terms in (11), respectively).

are substitution sites and that the VP and V nodes are not substitution sites (the same
configuration as Figure 5).

The time complexity of the constrained inside algorithm is linear in the size of the
tree and the length of the sentence. The local sampler also has the same time complexity,
however it is not immediately clear which technique will be faster in practise. It is likely
that the blocked sampler will have a slower runtime due to its more complicated implemen-
tation, particularly in transforming the grammar and inside inference. Although the two
samplers have equivalent asymptotic complexity, the constant factors may differ greatly. In
Section 6 we compare the two training methods empirically to determine which converges
more quickly.

3071

Cohn, Blunsom and Goldwater

4.3 Sampling Hyperparameters

In the previous discussion we assumed that we are given the model hyperparameters,
(a,b, s). While it might be possible to specify their values manually or fit them using
a development set, both approaches are made difficult by the high dimensional parameter
space. Instead we treat the hyper-parameters as random variables in our model, by plac-
ing vague priors over them and infer their values during training. This is an elegant way
to specify their values, although it does limit our ability to tune the model to optimise a
performance metric on held-out data.

For the PYP discount parameters a, we employ independent Beta priors, ac ∼ Beta(1, 1).
The prior is uniform, encoding that we have no strong prior knowledge of what the value
of each ac should be. The conditional probability of ac given the current derivations z, ℓ is

P (ac|z, ℓ) ∝P (z, ℓ|ac) × Beta(ac|1, 1) .

We cannot calculate the normaliser for this probability, however P (z, ℓ|ac) can be calculated
using Equation 3 and thus P (ac|z, ℓ) can be calculated up to a constant. We use the range
doubling slice sampling technique of Neal (2003) to draw a new sample of a′c from its
conditional distribution.13

We treat the concentration parameters, b, as being generated by independent gamma
priors, bc ∼ Gamma(1, 1). We use the same slice-sampling method for ac to sample from
the conditional over bc,

P (bc|z, ℓ) ∝P (z, ℓ|bc) × Gamma(bc|1, 1) .

This prior is not vague, that is, the probability density function decays exponentially for
higher values of bc, which serves to limits the influence of the PC prior. In our experimenta-
tion we found that this bias had little effect on the generalisation accuracy of the supervised
and unsupervised models, compared to a much vaguer Gamma prior with the same mean.

We use a vague Beta prior for the stopping probabilities in PE, sc ∼ Beta(1, 1). The
Beta distribution is conjugate to the binomial, and therefore the posterior is also a Beta
distribution from which we can sample directly,

sc ∼ Beta

1 +
∑

e

Ke(z)
∑

n∈F (e)

δ(n, c), 1 +
∑

e

Ke(z)
∑

n∈I(e)

δ(n, c)

 ,

where e ranges over all non-zero count elementary trees, F (e) are the nonterminal frontier
nodes in e, I(e) are the non-root internal nodes and the δ terms count the number of nodes
in e with nonterminal c. In other words, the first Beta argument is the number of tables
in which a node with nonterminal c is a stopping node in the PE expansion and the second
argument is the number of tables in which c has been expanded (a non-stopping node).

All the hyper-parameters are resampled after every full sampling iteration over the
training trees, except in the experiments in Section 7 where they are sampled every 10th
iteration.

13. We used the slice sampler included in Mark Johnson’s Adaptor Grammar implementation, available at
http://web.science.mq.edu.au/~mjohnson/Software.htm.

3072

Inducing Tree Substitution Grammars

5. Parsing

We now turn to the problem of using the model to parse novel sentences. This requires
finding the maximiser of

p(t|ω,w) =

∫ ∫ ∫ ∫

p(t|ω, z, ℓ,a,b, s) p(z, ℓ,a,b, s|w) dz dℓ da db ds , (12)

where ω is the sequence of words being parsed, t is the resulting tree, w are the training
sentences, z and ℓ represent their parses, elementary tree representation and table assign-
ments and (a,b, s) are the model’s hyper-parameters. For the supervised case we use the
training trees, t, in place of w in Equation 12.

Unfortunately solving for the maximising parse tree in Equation 12 is intractable. How-
ever, it can be approximated using Monte Carlo techniques. Given a sample of (z, ℓ,a,b, s)
we can reason over the space of possible TSG derivations, e, for sentence w using the same
Metropolis-Hastings sampler presented in Section 4.2 for blocked inference in the unsuper-
vised setting.14 This gives us a set of samples from the posterior p(e|w, z, ℓ,a,b, s). We
then use a Monte Carlo integral to obtain a marginal distribution over trees (Bod, 2003),

p̂MPT (t) =

M∑

m=1

δ(t, tree(em)) , (13)

where {em}M
m=1 are our sample of derivations for w. It is then straightforward to find the

best parse, t∗ = arg max p̂(t), which is simply the most frequent tree in the sample.
In addition to solving from the maximum probability tree (MPT) using Equation 13, we

also present results for a number of alternative objectives. To test whether the derivational
ambiguity is important, we also compute the maximum probability derivation (MPD),

p̂MPD(e) =

M∑

m=1

δ(e, em) ,

using a Monte-Carlo integral, from which we recover the tree, t∗ = tree(arg max
e
p̂MPD(e)).

We also compare using the Viterbi algorithm directly with the MAP grammar, t∗ = tree(arg max
e
PMAP (e|w))

which constitutes an approximation to the true model in which we can search exactly. This
contrasts with the MPD which performs approximate search under the true model. We
compare the different methods empirically in Section 6.

The MPD and MPT parsing algorithms require the computation of Monte-Carlo inte-
grals over the large space of possible derivations or trees. Consequently, unless the dis-
tribution is extremely peaked the chance of sampling many identical structures is small,
vanishingly so for long sentences (the space of trees grows exponentially with the sentence
length). In other words, the sampling variance can be high which could negatively affect
parsing performance. For this reason we present an alternative parsing method which com-
piles more local statistics for which we can obtain reliable estimates. The technique is

14. Using many samples in a Monte Carlo integral is a straight-forward extension to our parsing algorithm.
We did not observe a significant improvement in parsing accuracy when using a multiple samples com-
pared to a single sample, and therefore just present results for a single sample. However, using multiple
models has been shown to improve the performance of other parsing models (Petrov, 2010).

3073

Cohn, Blunsom and Goldwater

Partition sections sentences tokens types types (unk)

training 2–21 33180 790237 40174 21387
development 22 1700 40117 6840 5473

testing 23 2416 56684 8421 6659

small training 2 1989 48134 8503 3728

Table 2: Corpus statistics for supervised parsing experiments using the Penn treebank,
reporting for each partition its WSJ section/s, the number of sentences, word tokens and
unique word types. The final column shows the number of word types after unknown word
processing using the full training set, which replaces rare words with placeholder tokens.
The number of types after preprocessing in the development and testing sets is roughly
halved when using the the small training set.

based on Goodman’s (2003) algorithm for maximising labelled recall in DOP parsing and
subsequent work on parsing in state-splitting CFGs (Petrov and Klein, 2007). The first
step is to acquire marginal distributions over the CFG productions within each sampled
tree. Specifically, we collect counts for events of the form (c → α, i, j, k), where c → α is
a CFG production spanning words [i, j) and k is the split point between child constituents
for binary productions, i < k < j (k = 0 for unary productions). These counts are then
marginalised by the number of trees sampled. Finally the Viterbi algorithm is used to find
the tree with the maximum cumulative probability under these marginals, which we call
the maximum expected rule (MER) parse. Note that this is a type of minimum Bayes
risk decoding and was first presented in Petrov and Klein (2007) as the MAX-RULE-SUM
method (using exact marginals, not Monte-Carlo estimates as is done here).

6. Supervised Parsing Experiments

In this section we present an empirical evaluation of the model on the task of supervised
parsing. In this setting the model learns a segmentation of a training treebank, which defines
a TSG. We present parsing results using the learned grammar, comparing the effects of the
sampling strategy, initialisation conditions, parsing algorithm and the size of the training
set. The unsupervised model is described in the following section, Section 7.

We trained the model on the WSJ part of Penn. treebank (Marcus et al., 1993) using
the standard data splits, as shown in Table 2. As our model is parameter free (the a,b, s
parameters are learnt in training), we do not use the development set for parameter tuning.
We expect that fitting the hyperparameters to maximise performance on the development
set would lead to a small increase in generalisation performance, but at a significant cost in
runtime. We adopt Petrov et al.’s (2006) method for data preprocessing: right-binarizing
the trees to limit the branching factor and replacing tokens with count ≤ 1 in the training
sample with one of roughly 50 generic unknown word markers which convey the token’s
lexical features and position. The predicted trees are evaluated using EVALB15 and we
report the F1 score over labelled constituents and exact match accuracy over all sentences
in the testing sets.

15. See http://nlp.cs.nyu.edu/evalb/.

3074

Inducing Tree Substitution Grammars

In our experiments, we initialised the sampler by setting all substitution variables to
0, thus treating every full tree in the training set as an elementary tree. Unless otherwise
specified, the blocked sampler was used for training. We later evaluated the effect of different
starting conditions on the quality of the configurations found by the sampler and on parsing
accuracy. The sampler was trained for 5000 iterations and we use the final sample of
z, ℓ,a,b, s for parsing. We ran all four different parsing algorithms and compare their results
on the testing sets. For the parsing methods that require a Monte Carlo integral (MPD,
MPT and MER), we sampled 1000 derivations from the MAP approximation grammar
which were then input to the Metropolis-Hastings acceptance step before compiling the
relevant statistics. The Metropolis-Hastings acceptance rate was around 99% for both
training and parsing. Each experiment was replicated five times and the results averaged.

6.1 Small Data Sample

For our first treebank experiments we train on a small data sample by using only section
2 of the treebank (see Table 2 for corpus statistics.) Bayesian methods tend to do well
with small data samples, while for larger samples the benefits diminish relative to point
estimates. For this reason we present a series of exploratory experiments on the small data
set before moving to the full treebank.

In our experiments we aim to answer the following questions: Firstly, in terms of pars-
ing accuracy, does the Bayesian TSG model outperform a PCFG baseline, and how does
it compare to existing high-quality parsers? We will also measure the effect of the pars-
ing algorithm: Viterbi, MPD, MPT and MER. Secondly, which of the local and blocked
sampling techniques is more efficient at mixing, and which is faster per iteration? Finally,
what kind of structures does the model learn and do they match our expectations? The
hyper-parameter values are also of interest, particularly to evaluate whether the increased
generality of the PYP is justified over the DP. Our initial experiments aim to answer these
questions on the small data set, after which we take the best model and apply it to the full
set.

Table 3 presents the prediction results on the development set. The baseline is a max-
imum likelihood PCFG. The TSG models significantly outperform the baseline. This con-
firms our hypothesis that CFGs are not sufficiently powerful to model syntax, and that
the increased context afforded to the TSG can make a large difference. Surprisingly, the
MPP technique is only slightly better than the MPD approach, suggesting that derivational
ambiguity is not as much of a problem as previously thought (Bod, 2003). Also surprising
is the fact that exact Viterbi parsing under the MAP approximation is much worse than the
MPD method which uses an approximate search technique under the true model. The MER
technique is a clear winner, however, with considerably better F1 scores than either MPD
or MPP, with a margin of 1–2 points. This method is less affected by sampling variance
than the other MC algorithms due to its use of smaller tree fragments (CFG productions
at each span).

We also consider the difference between using a Dirichlet process prior (DP) and a
Pitman-Yor process prior (PYP). This amounts to whether the a hyper-parameters are set
to 0 (DP) or are allowed to take on non-zero values (PYP), in which case we sample their
values as described in Section 4.3. There is a small but consistent gain of around 0.5 F1

3075

Cohn, Blunsom and Goldwater

Model Viterbi MPD MPP MER # rules

PCFG 60.20 60.20 60.20 - 3500
TSG PYP 74.90 76.68 77.17 78.59 25746
TSG DP 74.70 75.86 76.24 77.91 25339
Berkeley parser (τ = 2) 71.93 71.93 - 74.32 16168
Berkeley parser (τ = 5) 75.33 75.33 - 77.93 39758

Table 3: Development results for models trained on section 2 of the Penn treebank, showing
labelled constituent F1 and the grammar size. For the TSG models the grammar size
reported is the number of CFG productions in the transformed MAP PCFG approximation.
Unknown word models are applied to words occurring less than two times (TSG models
and Berkeley τ = 2) or less than five times (Berkeley τ = 5).

points across the different parsing methods from using the PYP, confirming our expectation
that the increased flexibility of the PYP is useful for modelling linguistic data. Figure 8a
shows the learned values of the PYP hyperparameters after training for each nonterminal
category. It is interesting to see that the hyper-parameter values mostly separate the open-
class categories, which denote constituents carrying semantic content, from the closed-class
categories, which are largely structural. The open classes (noun-, verb-, adjective- and
adverb-phrases: NP, VP, ADJP and ADVP, respectively) tend to have higher a and b values
(towards the top right corner of the graph) and therefore can describe highly diverse sets
of productions. In contrast, most of the closed classes (the root category, quantity phrases,
wh-question noun phrases and sentential phrases: TOP, QP, WHNP and S, respectively)
have low a and b (towards the bottom left corner of the graph), reflecting that encoding
their largely formulaic rewrites does not necessitate diverse distributions.

The s hyper-parameter values are shown in Figure 8b, and are mostly in the mid-range
(0.3–0.7). Prepositions (IN), adverbs (RB), determiners (DT) and some tenses of verbs
(VBD and VBP) have very low s values, and therefore tend to be lexicalized into elemen-
tary trees. This is expected behaviour, as these categories select strongly for the words
they modify and some (DT, verbs) must agree with their arguments in number and tense.
Conversely particles (RP), modal verbs (MD) and possessive particles (PRP$) have high s

values, and are therefore rarely lexicalized. This is reasonable for MD and PRP$, which
tend to be exchangeable for one another without rendering the sentence ungrammatical
(e.g., ‘his’ can be substituted for ‘their’ and ‘should’ for ‘can’). However, particles are
highly selective for the verbs they modify, and therefore should be lexicalized by the model
(e.g., for ‘tied in’, we cannot substitute ‘out’ for ‘in’). We postulate that the model does
not learn to lexicalise verb-particle constructions because they are relatively uncommon,
they often occur with different tenses of verb and often the particle is not adjacent to the
verb, therefore requiring large elementary trees to cover both words. The phrasal types all
have similar s values except for VP, which is much more likely to be lexicalized. This allows
for elementary trees combining a verb with its subject noun-phrase, which is typically not
part of the VP, but instead a descendent of its parent S node. Finally, the s values for the
binarized nodes (denoted with the -BAR suffix) on the far right of Figure 8b are all quite
low, encoding a preference for the model to reconstitute binarized productions into their

3076

Inducing Tree Substitution Grammars

(a) PYP hyper-parameters, a,b

0.2 0.3 0.4 0.5 0.6 0.7 0.8

2
5

10
20

50

a

b

ADJP
ADVP
NP
PP
QP
S
SBAR
SINV
TOP
VP
WHNP

(b) Substitution hyper-parameters, s

s

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

$ ’’ , .

C
C

C
D

D
T IN JJ M
D

N
N

N
N

P
N

N
P

S
N

N
S

P
O

S
P

R
P

P
R

P
$

R
B

R
P

TO V
B

V
B

D
V

B
G

V
B

N
V

B
P

V
B

Z ‘‘
A

D
JP

A
D

V
P

N
P

P
P

Q
P S

S
B

A
R

S
IN

V
V

P
W

H
N

P
N

P
−

B
A

R
S

−
B

A
R

S
IN

V
−

B
A

R
V

P
−

B
A

R

Figure 8: Inferred hyper-parameter values. Points (left) or bars (right) show the mean value
with error bars indicating one standard deviation, computed over the final samples of five
sampling runs. For legibility, a) has been limited to common phrasal nonterminals, while
b) also shows preterminals and binarized nonterminals (those with the -BAR suffix). Note
that in a) b is plotted on a log-scale.

3077

Cohn, Blunsom and Goldwater

original form. Some of the values have very high variance, for example, $, which is due to
their rewriting as a single string with probability 1 under PC (or a small set of strings and
a low entropy distribution), thus making the hyper-parameter value immaterial.

For comparison, we trained the Berkeley split-merge parser (Petrov et al., 2006) on
the same data and decoded using the Viterbi algorithm (MPD) and expected rule count
(MER, also known as MAX-RULE-SUM). We ran two iterations of split-merge training,
after which the development F1 dropped substantially (in contrast, our model is not fit to
the development data). The result (denoted τ = 2) is an accuracy slightly below that of
our model. To be fairer to their model, we adjusted the unknown word threshold to their
default setting, that is, to apply to word types occurring fewer than five times (denoted
τ = 5).16 Note that our model’s performance degraded using the higher threshold, which
impedes the model’s ability to learn highly lexicalized fragments. The grammar sizes are
not strictly comparable, because we are comparing different types of grammar. For our
TSG models we report the number of CFG productions in the transformed MAP PCFG,
in which non-zero count TSG rules typically rewrite as many CFG rules17 and CFG rules
from the base distribution are replicated up to four times. Nevertheless the trend is clear:
our model produces similar results to a state-of-the-art parser, and does so using a similar
sized grammar. With additional rounds of split-merge training the Berkeley grammar grows
exponentially larger (200K rules after six iterations). Our TSG grammar is also far smaller
than the full DOP grammar induced from this data set, which extracts every possible TSG
rule from the training set with no size limit, and has approximately 700K rules.

6.2 Full Treebank

We now train the model on the full training partition of the Penn treebank, using sections 2–
21 (see Table 2 for corpus statistics). We initialise the sampler using a converged model from
the end of a sampling run on the small data set and run the blocked Metropolis Hastings
sampler for 20,000 iterations. The MAP PCFG approximation had 156k productions and
training took 1.2 million seconds in total or 61 seconds per iteration.18 We repeated this
three times and present the averaged results in Table 4.

The TSG models far surpass the MAP PCFG baseline, while the relative orderings of the
different parsing algorithms corroborate our earlier evaluation on the small training set. The
model outperforms the most comparable DOP result, although the numbers are not strictly
comparable as Zuidema (2007) used an enriched nonterminal set for testing. However, our
results are still well below state-of-the art parsers, and even underperform the Berkeley
parser when it is restricted to the same preprocessing steps for rare tokens and binarization
as we used (results labelled restricted in Table 4). But we must bear in mind that these
parsers have benefited from years of tuning to the Penn-treebank, where our model is much

16. The Berkeley parser has a number of further enhancements that we elected not to use, most notably, a
more sophisticated means of handling unknown words. These enhancements produce further improve-
ments in parse accuracy, but could also be implemented in our model to similar effect.

17. The encoding of TSG rules could be made more compact by skipping the internal rewrite steps, instead
directly rewriting the transformed root node as the rule’s frontier. This would mean that each input
TSG rule would produce only two rules in the transformed CFG. It would also affect the choice of parsing
algorithm because the transformed grammar would no longer be binary.

18. Measured using a single core of an AMD Opteron 2.6GHz machine.

3078

Inducing Tree Substitution Grammars

≤ 40 all

Parser F1 EX F1 EX

MLE PCFG 64.2 7.2 63.1 6.7

TSG PYP Viterbi 83.6 24.6 82.7 22.9
TSG PYP MPD 84.2 27.2 83.3 25.4
TSG PYP MPT 84.7 28.0 83.8 26.2
TSG PYP MER 85.4 27.2 84.7 25.8

DOP (Zuidema, 2007) 83.8 26.9
Berkeley parser (Petrov and Klein, 2007) 90.6 90.0
Berkeley parser (restricted) 87.3 31.0 86.6 29.0
Reranking parser (Charniak and Johnson, 2005) 92.0 91.4

Table 4: Full treebank testing results showing labelled F1 and exact match accuracy for
sentences of up to 40 words, and for all sentences. The results of several treebank parsers
are also shown (as reported in the literature, hence the missing values), representing a base-
line (PCFG), systems similar to our own (DOP, Berkeley) and state-of-the-art (Berkeley,
Reranking parser). Berkeley (restricted) uses simplified data preprocessing as compared to
Berkeley; the simplified preprocessing is the same as used in our system, so provides a more
fair comparison.

simpler and is largely untuned. We anticipate that careful data preparation, model tuning
and improved inference algorithms would greatly improve our model’s performance, bringing
it closer to the state-of-the-art.

6.3 Sampling Strategy

Next we investigate which of the two sampling methods is more effective for training the
model. Recall that in Section 4 we described a blocked sampler and a local sampler; these
samplers differ in the number of variables that they update in every sampling step. We
return to the small training sample for these experiments. Figure 9 shows how the log
posterior over the training set varies with the sampling iteration and with time for the
two different sampling algorithms. It is clear that the blocked MH sampler exhibits faster
convergence in general than the local Gibbs sampler, despite being somewhat slower per
iteration. The speed difference is fairly minor, amounting to roughly a 50% increase in time
over the local sampler,19 although on the full data set the time differential reduces to 19%.
This difference is largely due to the cost of performing the grammar transformation, which
could potentially be further optimised to reduce the gap.

Figure 9 shows the results for a number of different initialisations, using minimal ele-
mentary trees where every node is a substitution point (the CFG analysis), initialising the
substitution variables uniformly at random (even), and using maximal elementary trees
where no nodes are substitution points. The blocked sampler is more robust to starting

19. To account for the speed differential, the local samplers were run for 15k iterations and the blocked
samplers for 10k iterations to produce Figure 9 and Table 5.

3079

Cohn, Blunsom and Goldwater

Sampling method Initialisation F1 σF1 Training time (s)

Local minimal 78.2 0.50 44674
Local even 78.3 0.31 43543
Local maximal 78.5 0.51 44453

Block minimal 78.5 0.18 46483
Block even 78.6 0.35 46535
Block maximal 78.6 0.38 39789

Table 5: Parsing performance and training time for the local versus blocked samplers with
different initialisations. Results are shown on the development set using the MER pars-
ing, reporting the mean F1 and standard deviation (σF1) from five independent runs. The
blocked samplers were run for 10k iterations and the local sampler for 15k iterations itera-
tions in order to allow all methods approximately the same running time.

point than the local sampler and converges faster in terms of iterations and total time in
general. Interestingly, the blocked sampler converges faster with the maximal initialisation,
which is due to the initialisation condition resulting in much smaller initial table counts,
and therefore it is quite easy for the model to move away from that solution. However, with
the minimal initialisation the counts begin with very high values, and therefore deviating
from the initial solution will be much less likely. In contrast, the local sampler behaves in
the opposite way with respect to initialisation, such that with the minimal initialisation it
performs at or above the level of the blocked sampler. This is a surprising finding which
contradicts our intuition about the mixing properties of the sampler and warrants further
research.

In the above we have been comparing the log training posterior as a measure of the
quality of the sampler, however it is not a given that a probable model is one with good
parsing accuracy. Figure 10 shows that the posterior is highly correlated with generalisation
F1, with a Pearson’s correlation efficient of 0.95 on this data, and therefore improving the
sampler convergence will have immediate positive effects on performance. This is corrob-
orated in Table 5, which shows the F1 scores using the final sample for each initialisation
condition. The blocked sampler out-performs the local sampler for all initialisation condi-
tions and has lower lower variance. Moreover, the blocked sampler is less dependent on its
initialisation, performing well independent of initialisation. In contrast, the local sampler
performs well only with the maximal initialisation, with which it roughly equals the blocked
sampler in terms of F1 and log posterior (see Figure 9).

6.4 Discussion

The previous sections show that our model performs far better than a standard PCFG
trained on the same corpus; it is natural to ask what kinds of rules it is learning that allow
it to do so well. Figure 11 shows the grammar statistics for a TSG model trained on the
full treebank training set. This model has a total of 72955 rules with an aggregate count
of 733755. Of these, only 46% are CFG rules. The TSG rules vary in height from one to
nineteen with the majority between one and four. Most rules combine a small amount of

3080

Inducing Tree Substitution Grammars

0 5000 10000 15000

−
31

00
00

−
30

80
00

−
30

60
00

−
30

40
00

−
30

20
00

iteration

tr
ai

ni
ng

 lo
g

po
st

er
io

r

blocked sampler (minimal)
blocked sampler (even)
blocked sampler (maximal)
local sampler (minimal)
local sampler (even)
local sampler (maximal)

0 10000 20000 30000 40000

−
31

00
00

−
30

80
00

−
30

60
00

−
30

40
00

−
30

20
00

time (secs)

tr
ai

ni
ng

 lo
g

po
st

er
io

r

blocked sampler (minimal)
blocked sampler (even)
blocked sampler (maximal)
local sampler (minimal)
local sampler (even)
local sampler (maximal)

Figure 9: Training likelihood vs. iteration (left) or elapsed time (right). Both sampling methods
were initialised in three different ways, minimal (all substitution variables set to 1, x = 1), even

(xd ∼ Uniform(0, 1)) and maximal (x = 0).

3081

Cohn, Blunsom and Goldwater

iteration

F
1

sc
or

e

64
66

68
70

72
74

tr
ai

ni
ng

 lo
g

po
st

er
io

r

−
36

00
00

−
34

00
00

−
32

00
00

−
30

00
00

1 10 100 1000 10000

Figure 10: Likelihood and generalisation F1 are highly correlated. The black circles show
the development F1 score (left axis) and the red line shows the training log-likelihood (right
axis) during a Gibbs sampling run. The parsing results were obtained using Viterbi parsing
with the MAP approximation grammar.

0 1 2 3 4 5 6 7 8 9 10

value

to
ta

l c
ou

nt
 o

f r
ul

es

0e
+

00
1e

+
05

2e
+

05
3e

+
05

4e
+

05

height
nodes
lexemes
vars

Figure 11: Grammar statistics for a TSG model trained on the full Penn treebank training
set, showing the aggregate count for elementary trees of given height, number of nodes,
terminals (lexemes) and frontier nonterminals (vars). An insignificant fraction of the rules
had a height or number of nodes > 10; these have been truncated for display purposes.

3082

Inducing Tree Substitution Grammars

TOP

S

NP

DT

The

NN

NN

dividend

S

VP

VP

VBD

had

VP

VBN

VBN

been

NP

NP

NP

NP

CD

CD

five

NNS

cents

NP

DT

a

NN

share

.

.

Figure 12: Inferred TSG structure for one of the training trees. Nonterminals shown with
an over-bar (e.g., S) denote a binarized sub-span of the given phrase type.

lexicalisation and a variable or two. This confirms that the model is learning local structures
to encode, for example, multi-word units, subcategorisation frames and lexical agreement.
The few very large rules specify full parses for sentences which were repeated in the training
corpus. These complete trees are also evident in the long tail of node counts (up to 30; not
shown in the figure) and counts for highly lexicalized rules (up to 11).

It is also instructive to inspect the inferred segmentations for individual trees in the
training set. Figure 12 shows an example taken from the training set showing the learned
derivation. Notice that the model has learned to use a large rule from the TOP node to cap-
ture the typical NP VP . sentence structure while lexicalizing the initial determiner, which
is necessary to properly describe its capitalisation. It has also learnt a subcategorisation
frame for had which specifies a VBN argument and an NP, and learnt the <num> cents and
NP a share fragments, which are both common in the training corpus (Wall Street Journal
articles).

3083

Cohn, Blunsom and Goldwater

To provide a better picture of the types of rules being learnt, Table 6 shows the top
fifteen rules for three phrasal categories for the model trained on the full Penn treebank. We
can see that many of these rules are larger than CFG rules, confirming that the CFG rules
alone are inadequate to model the treebank. Two of the NP rules encode the prevalence of
prepositional phrases headed by ‘of’ within a noun phrase, as opposed to other prepositions.
Highly specific tokens are also incorporated into lexicalized rules.

The model also learns to use large rules to describe the majority of root node expansions
(we add a distinguished TOP node to all trees). These rules mostly describe cases when
the S category is used for a full sentence and includes punctuation such as the full stop and
quotation marks. In contrast, the majority of expansions for the S category do not include
any punctuation. The model has learnt to distinguish between the two different classes of
S—full sentence versus internal clause—due to their different expansions.

Many of the verb phrase expansions have been lexicalized, encoding verb subcategori-
sation, as shown in Table 7. Notice that each verb here accepts only one or a small set of
argument frames, indicating that by lexicalizing the verb in the VP expansion the model
can find a less ambiguous and more parsimonious grammar. The lexicalized noun phrase
expansions in Table 7 also show some interesting patterns, such as reconstituting binarized
productions and lexicalizing prepositional phrase arguments. Of particular interest are the
rules NP → CD (NN %) and NP → (NNP Mr.) NNP, in which the lexicalized item has a com-
mon tag but a very specific function. These rules are considerably more expressive than
their CFG counterparts. Overall these results demonstrate that the model uses deep el-
ementary trees to describe regular patterns in the data, thereby out-performing a simple
PCFG. Despite having an infinite space of grammar productions, the induced grammars
are compact, with the majority of probability mass on a small number of individually small
productions.

7. Unsupervised Dependency Induction Experiments

Having considered the application of our non-parametric TSG model to supervised parsing,
in this section we present an empirical evaluation for our model on the task of unsupervised
parsing. Our approach to the unsupervised task differs from the supervised one in several
ways. Two differences result from the fact that parse trees are not observed during training:
first, we cannot use the local Gibbs sampler presented above, leaving the blocked sampler
as our only option. Second, we cannot directly estimate PC from the training data, so
we must extend the model with an extra level of hierarchy (as described in Section 3) in
order to induce PC. A final difference in our unsupervised experiments is that we now focus
on dependency grammar induction rather than phrase-structure induction; as outlined in
Section 2.1, dependency grammars are a more feasible formalism for unsupervised grammar
learning. Before presenting our experimental results, we first describe how to represent
dependency grammars using our Bayesian TSG model.

To date, the most successful framework for unsupervised dependency induction is the
Dependency Model with Valence (DMV, Klein and Manning, 2004). This approach induces
a dependency grammar using a simple generative model in which the strings are said to be
generated by a top-down process which recursively generates child dependents from each
parent head word. This model has been adapted and extended by a number of authors (e.g.,

3084

Inducing Tree Substitution Grammars

NP →

(DT the) NP
NNS

NP (NP (CC and) NP)
JJ NNS
NP (PP (IN of) NP)
NP PP
(DT the) NN
DT (NP JJ NN)
NN NNS
(DT the) NNS
JJ NP
(NP DT NN) (PP (IN of) NP)

VP →

VBD VP
VBZ NP
VBD NP
VBZ VP
VBP NP
VBP VP
MD (VP VB NP)
(VBD said) (SBAR (S NP VP))

MD (VP VB VP)
VP (VP (CC and) VP)
(VBZ is) ADJP
(VBD said) (SBAR (S (NP (PRP it)) VP))

PP →
(IN in) NP
(IN for) NP
(IN on) NP
(IN with) NP
TO NP
(IN at) NP
(IN from) NP
(IN by) NP
(TO to) NP
(IN of) NP
IN (S (VP VBG NP))
IN NP

ADJP →
JJ
(JJ able) S
RB JJ
RB ADJP
(RB very) JJ
JJ (ADJP CC JJ)
ADJP (ADJP CC ADJP)
(RBR more) JJ
JJ PP
(NP CD (NNS years)) (JJ old)
(JJ UNK-LC)
(RB too) JJ

ADVP →
(RB also)
(RB now)
RB
(RB still)
(NP (DT a) (NN year)) (RBR earlier)
(RB already)
(RB UNK-LC-ly)
(RB again)
(RB just)
(RB then)
(RB never)
(RB currently)

TOP →

(S NP (S VP (. .)))
SINV

(S (NP (DT The) NP) (S VP (. .)))
(S S (S , S))
(S (CC But) S)
(S (PP (IN In) NP) (S (, ,) S))

(S (NP (DT The) NN) (S VP (. .)))
(S (“ “) (S S (S (, ,) S)))
(S (NP NP (NP , (NP NP ,))) (S VP (. .)))
(S PP (S (, ,) (S NP (S VP (. .)))))
(S (NP (PRP He)) (S VP .))

(S (CC And) S)

S →
NP VP
(VP TO (VP VB NP))
(NP PRP) VP

(VP TO (VP VB VP))
(VP TO (VP VB (VP NP PP)))
(VP TO (VP VB))
(VP TO (VP VB PP))
(VP VBG NP)
(VP VBG VP)
(NP (PRP We)) VP
(NP (PRP it)) VP
(NP (PRP I)) VP

Table 6: Most frequent expansions for a selection of nonterminals. Counts were taken from
the final sample of a model trained on the full Penn treebank.

3085

Cohn, Blunsom and Goldwater

NP →

(DT the) NP
NP (NP (CC and) NP)
NP (PP (IN of) NP)
(DT the) NN
(DT the) NNS
(NP DT NN) (PP (IN of) NP)
(DT a) NP
(PRP$ its) NP
NP (NP (, ,) (SBAR WHNP (S VP)))

NP (NP , (NP (SBAR WHNP (S VP)) (, ,)))
CD (NN %)
NP (NP (, ,) NP)

(NP NNP (POS ’s)) NP
(NNP Mr.) NNP
(PRP it)
(NP DT (NP JJ NN)) (PP (IN of) NP)
(DT a) (NP JJ NN)
NP (SBAR (WHNP (WDT that)) (S VP))
NP (NP (, ,) (NP NP (, ,)))
(NP (DT the) NN) (PP (IN of) NP)

VP →
(VBD said) (SBAR (S NP VP))

VP (VP (CC and) VP)
(VBD said) (SBAR (S (NP (PRP it)) VP))
VBD (VP (NP CD (NN %)) VP)

VP (VP , (VP (CC and) VP))
VP (VP (, ,) (VP (CC but) VP))
(VBD said) (SBAR (S (NP (PRP he)) VP))
(MD will) (VP VB VP)
(VBD said) (SBAR (S (NP (DT the) NN) VP))
(VBD agreed) S
(VBZ is) (VP (VBN expected) S)
(VBP say) (SBAR (S NP VP))
MD (VP (RB n’t) (VP VB VP))
(VBZ says) (SBAR (S NP VP))
(VBP do) (VP (RB n’t) (VP VB NP))
(MD will) (VP VB NP)
(VBZ plans) S
(VBD was) (VP VBN (PP (IN by) NP))
(VBD did) (VP (RB n’t) (VP VB NP))

VP (VP (CC but) VP)

Table 7: Most frequent lexicalized expansions for noun and verb phrases. Forms of to be

and to have dominate the VP expansions and consequently have been excluded.

3086

Inducing Tree Substitution Grammars

Cohen and Smith, 2009; Headden III et al., 2009); these approaches currently represent
the state-of-the-art for dependency induction. In this section, we present a method for
dependency grammar induction that incorporates the basic intuitions of the DMV, but is
also capable of modelling larger units than just single parent-child dependency relations.
We approach the problem by representing dependency structures using the formalism of a
CFG, and then applying our model (Section 3) to learn a TSG based on that CFG.

A dependency grammar can be represented in a CFG by labelling constituents with their
head word, and encoding each dependency edge between a head and a child word in the
grammar productions. This grammar has productions of the form S → H (word H heads the
sentence), H → C H (C is a left child of H) and H → H C (C is a right child of H), where S

is the start nonterminal and the H and C denote head and child nonterminals, respectively,
which are both drawn from the same alphabet as the terminals (in our case part-of-speech
tags). Unfortunately parsing with this representation is inefficient, having an asymptotic
time complexity of O(|w|5).20 The complexity can be improved to O(|w|3) by replicating
(splitting) each terminal and processing all left and right dependents of each head word
separately (Eisner, 2000). This is illustrated in Figure 13 where the leaves are all replicated
with the l and r subscripts, while the spans defined by the tree structure denote the left
and right dependents of each head word. Here we employ the fold-unfold representation
(Johnson, 2007) that generalises Eisner’s (2000) split-head parsing algorithm by defining an
equivalent CFG under which standard inference methods can be used. Table 8 shows the
CFG grammar for the DMV model (CFG-DMV), while Figure 13 shows the derivation in
this grammar for the example sentence in Figure 2. The key insight to understanding the
nonterminals in this grammar is that the subscripts encode the terminals at the boundaries
of the span dominated by that nonterminal. For example the nonterminal LH encodes that
the right most terminal spanned by this constituent is H (and the reverse for HR), while

AMB encodes that A and B are the left and right terminals of the span. The superscripts ∗

and 1 denote the valency of the head: both indicate that the head has at least one attached
dependent in the specified direction, with 1 indicating that the head will continue to attach
more children. The time complexity of inference in this grammar is only O(|w|3) because
each span in the parse chart bounded by terminals A and B can only contain nonterminal
labels from the set {LB , L∗

B , L1
B , AR, AR∗, AR1, AMB∗ , A∗MB , S}. Consequently the

grammar constant is fixed rather than quadratic in the sentence length.

We apply our TSG model to unsupervised dependency grammar induction using the
CFG-DMV as the underlying grammar representation. Our model is capable of learn-
ing tree fragments which combine multiple adjacent CFG productions, affording consider-
able additional modelling power above that of a PCFG. Thereby the model can learn to
condition dependency links on the valence. For example by combining LNN → L1

NN and
L1

NN → LDT DT MNN∗ rules into an elementary tree the model can describe that the left-
most child of a noun (NN) is a determiner (DT). Moreover, the model can learn groups
of dependencies that occur together by conjoining multiple L1

H or HR1 nonterminals. This
can represent, for example, the complete preferred argument frame of a verb.

20. This is a result of the usual CYK complexity of O(G2|w|3), and the grammar constant G being equal
to the number of terminals |w| in the sentence.

3087

Cohn, Blunsom and Goldwater

CFG Rule DMV Distribution Description

S → LH HR p(root = H) The head of the sentence is H.

LH → Hl p(STOP |dir = L, head = H, val = 0) H has no left children.
LH → L1

H p(CONT |dir = L, head = H, val = 0) H has at least one left child.

L∗
H → Hl p(STOP |dir = L, head = H, val = 1) H has no more left children.

L∗
H → L1

H p(CONT |dir = L, head = H, val = 1) H has another left child.

HR → Hr p(STOP |dir = R, head = H,val = 0) H has no right children.

HR → HR1 p(CONT |dir = R, head = H,val = 0) H has at least one right child.

HR∗ → Hr p(STOP |dir = R, head = H,val = 1) H has no more right children.

HR∗ → HR1 p(CONT |dir = R, head = H,val = 1) H has another right child.

L1
H → LC CMH∗ p(C|dir = L, head = H) C is a left child of H.

HR1 → H∗MC CR p(C|dir = R,head = H) C is a right child of H.

CMH∗ → CR L∗
H p = 1 Structural rule.

H∗MC → HR∗ LC p = 1 Structural rule.

Table 8: The CFG-DMV grammar schema. Note that the actual CFG is created by instan-
tiating these templates with part-of-speech tags observed in the data for the variables H and
C. Valency (val) can take the value 0 (no attachment in direction dir) and 1 (one or more
attachment). L and R indicates child dependents left or right of the parent; superscripts
encode the stopping and valency distributions, X1 indicates that the head will continue to
attach more children and X∗ that it has already attached a child.

S

Lhates

L1
hates

LGeorge

Georgel

GeorgeMhates∗

GeorgeR

Georger

L∗
hates

hatesl

hatesR

hatesR
1

hates∗Mbroccoli

hatesR
∗

hatesr

Lbroccoli

broccolil

broccoliR

broccolir

Figure 13: The CFG-DMV derivation for the example sentence George hates broccoli. The
dependency parse for this sentence is given in Figure 2.

3088

Inducing Tree Substitution Grammars

Partition Sections Words Sentences

training≤10 2–21 42505 6007
training≤15 2–21 132599 12880

development≤10 22 1805 258

test≤10 23 2649 398
test≤15 23 16591 1286
test≤∞ 23 49368 2416

Table 9: Corpus statistics for the training and testing data for the TSG-DMV model. All
models are trained on the gold standard part-of-speech tags after removing punctuation.

7.1 Experiments

We perform inference for the TSG-DMV model by drawing 1000 samples using the blocked
Metropolis-Hastings sampler described in Section 4.2 and evaluate the model using the final
sample. Given that we do not observe parse trees in training, we cannot use the local Gibbs
sampler as it only allows the sampling of the segmentation of a fixed tree, not the tree itself.
In order to parse sentences in the test set we use the Viterbi algorithm to find the maximum
probability parse under the MAP grammar (see Section 5). All hyperparameters, a,b and
s, are sampled after every ten full samples over the training set.

A final and important consideration is the initialisation of the sampler. Klein and
Manning (2004) emphasised the importance of the initialiser for achieving good performance
with their model. We employ Klein and Manning’s harmonic initialiser which defines a
PCFG in which all words have the same valency distribution and probability of being the
sentence head, while the probability of a head word attaching to a child word is inversely
proportional to the average distance between these words in the training corpus. To obtain
the initial derivations for the sampler we take the Viterbi derivations under this PCFG.

We follow the standard evaluation regime for DMV style models by performing exper-
iments on the text of the WSJ section of the Penn. Treebank (Marcus et al., 1993). The
corpus statistics are reported in Table 9. Like previous work we pre-process the training and
test data to remove the words and punctuation, training our models on the gold-standard
part-of-speech tags.

It is difficult for an unsupervised model to learn from long training sentences as their
structure is highly ambiguous, and therefore the majority of DMV based approaches have
been trained on sentences restricted in length to ≤ 10 tokens. This has the added benefit of
decreasing the runtime for experiments. We present experiments with this training scenario,
plus an additional experiment where we increase the length cutoff to ≤ 15. For the ≤ 15
experiment we start by sampling only sentences up to length 10, then gradually relax this
length cutoff until we are sampling all sentences up to length 15 after 900 samples.21 The
training data is taken from sections 2-21, while section 23 is used for evaluation (see Table 9).
An advantage of our sampling based approach over previous work is that we infer all the
hyperparameters; consequently there is no need to tune on the development set (section
22).

21. This training method is similar in spirit to the Baby Steps algorithm (Spitkovsky et al., 2010).

3089

Cohn, Blunsom and Goldwater

Directed Attachment Accuracy
% on Section 23

Model Initialiser |w| ≤ 10 |w| ≤ 20 |w| ≤ ∞

Attach-Right - 38.4 33.4 31.7

EM (Klein and Manning, 2004) Harmonic 46.1 39.9 35.9
Dirichlet (Cohen et al., 2009) Harmonic 46.1 40.6 36.9

LN (Cohen et al., 2009) Harmonic 59.4 45.9 40.5
SLN, TIE V&N (Cohen and Smith, 2009) Harmonic 61.3 47.4 41.4

DMV (Headden III et al., 2009) Random 55.7σ=8.0 - -
DMV smoothed (Headden III et al., 2009) Random 61.2σ=1.2 - -
EVG smoothed (Headden III et al., 2009) Random 65.0σ=5.7 - -
L-EVG smoothed (Headden III et al., 2009) Random 68.8σ=4.5 - -

Less is More WSJ15 (Spitkovsky et al., 2010) Harmonic 56.2 48.2 44.1
Leap Frog WSJ45 (Spitkovsky et al., 2010) Harmonic 57.1 48.7 45.0

Adaptor Grammar (Cohen et al., 2010) Harmonic 50.2 - -

TSG-DMV Harmonic 65.9σ=2.4 58.3σ=2.3 53.1σ=2.4

TSG-DMV WSJ15 Harmonic 66.4σ=1.7 58.5σ=1.7 53.4σ=1.8

Supervised MLE (Cohen and Smith, 2009) - 84.5 74.9 68.8

Table 10: Head attachment accuracy for our two TSG-DMV models (highlighted), and
many other high performing models.

The models are evaluated in terms of head attachment accuracy (the percentage of
correctly predicted head dependency links for each token in the test data), on three subsets
of the testing data. Although unsupervised models are better learnt from a corpus of
short rather than long sentences, they must still be able to parse long sentences. The
most commonly employed test set mirrors the training data by only including sentences
≤ 10, however we also include results for sentences ≤ 20 and the whole test set with no
length restriction. As we are using MCMC sampling the result of any single run is non-
deterministic and will exhibit a degree of variance. Our reported results are the mean and
standard deviation (σ) from 40 sampling runs.

7.2 Discussion

Table 10 shows the head attachment accuracy results for our TSG-DMV, along with those
of several other competitive models. Our model performs very well in comparison to the
others; in particular it achieves the highest reported accuracy on the full test set by a con-
siderable margin. On the |w| ≤ 10 test set the TSG-DMV is second only to the L-EVG
model of Headden III et al. (2009). The L-EVG model extends DMV by adding addi-
tional lexicalisation, valency conditioning, interpolated back-off smoothing and a random
initialiser. In particular Headden III et al. show that the random initialiser is crucial for

3090

Inducing Tree Substitution Grammars

good performance, but their approach requires training 1000 models to select a single best
model for evaluation and leads to considerable variance in test set performance. Our model
exhibits considerably less variance than those induced using this random initialiser, sug-
gesting that the combination of the harmonic initialiser and blocked MH sampling may be
a more practical training regime. The recently-proposed Adaptor Grammar DMV model of
Cohen et al. (2010) is similar in many ways to our TSG model, incorporating a Pitman Yor
prior over units larger than CFG rules. As such it is surprising that our model performs
significantly better than this model. We can identify a number of possible explanations for
these results: the Adaptor Grammar model is trained using variational inference with the
space of tree fragments truncated, while we employ a sampler which can nominally explore
the full space of tree fragments; and the tree fragments in the Adaptor Grammar model
must be complete subtrees (i.e., they don’t contain variables), whereas our model can make
use of arbitrary tree fragments. An interesting avenue for further research would be to ex-
tend the variational algorithm of Cohen et al. (2010) to our TSG model, possibly improving
inference time while also allowing for the implementation to be more easily parallelised.

To illustrate the kinds of structures the model induces and the types of errors it makes,
Figure 14 presents a representative example tree for a sentence from Section 22 of the
WSJ. Though many of the elementary trees in this example resist an obvious linguistic
explanation, on the right side of the derivation (highlighted in green) we see that the model
has learnt to encode that the verb takes a single noun phrase as its object, while on the
left (highlighted in blue) is a rule specifying the DT JJ subject dependent of the VBZ.
This derivation is typical of the analyses produced by the model as it contains a number of
dependency links which are inconsistent with the treebank. However we can see that the
model has learnt to analyse the noun, verb and preposition phrases in a manner which is
quite plausible, despite not matching the reference tree. In particular there would seem to
be little obvious reason to prefer the treebank’s analysis of the conjunction phrase (‘either
apathy or civility’) over that produced by the unsupervised model. This highlights the
difficulty in evaluating the output of unsupervised grammar induction algorithms against
a treebank reference; in this instance it is clear that the analysis found by the model,
despite its low accuracy, could be very useful for a downstream NLP application reliant on
a dependency analysis.

For further analysis Tables 11 and 12 show the accuracy of the model at predicting
the head for each tag type and the accuracy for dependencies spanning a given number
of tokens. Clearly the model is far more accurate when predicting short dependencies, a
result that is also reflected in the per-tag results. We also note that the model accurately
predicts the head of the sentence 84% of the time, indicating an ability to capture the high
level sentence structure. As mentioned above, conjunctions pose a particular difficulty with
unsupervised models as the correct modelling of these remains a contentious linguistic issue.
Nevertheless on conjunctions the model does achieve a reasonable level of agreement with
the treebank.

Table 13 lists the most frequent TSG rules learnt by the model. The most frequent rule
at the top of the table models noun phrases, encoding the fact that determiners have no
children and attach as a left child to a phrase headed by a noun. It is interesting to see
that our model has used a TSG rule to analyse noun phrases in a way consistent with the
treebank, whereas the original DMV model preferred the opposite analysis of having DTs

3091

Cohn, Blunsom and Goldwater

(a) TSG-DMV representation. Large bold nodes indicate substitution points.

S

LV BZ

L
1

V BZ

LDT

DTl

DT MV BZ∗

DT R

DT R
1

DT∗MJJ

DT R
∗

DTr

LJJ

JJl

JJR

JJr

L
∗

V BZ

VBZl

V BZR

V BZR
1

V BZ∗MNN

V BZR
∗

VBZr

LNN

L
1

NN

LDT

DTl

DT MNN∗

DT R

DTr

L
∗

NN

NNl

NNR

NN R
1

NN∗MIN

NNR
∗

NNr

LIN

INl

IN R

INR
1

IN∗MNN

IN R
∗

INr

LNN

L
1

NN

LNN

L
1

NN

LDT

DTl

DT MNN∗

DT R

DTr

L
∗

NN

NNl

NN MNN∗

NNR

NNR
1

NN∗MCC

NNR
∗

NNr

LCC

CCl

CCR

CCr

L
∗

NN

NNl

NN R

NNr

(b) Dependency tree representation. The red links below the sentence show where the treebank reference
analysis differs from the predicted tree.

The above represents a triumph of either apathy or civility

ROOT

Figure 14: An example induced tree, shown as an elementary tree (a) and as a dependency
tree (b). The sentence was taken from the development set: "TheDT aboveJJ representsVBZ

aDT triumphNN ofIN eitherDT apathyNN orCC civilityNN".

3092

Inducing Tree Substitution Grammars

Tag Frequency Accuracy Tag Frequency Accuracy

NN 564 0.70 CC 62 0.77
NNP 366 0.67 VBG 48 0.71
NNS 302 0.74 POS 26 0.92
DT 292 0.81 MD 22 0.82
IN 292 0.59 JJR 20 0.60
JJ 266 0.67 PRP$ 18 1.00
VBD 266 0.79 EX 12 1.00
CD 224 0.21 WP 12 0.17
RB 212 0.40 JJS 10 0.40
PRP 132 0.94 WDT 6 1.00
VBZ 118 0.88 RP 6 0.33
VBN 84 0.71 RBS 4 1.00
VBP 78 0.67 UH 4 0.50
TO 70 0.43

Table 11: Head attachment accuracy stratified by child tag, as measured on the held-out
development set (WSJ 22, |w| ≤ 10). The tags are sorted by frequency.

Link Distance Precision Recall F1-Score

ROOT 0.84 0.84 0.84
1 0.68 0.72 0.70
2 0.61 0.53 0.57
3 0.56 0.46 0.51
4 0.47 0.52 0.49
5 0.27 0.35 0.30
6 0.44 0.57 0.50
7 0.33 0.38 0.35
8 0.25 0.12 0.17

Table 12: Performance on dependency links of varying distance. Precision, recall and f-score
on the WSJ Section 22 (|w| ≤ 10) held-out set.

3093

Cohn, Blunsom and Goldwater

TSG-DMV Rules Frequency

LNN → (LNN (L1
NN LDT (DT MNN∗ DTR L∗

NN))) 906

INR → (INR (INR1
IN∗MNN NNR)) 839

S → (S (LV BD L1
V BD) V BDR) 707

JJMNN∗ → (JJMNN∗ JJR (L∗
NN NNl)) 600

NN∗MNN → (NN∗MNN NNR∗ (LNN NNl)) 589
L1

NN → (L1
NN LDT (DT MNN∗ DT R L∗

NN)) 587
LNNP → (LNNP (L1

NNP (LNNP NNPl) NNP MNNP ∗)) 540
L∗

NN → (L∗
NN (L1

NN LJJ JJMNN∗)) 500

TO∗MV B → (TO∗MV B (TOR∗ TOr) LV B) 437

NNR → (NNR (NNR1
NN∗MNN (NNR NNr))) 412

DT MNNS∗ → (DT MNNS∗ (DT R DTr) L∗
NNS) 397

INR → (INR (INR1
IN∗MNNS (NNSR NNSr))) 328

LNNS → (LNNS (L1
NNS LDT DT MNNS∗)) 326

INMCD∗ → (INMCD∗ (INR INr) (L∗
CD CDl)) 302

NNSMV BD∗ → (NNSMV BD∗ (NNSR NNSr) L∗
V BD) 296

Table 13: The fifteen most frequent TSG-DMV rules in the training data.

as the heads of noun phrases (Klein and Manning, 2004). Both results could be supported
from a linguistic standpoint (Abney, 1987), but nevertheless it is a notable outcome that
our more powerful model prefers to head noun phrases with nouns. Further down the table
we see another interesting rule: TO∗MV B → (TO∗MV B (TOR∗ TOr) LV B). This rule specifies
that a verb phrase headed by an infinitive attaches as the first child of the particle to on its
left. Here the model has used the tree fragment to encode that the verb must be the first
right child of the particle, an analysis both consistent with the treebank and expressing a
bias against any form of split infinitive construction.

8. Conclusion

In this work we have presented a non-parametric Bayesian model for inducing tree substitu-
tion grammars in both supervised and unsupervised settings. By incorporating a structured
prior over elementary rules our model is able to reason over the infinite space of all such
rules, producing compact and simple grammars. In doing so, our model learns local struc-
tures for latent linguistic phenomena, such as verb subcategorisation and lexical agreement.

Our experimental results indicate that our model holds significant potential for a range
of grammar induction tasks. In experiments using a treebank for training, we showed that
the induced TSG grammars strongly out-perform standard PCFGs, and are comparable
to a state-of-the-art parser on small data samples. While our results when training on
the full treebank are well shy of the best available parsers, we have proposed a number of
improvements to the model and the parsing algorithm that could lead to state-of-the-art
performance in the future. Our second set of experiments removed the reliance on a treebank
and showed that our TSG model achieves performance similar to the best recent models
on sentences up to length 10, and outperforms all other models on longer sentences. This

3094

Inducing Tree Substitution Grammars

result is particularly promising, since it demonstrates the possibility of successfully learning
complex hierarchical models, beyond just CFGs, without supervision. We hope that our
work will open the door to further research into inducing linguistically rich grammars, such
as tree adjoining and categorial grammars, that have so far been considered too difficult to
learn from raw strings.

References

Steven Paul Abney. The English Noun Phrase in its Sentential Aspect. PhD thesis, Mas-
sachusetts Institute of Technology, Cambridge, Massachusetts, 1987.

David Aldous. Exchangeability and related topics. In École d’été de probabilités de Saint-

Flour, XIII—1983, pages 1–198. Springer, Berlin, 1985.

Phil Blunsom and Trevor Cohn. Unsupervised induction of tree substitution grammars for
dependency parsing. In Proceedings of the 2010 Conference on Empirical Methods in

Natural Language Processing, pages 1204–1213, Boston, Massachusetts, October 2010.

Rens Bod. Using an annotated language corpus as a virtual stochastic grammar. In 11th

National Conference on Artificial Intelligence, pages 778–783, Washington D.C., USA,
July 1993.

Rens Bod. The problem of computing the most probable tree in data-oriented parsing and
stochastic tree grammars. In Proceedings of the 7th conference on European chapter of

the Association for Computational Linguistics, pages 104–111, Dublin, Ireland, 1995.

Rens Bod. Combining semantic and syntactic structure for language modeling. In Proceed-

ings of the 6th International Conference on Spoken Language Processing, pages 106–109,
Beijing, China, 2000.

Rens Bod. An efficient implementation of a new DOP model. In Proceedings of the 10th

Conference of the European Chapter of the Association for Computational Linguistics,
Budapest, Hungary, April 2003.

Rens Bod. An all-subtrees approach to unsupervised parsing. In Proceedings of the 21st

International Conference on Computational Linguistics and 44th Annual Meeting of the

Association for Computational Linguistics, pages 865–872, Sydney, Australia, July 2006.

Rens Bod, Remko Scha, and Khalil Sima’an, editors. Data-oriented parsing. Center for the
Study of Language and Information — Studies in Computational Linguistics. University
of Chicago Press, 2003.

Glenn Carroll and Eugene Charniak. Two experiments on learning probabilistic dependency
grammars from corpora. In Proceedings of the AAAI Workshop on Statistically-Based

Natural Language Processing Techniques, San Jose, California, 1992.

Eugene Charniak and Mark Johnson. Coarse-to-fine n-best parsing and maxent discrim-
inative reranking. In Proceedings of the 43rd Annual Meeting of the Association for

Computational Linguistics, pages 173–180, Ann Arbor, Michigan, June 2005.

3095

Cohn, Blunsom and Goldwater

David Chiang and Daniel M. Bikel. Recovering latent information in treebanks. In Proceed-

ings of the 19th International Conference on Computational Linguistics, pages 183–189,
Taipei, Taiwan, 2002.

Alexander Clark. Unsupervised induction of stochastic context-free grammars using dis-
tributional clustering. In Proceedings of the 2001 workshop on Computational Natural

Language Learning, pages 1–8, Toulouse, France, 2001.

Shay B. Cohen and Noah A. Smith. Shared logistic normal distributions for soft parameter
tying in unsupervised grammar induction. In Proceedings of Human Language Technolo-

gies: The 2009 Annual Conference of the North American Chapter of the Association for

Computational Linguistics, pages 74–82, 2009.

Shay B. Cohen, Kevin Gimpel, and Noah A. Smith. Logistic normal priors for unsupervised
probabilistic grammar induction. In Daphne Koller, Dale Schuurmans, Yoshua Bengio,
and Lon Bottou, editors, Advances in Neural Information Processing Systems 21, pages
321–328. 2009.

Shay B. Cohen, David M. Blei, and Noah A. Smith. Variational inference for adaptor
grammars. In Human Language Technologies: The 11th Annual Conference of the North

American Chapter of the Association for Computational Linguistics, pages 564–572, 2010.

Trevor Cohn and Phil Blunsom. Blocked inference in Bayesian tree substitution gram-
mars. In Proceedings of the ACL 2010 Conference Short Papers, pages 225–230, Uppsala,
Sweden, July 2010.

Trevor Cohn, Sharon Goldwater, and Phil Blunsom. Inducing compact but accurate tree-
substitution grammars. In Proceedings of Human Language Technologies: The 2009 An-

nual Conference of the North American Chapter of the Association for Computational

Linguistics, pages 548–556, Boulder, Colorado, June 2009.

Jason Eisner. Bilexical grammars and their cubic-time parsing algorithms. In Harry Bunt
and Anton Nijholt, editors, Advances in Probabilistic and Other Parsing Technologies,
pages 29–62. Kluwer Academic Publishers, October 2000.

Thomas S. Ferguson. A bayesian analysis of some nonparametric problems. Annals of

Statistics, 1(2):209–230, 1973.

Jenny Rose Finkel, Trond Grenager, and Christopher D. Manning. The infinite tree. In
Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics,
pages 272–279, Prague, Czech Republic, June 2007.

Stuart Geman and Donald Geman. Stochastic relaxation, Gibbs distributions and the
Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 6:721–741, 1984.

E. Mark Gold. Language identification in the limit. Information and Control, 10(5):447–474,
1967.

3096

Inducing Tree Substitution Grammars

Sharon Goldwater, Thomas L. Griffiths, and Mark Johnson. Contextual dependencies in
unsupervised word segmentation. In Proceedings of the 21st International Conference on

Computational Linguistics and 44th Annual Meeting of the Association for Computational

Linguistics, pages 673–680, Sydney, Australia, July 2006.

Joshua Goodman. Parsing Inside-Out. PhD thesis, Harvard University, 1998.

Joshua Goodman. Efficient parsing of DOP with PCFG-reductions. In Bod et al. (2003),
chapter 8.

William P. Headden III, Mark Johnson, and David McClosky. Improving unsupervised
dependency parsing with richer contexts and smoothing. In Proceedings of Human Lan-

guage Technologies: The 2009 Annual Conference of the North American Chapter of the

Association for Computational Linguistics, pages 101–109, Boulder, Colorado, June 2009.

Hemant Ishwaran and Lancelot F. James. Generalized weighted Chinese restaurant pro-
cesses for species sampling mixture models. Statistica Sinica, 13:1211–1235, 2003.

Mark Johnson. The DOP estimation method is biased and inconsistent. Computational

Lingusitics, 28(1):71–76, March 2002.

Mark Johnson. Transforming projective bilexical dependency grammars into efficiently-
parsable cfgs with unfold-fold. In Proceedings of the 45th Annual Meeting of the As-

sociation of Computational Linguistics, pages 168–175, Prague, Czech Republic, June
2007.

Mark Johnson. Using adaptor grammars to identify synergies in the unsupervised acquisi-
tion of linguistic structure. In Proceedings of ACL-08: HLT, pages 398–406, Columbus,
Ohio, June 2008a.

Mark Johnson. Unsupervised word segmentation for Sesotho using adaptor grammars.
In Proceedings of the Tenth Meeting of ACL Special Interest Group on Computational

Morphology and Phonology, pages 20–27, Columbus, Ohio, June 2008b.

Mark Johnson and Sharon Goldwater. Improving nonparameteric bayesian inference: ex-
periments on unsupervised word segmentation with adaptor grammars. In Proceedings

of Human Language Technologies: The 2009 Annual Conference of the North Ameri-

can Chapter of the Association for Computational Linguistics, pages 317–325, Boulder,
Colorado, June 2009.

Mark Johnson, Thomas Griffiths, and Sharon Goldwater. Bayesian inference for PCFGs
via Markov chain Monte Carlo. In Proceedings of Human Language Technologies 2007:

The Conference of the North American Chapter of the Association for Computational

Linguistics, pages 139–146, Rochester, NY, April 2007a.

Mark Johnson, Thomas L. Griffiths, and Sharon Goldwater. Adaptor grammars: A frame-
work for specifying compositional nonparametric Bayesian models. In B. Schölkopf,
J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems

19, pages 641–648. 2007b.

3097

Cohn, Blunsom and Goldwater

Aravind Joshi. Tree adjoining grammars. In Ruslan Mikkov, editor, The Oxford Handbook

of Computational Linguistics, pages 483–501. Oxford University Press, Oxford, England,
2003.

Dan Klein and Christopher D. Manning. A generative constituent-context model for im-
proved grammar induction. In Proceedings of 40th Annual Meeting of the Association for

Computational Linguistics, pages 128–135, Philadelphia, Pennsylvania, USA, July 2002.

Dan Klein and Christopher D. Manning. Corpus-based induction of syntactic structure:
models of dependency and constituency. In Proceedings of the 42nd Annual Meeting on

Association for Computational Linguistics, pages 478–485, 2004.

Karim Lari and Steve J. Young. The estimation of stochastic context-free grammars using
the inside-outside algorithm. Computer Speech and Language, 4:35–56, 1990.

Percy Liang, Slav Petrov, Michael Jordan, and Dan Klein. The infinite PCFG using hier-
archical Dirichlet processes. In Proceedings of the 2007 Joint Conference on Empirical

Methods in Natural Language Processing and Computational Natural Language Learning,
pages 688–697, Prague, Czech Republic, June 2007.

Percy Liang, Michael I. Jordan, and Dan Klein. Type-based mcmc. In Human Language

Technologies: The 2010 Annual Conference of the North American Chapter of the As-

sociation for Computational Linguistics, pages 573–581, Los Angeles, California, June
2010.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large
annotated corpus of English: the Penn treebank. Computational Linguistics, 19(2):313–
330, 1993.

Igor′ A. Mel′čuk. Dependency Syntax: Theory and Practice. State University of New York
Press, Albany, 1988.

Bernard Merialdo. Tagging English text with a probabilistic model. Computational Lin-

guistics, 20(2):155–172, 1994.

Radford Neal. Slice sampling. Annals of Statistics, 31:705–767, 2003.

Timothy J. O’Donnell, Noah D. Goodman, and Joshua B. Tenenbaum. Fragment grammar:
Exploring reuse in hierarchical generative processes. Technical Report MIT-CSAIL-TR-
2009-013, MIT, 2009.

Slav Petrov. Products of random latent variable grammars. In Human Language Technolo-

gies: The 2010 Annual Conference of the North American Chapter of the Association for

Computational Linguistics, pages 19–27, Los Angeles, California, June 2010.

Slav Petrov and Dan Klein. Improved inference for unlexicalized parsing. In Proceedings

of Human Language Technologies 2007: The Conference of the North American Chapter

of the Association for Computational Linguistics, pages 404–411, Rochester, NY, April
2007.

3098

Inducing Tree Substitution Grammars

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein. Learning accurate, compact,
and interpretable tree annotation. In Proceedings of the 21st International Conference on

Computational Linguistics and 44th Annual Meeting of the Association for Computational

Linguistics, pages 433–440, Sydney, Australia, July 2006.

Jim Pitman. Exchangeable and partially exchangeable random partitions. Probability The-

ory and Related Fields, 102:145–158, 1995.

Jim Pitman. Combinatorial Stochastic Processes. Springer-Verlag, New York, 2006.

Jim Pitman and Marc Yor. The two-parameter Poisson-Dirichlet distribution derived from
a stable subordinator. Annals of Probability, 25:855–900, 1997.

Matt Post and Daniel Gildea. Bayesian learning of a tree substitution grammar. In Proceed-

ings of the ACL-IJCNLP 2009 Conference Short Papers, pages 45–48, Suntec, Singapore,
August 2009.

Detlef Prescher, Remko Scha, Khalil Sima’an, and Andreas Zollmann. On the statistical
consistency of DOP estimators. In Proceedings of the 14th Meeting of Computational

Linguistics in the Netherlands, Antwerp, Belgium, 2004.

Valentin I. Spitkovsky, Hiyan Alshawi, and Daniel Jurafsky. From Baby Steps to Leapfrog:
How “Less is More” in unsupervised dependency parsing. In Human Language Technolo-

gies: The 11th Annual Conference of the North American Chapter of the Association for

Computational Linguistics, pages 751–759, 2010.

Fei Xia. Automatic grammar generation from two different perspectives. PhD thesis, Uni-
versity of Pennsylvania, 2002.

Andreas Zollmann and Khalil Sima’an. A consistent and efficient estimator for data-oriented
parsing. Journal of Automata, Languages and Combinatorics, 10(2):367–388, 2005.

Willem Zuidema. Parsimonious data-oriented parsing. In Proceedings of the 2007 Joint

Conference on Empirical Methods in Natural Language Processing and Computational

Natural Language Learning, pages 551–560, Prague, Czech Republic, June 2007.

3099

