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Abstract

Tree substitution grammars (TSGs) are
a compelling alternative to context-free
grammars for modelling syntax. How-
ever, many popular techniques for esti-
mating weighted TSGs (under the moniker
of Data Oriented Parsing) suffer from
the problems of inconsistency and over-
fitting. We present a theoretically princi-
pled model which solves these problems
using a Bayesian non-parametric formu-
lation. Our model learns compact and
simple grammars, uncovering latent lin-
guistic structures (e.g., verb subcategori-
sation), and in doing so far out-performs a
standard PCFG.

1 Introduction

Many successful models of syntax are based on
Probabilistic Context Free Grammars (PCFGs)
(e.g., Collins (1999), Charniak (2000)). However,
directly learning a PCFG from a treebank results
in poor parsing performance, due largely to the
unrealistic independence assumptions imposed by
the context-free assumption. Considerable effort
is required to coax good results from a PCFG, in
the form of grammar engineering, feature selec-
tion and clever smoothing (Collins, 1999; Char-
niak, 2000; Charniak and Johnson, 2005; Johnson,
1998). This effort must be repeated when mov-
ing to different languages, grammar formalisms or
treebanks. We propose that much of this hand-
coded knowledge can be obtained automatically
as an emergent property of the treebanked data,
thereby reducing the need for human input in
crafting the grammar.

We present a model for automatically learning a
Probabilistic Tree Substitution Grammar (PTSG),
an extension to the PCFG in which non-terminals
can rewrite as entire tree fragments (elementary

trees), not just immediate children. These large
fragments can be used to encode non-local con-
text, such as head-lexicalisation and verb sub-
categorisation. Since no annotated data is avail-
able providing TSG derivations of strings, we
must induce the PTSG productions and their prob-
abilities in an unsupervised way from an ordinary
treebank. This is the same problem addressed by
Data Oriented Parsing (DOP, Bod et al. (2003)),
a method which uses as productions all sub-trees
of the training corpus. However, many of the
DOP estimation methods have serious shortcom-
ings (Johnson, 2002), namely inconsistency for
DOP1 (Bod, 2003) and overfitting of the maxi-
mum likelihood estimate (Prescher et al., 2004).

In this paper we develop an alternative means
of learning a PTSG from a treebanked corpus,
with the twin objectives of a) finding a grammar
which accurately models the data and b) keep-
ing the grammar as simple as possible, with few,
compact, elementary trees. This is achieved using
a prior to encourage sparsity and simplicity in a
Bayesian non-parametric formulation. The frame-
work allows us to perform inference over an infi-
nite space of grammar productions in an elegant
and efficient manner. The net result is a grammar
which only uses the increased context afforded by
the TSG when necessary to model the data, and
otherwise uses context-free rules.1 That is, our
model learns to use larger rules when the CFG’s
independence assumptions do not hold. This con-
trasts with DOP, which seeks to use all elemen-
tary trees from the training set. While our model
is able, in theory, to use all such trees, in prac-
tice the data does not justify such a large gram-
mar. Grammars that are only about twice the size
of a treebank PCFG provide large gains in ac-
curacy. We obtain additional improvements with

1While TSGs and CFGs describe the same string lan-
guages, TSGs can describe context-sensitive tree-languages,
which CFGs cannot.



grammars that are somewhat larger, but still much
smaller than the DOP all-subtrees grammar. The
rules in these grammars are intuitive, potentially
offering insights into grammatical structure which
could be used in, e.g., the development of syntac-
tic ontologies and guidelines for future treebank-
ing projects.

2 Background and related work

A Tree Substitution Grammar2 (TSG) is a 4-tuple,
G = (T,N, S,R), where T is a set of terminal
symbols, N is a set of non-terminal symbols, S ∈
N is the distinguished root non-terminal and R is
a set of productions (a.k.a. rules). The productions
take the form of elementary trees – tree fragments
of depth≥ 2,3 where each internal node is labelled
with a non-terminal and each leaf is labelled with
either a terminal or a non-terminal. Non-terminal
leaves are called frontier non-terminals and form
the substitution sites in the generative process of
creating trees with the grammar.

A derivation creates a tree by starting with the
root symbol and rewriting (substituting) it with an
elementary tree, then continuing to rewrite frontier
non-terminals with elementary trees until there are
no remaining frontier non-terminals. Unlike Con-
text Free Grammars (CFGs) a syntax tree may not
uniquely specify the derivation, as illustrated in
Figure 1 which shows two derivations using dif-
ferent elementary trees to produce the same tree.

A Probabilistic Tree Substitution Grammar
(PTSG), like a PCFG, assigns a probability to each
rule in the grammar. The probability of a deriva-
tion is the product of the probabilities of its com-
ponent rules, and the probability of a tree is the
sum of the probabilities of its derivations.

As we mentioned in the introduction, work
within the DOP framework seeks to induce PTSGs
from treebanks by using all possible subtrees as
rules, and one of a variety of methods for estimat-
ing rule probabilities.4 Our aim of inducing com-
pact grammars contrasts with that of DOP; more-
over, we develop a probabilistic estimator which
avoids the shortcomings of DOP1 and the maxi-
mum likelihood estimate (Bod, 2000; Bod, 2003;
Johnson, 2002). Recent work on DOP estima-

2A TSG is a Tree Adjoining Grammar (TAG; Joshi
(2003)) without the adjunction operator.

3Elementary trees of depth two correspond to productions
in a context free grammar.

4TAG induction (Chiang and Bikel, 2002; Xia, 2002) also
tackles a similar learning problem.

tion also seeks to address these problems, draw-
ing from estimation theory to solve the consis-
tency problem (Prescher et al., 2004; Zollmann
and Sima’an, 2005), or incorporating a grammar
brevity term into the learning objective (Zuidema,
2007). Our work differs from these previous ap-
proaches in that we explicitly model a prior over
grammars within a Bayesian framework.5

Models of grammar refinement (Petrov et al.,
2006; Liang et al., 2007; Finkel et al., 2007).
also aim to automatically learn latent structure un-
derlying treebanked data. These models allow
each non-terminal to be split into a number of
subcategories. Theoretically the grammar space
of our model is a sub-space of theirs (project-
ing the TSG’s elementary trees into CFG rules).
However, the number of non-terminals required
to recreate our TSG grammars in a PCFG would
be exorbitant. Consequently, our model should
be better able to learn specific lexical patterns,
such as full noun-phrases and verbs with their
sub-categorisation frames, while theirs are better
suited to learning subcategories with larger mem-
bership, such as the terminals for days of the week
and noun-adjective agreement. The approaches
are orthogonal, and we expect that combining a
category refinement model with our TSG model
would provide better performance than either ap-
proach alone.

Our model is similar to the Adaptor Grammar
model of Johnson et al. (2007a), which is also a
kind of tree-substitution grammar based on non-
parametric Bayesian techniques. However, Adap-
tor Grammars require that each sub-tree expands
completely, with only terminal symbols as leaves,
while our own model permits non-terminal fron-
tier nodes. In addition, they disallow recursive
containment of adapted non-terminals; we impose
no such constraint. These constraints on Adaptor
Grammars are a result of their application for in-
ducing grammars from strings, rather than from
trees, as in this work.

3 Model

Recall the nature of our task: we are given a corpus
of parse trees t and wish to infer a tree-substitution
grammar G that we can use to parse new data.
Rather than inferring a grammar directly, we go

5A similar Bayesian model of TSG induction has been de-
veloped independently to this work (O’Donnell et al., 2009b;
O’Donnell et al., 2009a).



(a) S

NP
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hates

NP
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broccoli

(b) S

NP

George

VP

V

V

hates

NP

broccoli

S→ NP (VP (V hates) NP)
NP→ George
NP→ broccoli

S→ (NP George) (VP V (NP broccoli))
V→ hates

Figure 1: Example derivations for the same tree,
where arrows indicate substitution sites. The ele-
mentary trees used in (a) and (b) are shown below
as grammar productions in bracketed tree notation.

through an intermediate step of inferring a distri-
bution over the derivations used to produce t, i.e.,
a distribution over sequences of elementary trees
e that compose to form t. We will then essentially
read the grammar off the elementary trees, as de-
scribed in Section 5. Our problem therefore be-
comes one of identifying the posterior distribution
of e given t, which we can do using Bayes’ Rule:

P (e|t) ∝ P (t|e)P (e) (1)

Since the sequence of elementary trees can be split
into derivations, each of which completely speci-
fies a tree, P (t|e) is either equal to 1 (when t and
e are consistent) or 0 (otherwise). Therefore, the
work in our model is done by the prior distribu-
tion over elementary trees. Note that this is analo-
gous to the Bayesian model of word segmentation
presented by Goldwater et al. (2006); indeed, the
problem of inferring e from t can be viewed as a
segmentation problem, where each full tree must
be segmented into one or more elementary trees.
As in Goldwater et al. (2006), we wish to favour
solutions employing a relatively small number of
elementary units (here, elementary trees). This
can be done using a Dirichlet process (DP) prior.
Specifically, we define the distribution of elemen-
tary tree e with root non-terminal symbol c as

Gc|αc, P0 ∼ DP(αc, P0(·|c))
e|c ∼ Gc

where P0(·|c) (the base distribution) is a distribu-
tion over the infinite space of trees rooted with c,

and αc (the concentration parameter) controls the
model’s tendency towards either reusing elemen-
tary trees or creating novel ones as each training
instance is encountered (and consequently, the ten-
dency to infer larger or smaller sets of elementary
trees from the observed data). We discuss the base
distribution in more detail below.

Rather than representing the distribution Gc ex-
plicitly, we integrate over all possible values of
Gc. This leads to the following distribution over
ei, conditioned on e<i = e1 . . . ei−1 and the root
category c:

p(ei|e<i, c, αc, P0) =
n<i

ei,c + αcP0(ei|c)
n<i
·,c + αc

(2)

where n<i
ei,c is the number number of times ei has

been used to rewrite c in e<i, and n<i
·,c =

∑
e n<i

e,c

is the total count of rewriting c.
As with other DP models, ours can be viewed

as a cache model, where ei can be generated in
one of two ways: by drawing it from the base dis-
tribution, where the probability of any particular
tree is proportional to αcP0(ei|c), or by drawing
it from a cache of previous expansions of c, where
the probability of any particular expansion is pro-
portional to the number of times that expansion
has been used before. This view makes it clear
that the model embodies a “rich-get-richer” dy-
namic in which a few expansions will occur with
high probability, but many will occur only once
or twice, as is typical of natural language. Our
model is similar in this way to the Adaptor Gram-
mar model of Johnson et al. (2007b).

We still need to define P0, the base distribu-
tion over tree fragments. We use two such dis-
tributions. The first, PM

0 generates each elemen-
tary tree by a series of random decisions: whether
to expand a non-terminal, how many children to
produce and their identities. The probability of
expanding a non-terminal node labelled c is pa-
rameterised via a binomial distribution, Bin(βc),
while all other decisions are chosen uniformly at
random. The second base distribution, PC

0 , has a
similar generative process but draws non-terminal
expansions from a treebank-trained PCFG instead
of a uniform distribution.

Both choices of P0 have the net effect of bias-
ing the model towards simple rules, comprised of
a small number of internal nodes. The geometric
increase in cost discourages the model from using
larger rules; for this to occur these rules must yield
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Figure 2: Gibbs state e specifying the derivation
in Figure 1a. Each node is labelled with its substi-
tution indicator variable.

a large increase in the data likelihood. As PC
0 in-

corporates PCFG probabilities, it assigns higher
relative probability to larger rules, compared to the
more draconian PM

0 .

4 Training

To train our model we use Gibbs sampling (Geman
and Geman, 1984), a Markov chain Monte Carlo
method (Gilks et al., 1996) in which variables are
repeatedly sampled conditioned on the values of
all other variables in the model. After a period of
burn-in, each sampler state (set of variable assign-
ments) is a sample from the posterior distribution
of the model. In our case, we wish to sample from
P (e|t, α, β), where (α, β) = {αc, βc} for all cat-
egories c. To do so, we associate a binary variable
with each non-root internal node of each tree in
the training set, indicating whether that node is a
substitution point or not. Each substitution point
forms the root of some elementary tree, as well as
a frontier non-terminal of an ancestor node’s ele-
mentary tree. Collectively, the training trees and
substitution variables specify the sequence of el-
ementary trees e that is the current state of the
sampler. Figure 2 shows an example tree with its
substitution variables, corresponding to the TSG
derivation in Figure 1a.

Our Gibbs sampler works by sampling the value
of each substitution variable, one at a time, in ran-
dom order. If d is the node associated with the
substitution variable s under consideration, then
the two possible values of s define two options
for e: one in which d is internal to some elemen-
tary tree eM , and one in which d is the substi-
tution site connecting two smaller trees, eA and
eB . In the example in Figure 2, when sampling
the VP node, eM = (S NP (VP (V hates) NP)),
eA = (S NP VP), and eB = (VP (V hates) NP).
To sample a value for s, we compute the proba-
bilities of eM and (eA, eB), conditioned on e−:

all other elementary trees in the training set that
share at most a root or frontier non-terminal with
eM , eA, or eB . This is easy to do because the DP
is exchangeable, meaning that the probability of a
set of outcomes does not depend on their ordering.
Therefore, we can treat the elementary trees under
consideration as the last ones to be sampled, and
apply Equation 2, giving us

P (eM |cM )=
n−

eM ,cM
+ αcM P0(eM |cM )

n−
·,cM + αcM

(3)

P (eA, eB|cA)=
n−

eA,cA
+ αcAP0(eA|cA)

n−
·,cA + αcA

(4)

×
n−

eB ,cB
+ δ(eA, eB) + αcBP0(eB|cB)

n−
·,cB + δ(cA, cB) + αcB

where cx is the root label of ex, x ∈ {A,B, M},
the counts n− are with respect to e−, and δ(·, ·)
is the Kronecker delta function, which returns 1
when its arguments are identical and 0 otherwise.
We have omitted e−, t, α and β from the condi-
tioning context. The δ terms in the second factor
of (4) account the changes to n− that would oc-
cur after observing eA, which forms part of the
conditioning context for eB . If the trees eA and
eB are identical, then the count n−

eB ,cB
would in-

crease by one, and if the trees share the same root
non-terminal, then n−

·,cB
would increase by one.

In the previous discussion, we have assumed
that the model hyperparameters, (α, β), are
known. However, selecting their values by hand
is extremely difficult and fitting their values on
heldout data is often very time consuming. For
this reason we treat the hyper-parameters as vari-
ables in our model and infer their values during
training. We choose vague priors for each hyper-
parameter, encoding our lack of information about
their values. We treat the concentration param-
eters, α, as being generated by a vague gamma
prior, αc ∼ Gamma(0.001, 1000). We sample
a new value α′

c using a log-normal distribution
with mean αc and variance 0.3, which is then ac-
cepted into the distribution p(αc|e, t, α−, β) using
the Metropolis-Hastings algorithm. We use a Beta
prior for the binomial specification parameters,
βc ∼ Beta(1, 1). As the Beta distribution is conju-
gate to the binomial, we can directly resample the
β parameters from the posterior, p(βc|e, t, α, β−).
Both the concentration and substitution parame-
ters are resampled after every full Gibbs sampling
iteration over the training trees.



5 Parsing

We now turn to the problem of using the model
to parse novel sentences. This requires finding the
maximiser of

p(t|w, t) =
∫

p(t|w, e, α, β) p(e, α, β|t) de dα dβ

(5)
where w is the sequence of words being parsed
and t the resulting tree, t are the training trees and
e their segmentation into elementary trees.

Unfortunately solving for the maximising parse
tree in (5) is intractable. However, it can approx-
imated using Monte Carlo techniques. Given a
sample of (e, α, β)6 we can reason over the space
of possible trees using a Metropolis-Hastings sam-
pler (Johnson et al., 2007b) coupled with a Monte
Carlo integral (Bod, 2003). The first step is
to sample from the posterior over derivations,
p(d|w, e, α, β). This is achieved by drawing sam-
ples from an approximation grammar, p̃(d|w),
which are then accepted to the true distribution us-
ing the Metropolis-Hastings algorithm. The sec-
ond step records for each sampled derivation the
CFG tree. The counts of such trees constitute an
approximation to p(t|w, e, α, β), from which we
can recover the maximum probability tree.

A natural proposal distribution, p̃(d|w), is the
maximum a posterior (MAP) grammar given the
elementary tree analysis of our training set (anal-
gous to the PCFG approximation used in John-
son et al. (2007b)). This is not practical because
the approximation grammar is infinite: elementary
trees with zero count in e still have some residual
probability under P0. In the absence of a better al-
ternative, we discard (most of) the zero-count rules
from MAP grammar. This results in a tractable
grammar representing the majority of the prob-
ability mass, from which we can sample deriva-
tions. We specifically retain all zero-count PCFG
productions observed in the training set in order to
provide greater robustness on unseen data.7

In addition to finding the maximum probability
parse (MPP), we also report results using the max-
imum probability derivation (MPD). While this

6Using many samples of (e, α, β) in a Monte Carlo inte-
gral is a straight-forward extension to our parsing algorithm.
We did not observe a significant improvement in parsing ac-
curacy when using a multiple samples compared to a single
sample, and therefore just presnt results for a single sample.

7Experiments with additional zero-count rules (e.g., DOP
fragments up to a certain depth) lead to an indistinguishable
change in the parsing accuracy, but at the cost of a much
larger approximation grammar.

S → A | B
A → A A | B B | (A a) (A a) | (B a) (B a)
B → A A | B B | (A b) (A b) | (B b) (B b)

Figure 3: TSG used to generate synthetic data. All
production probabilities are uniform.

could be calculated in the same manner as de-
scribed above, we found that using the CYK algo-
rithm (Cocke, 1969) to find the Viterbi derivation
for p̃ yielded consistently better results. This algo-
rithm maximises an approximated model, as op-
posed to approximately optimising the true model.
We also present results using the tree with the
maximum expected count of CFG rules (MER).
This uses counts of the CFG rules applied at each
span (compiled from the derivation samples) fol-
lowed by a maximisation step to find the best
tree. This is similar to the MAX-RULE-SUM al-
gorithm of Petrov and Klein (2007) and maximum
expected recall parsing (Goodman, 2003).

6 Experiments

Synthetic data Before applying the model to
natural language, we first create a synthetic prob-
lem to confirm that the model is capable of re-
covering a known tree-substitution grammar. We
created 50 random trees from the TSG shown
in Figure 3. This produces binary trees with A
and B internal nodes and ‘a’ and ‘b’ as termi-
nals, such that the terminals correspond to their
grand-parent non-terminal (A and a or B and b).
These trees cannot be modelled accurately with a
CFG because expanding A and B nodes into ter-
minal strings requires knowing their parent’s non-
terminal.

We train the model for 100 iterations of Gibbs
sampling using annealing to speed convergence.
Annealing amounts to smoothing the distributions
in (3) and (4) by raising them to the power of 1

T .
Our annealing schedule begins at T = 3 and lin-
early decreases to reach T = 1 in the final itera-
tion. The sampler converges to the correct gram-
mar, with the 10 rules from Figure 3.

Penn-treebank parsing We ran our natural lan-
guage experiments on the Penn treebank, using
the standard data splits (sections 2–21 for train-
ing, 22 for development and 23 for testing). As
our model is parameter free (the α and β parame-



ters are learnt in training), we do not use the de-
velopment set for parameter tuning. We expect
that fitting these parameters to maximise perfor-
mance on the development set would lead to a
small increase in generalisation performance, but
at a significant cost in runtime. We replace to-
kens with count ≤ 1 in the training sample with
one of roughly 50 generic unknown word mark-
ers which convey the token’s lexical features and
position in the sentence, following Petrov et al.
(2006). We also right-binarise the trees to reduce
the branching factor in the same manner as Petrov
et al. (2006). The predicted trees are evaluated us-
ing EVALB8 and we report the F1 score over la-
belled constituents and exact match accuracy over
all sentences in the testing sets.

In our experiments, we initialized the sampler
by setting all substitution variables to 0, thus treat-
ing every full tree in the training set as an elemen-
tary tree. Starting with all the variables set to 1
(corresponding to CFG expansions) or a random
mix of 0s and 1s considerably increases time until
convergence. We hypothesise that this is due to the
sampler getting stuck in modes, from which a se-
ries of locally bad decisions are required to escape.
The CFG solution seems to be a mode and there-
fore starting the sampler with maximal trees helps
the model to avoid this mode. Other techniques
could be used to improve training efficiency such
as split-merge MCMC sampling (Jain and Neal,
2000) or replacing the sampler with a truncated
variational approximation (Liang et al., 2007).

Small data sample For our first treebank exper-
iments, we train on a small data sample by using
only section 2 of the treebank. Bayesian meth-
ods tend to do well with small data samples, while
for larger samples the benefits diminish relative to
point estimates. The models were trained using
Gibbs sampling for 4000 iterations with annealing
linearly decreasing from T = 5 to T = 1, af-
ter which the model performed another 1000 iter-
ations with T = 1. The final training sample was
used in the parsing algorithm, which used 1000
derivation samples for each test sentence. All re-
sults are the average of five independent runs.

Table 1 presents the prediction results on the de-
velopment set. The baseline is a maximum like-
lihood PCFG. The TSG model significantly out-
performs the baseline with either base distribu-
tion PM

0 or PC
0 . This confirms our hypothesis that

8See http://nlp.cs.nyu.edu/evalb/.

F1 EX # rules
PCFG 60.20 4.29 3500
TSG PM

0 : MPD 72.17 11.92 6609
MPP 71.27 12.33 6609
MER 74.25 12.30 6609

TSG PC
0 : MPD 75.24 15.18 14923

MPP 75.30 15.74 14923
MER 76.89 15.76 14923

SMτ=2: MPD 71.93 11.30 16168
MER 74.32 11.77 16168

SMτ=5: MPD 75.33 15.64 39758
MER 77.93 16.94 39758

Table 1: Development results for models trained
on section 2 of the Penn tree-bank, showing la-
belled constituent F1 and exact match accuracy.
Grammar sizes are shown as the number of rules
with count ≥ 1.

CFGs are not sufficiently powerful to model syn-
tax, but that the increased context afforded to the
TSG can make a large difference. This result is
even more impressive when considering the differ-
ence in the sizes of grammar in the PCFG versus
TSG models. The TSG using PM

0 achieves its im-
provements with only double as many rules, as a
consequence of the prior which encourages sparse
solutions. The TSG results with the CFG base dis-
tribution, PC

0 , are more accurate but with larger
grammars.9 This base distribution assigns propor-
tionally higher probability to larger rules than PM

0 ,
and consequently the model makes use of these ad-
ditional rules in a larger grammar.

Surprisingly, the MPP technique is not system-
atically better than the MPD approach, with mixed
results under the F1 metric. We conjecture that
this is due to sampling variance for long sen-
tences, where repeated samples of the same tree
are exceedingly rare. The MER technique results
in considerably better F1 scores than either MPD
or MPP, with a margin of 1.5 to 3 points. This
method is less affected by sampling variance due
to its use of smaller tree fragments (PCFG produc-
tions at each span).

For comparison, we trained the Berkeley split-
merge (SM) parser (Petrov et al., 2006) on the
same data and decoded using the Viterbi algo-
rithm (MPD) and expected rule count (MER a.k.a.
MAX-RULE-SUM). We ran two iterations of

9The grammar is nevertheless far smaller than the full
DOP grammar induced from this data set, which has approx-
imately 700K rules.



split-merge training, after which the development
F1 dropped substantially (in contrast, our model
is not fit to the development data). The result
is an accuracy slightly below that of our model
(SMτ=2). To be fairer to their model, we adjusted
the unknown word threshold to their default set-
ting, i.e., to apply to word types occurring fewer
than five times (SMτ=5). We expect that tun-
ing the treatment of unknown words in our model
would also yield further gains. The grammar sizes
are not strictly comparable, as the Berkeley bina-
rised grammars prohibit non-binary rules, and are
therefore forced to decompose each of these rules
into many child rules. But the trend is clear –
our model produces similar results to a state-of-
the-art parser, and can do so using a small gram-
mar. With additional rounds of split-merge train-
ing, the Berkeley grammar grows exponentially
larger (200K rules after six iterations).

Full treebank We now train the model using
PM

0 on the full training partition of the Penn tree-
bank, using sections 2–21. We run the Gibbs sam-
pler for 15,000 iterations while annealing from
T = 5 to T = 1, after which we finish with
5,000 iterations at T = 1. We repeat this three
times, giving an average F1 of 84.0% on the test-
ing partition using the maximum expected rule al-
gorithm and 83.0% using the Viterbi algorithm.
This far surpasses the ML-PCFG (F1 of 70.7%),
and is similar to Zuidema’s (2007) DOP result of
83.8%. However, it still well below state-of-the
art parsers (e.g., the Berkeley parser trained using
the same data representation scores 87.7%). But
we must bear in mind that these parsers have had
the benefit of years of tuning to the Penn-treebank,
where our model is fundamentally much simpler
and is largely untuned. We anticipate that careful
data preparation and model tuning could greatly
improve our model’s performance.

7 Discussion

So what kinds of non-CFG rules is the model
learning? Figure 4 shows the grammar statistics
for a TSG model trained on the small data sam-
ple. This model has 5611 CFG rules and 1008
TSG rules. The TSG rules vary in depth from two
to nine levels with the majority between two and
four. Most rules combine a small degree of lex-
icalisation and a variable or two. This confirms
our intuition that the model is learning local struc-
tures to encode, e.g., multi-word units, subcate-
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Figure 4: Grammar statistics for a TSG PM
0 model

trained on section 2 of the Penn treebank, show-
ing a histogram over elementary tree depth, num-
ber of nodes, terminals (lexemes) and frontier non-
terminals (vars).

gorisation frames and lexical agreement. The few
very large rules specify full parses for sentences
which were repeated in the training corpus. These
complete trees are also evident in the long tail of
node counts (up to 27; not shown in the figure) and
counts for highly lexicalised rules (up to 8).

To get a better feel for the types of rules be-
ing learnt, it is instructive to examine the rules
in the resultant grammar. Table 2 shows the top
twenty rules for four phrasal categories for the
model trained on the full Penn treebank. We can
see that many of these rules are larger than CFG
rules, showing that the CFG rules alone are in-
adequate to model the treebank. Two of the NP
rules encode the prevalence of preposition phrases
headed by ‘of’ within a noun phrase, as opposed to
other prepositions. Also noteworthy is the lexical-
isation of the determiner, which can affect the type
of NP expansion. For instance, the indefinite arti-
cle is more likely to have an adjectival modifier,
while the definite article appears more frequently
unmodified. Highly specific tokens are also incor-
porated into lexicalised rules, such as ‘years’ and
‘old’ in the last ADJP rule.

Many of the verb phrase expansions have been
lexicalised, encoding the verb’s subcategorisation,
as shown in Table 3. Notice that each verb here
accepts only one or a small set of argument frames,
indicating that by lexicalising the verb in the VP
expansion the model can find a less ambiguous and
more parsimonious grammar.

The model also learns to use large rules to de-
scribe the majority of root node expansions (we
add a distinguished TOP node to all trees). These



NP→ PP→ ADJP→
DT N̄P IN NP JJ
NNS (IN in) NP RB JJ
DT NN (TO to) NP JJ ( ¯ADJP CC JJ)
(DT the) N̄P TO NP JJ PP
JJ NNS (IN with) NP (RB very) JJ
NP (PP (IN of) NP) (IN of) NP RB ¯ADJP
NP PP (IN by) NP (RBR more) JJ
NP (N̄P (CC and) NP) (IN at) NP JJ ¯ADJP
JJ N̄P IN (NP (DT the) N̄P) ADJP ( ¯ADJP CC ADJP)
NN NNS (IN on) NP RB VBN
(DT the) NNS (IN from) NP RB ( ¯ADJP JJ PP)
DT (N̄P JJ NN) IN (S (VP VBG NP)) JJ (PP (TO to) NP)
NN IN (NP NP PP) ADJP (PP (IN than) NP)
JJ NN (IN into) NP (RB too) JJ
(NP DT NN) (PP (IN of) NP) (IN for) NP (RB much) JJR
NP N̄P IN (NP NP (N̄P CC NP)) (JJ UNK-LC)
NNP (IN in) (NP (DT the) N̄P) (ADJP JJR) (PP (IN than) NP)
NNP N̄P IN (NP (NP DT NN) (PP (IN of) NP)) (RB so) JJ
PRP$ N̄P (IN through) NP VBN
(DT a) (N̄P JJ NN) (IN as) NP (NP CD (NNS years)) (JJ old)

Table 2: Top twenty expansions sorted by frequency (most frequent at top), taken from the final sample
of a model trained on the full Penn treebank. Non-terminals shown with an over-bar denote a binarised
sub span of the given phrase type.

NP→
(NNP Mr.) NNP
CD (NN %)
(NP CD (NN %)) (PP (IN of) NP)
(NP ($ $) CD) (NP (DT a) (NN share))
(NP (DT the) (N̄P (NN company) POS)) N̄P
(NP QP (NN %)) (PP (IN of) NP)
(NP CD (NNS cents)) (NP (DT a) (NN share))
(NP (NNP Mr.) (N̄P NNP (POS ’s))) NN
QP (NN %)
(NP (NN president)) (PP (IN of) NP)
(NP (NNP Mr.) (N̄P NNP (POS ’s))) N̄P
NNP (N̄P NNP (NNP Corp.))
NNP (N̄P NNP (NNP Inc.))
(NP (NN chairman)) (PP (IN of) NP)
VP→
(VBD said) (SBAR (S (NP (PRP it)) VP))
(VBD said) (SBAR (S NP VP))
(VBD rose) (V̄P (NP CD (NN %)) V̄P)
(VBP want) S
(VBD said) (SBAR (S (NP (PRP he)) VP))
(VBZ plans) S
(VBD said) (SBAR S)
(VBZ says) (SBAR (S NP VP))
(VBP think) (SBAR S)
(VBD agreed) (S (VP (TO to) (VP VB V̄P)))
(VBZ includes) NP
(VBZ says) (SBAR (S (NP (PRP he)) VP))
(VBZ wants) S
(VBD closed) (V̄P (PP (IN at) NP) (V̄P , ADVP))
(VBZ expects) S
(VBZ owns) NP
(VBP say) (SBAR S)
(VBD took) V̄P
(VBD failed) S
(VBD noted) (SBAR (IN that) S)

Table 3: Most frequent lexicalised expansions for
noun and verb phrases, excluding auxiliary verbs.

rules mostly describe cases when the S category
is used for a full sentence, which most often in-
clude punctuation such as the full stop and quota-
tion marks. In contrast, the majority of expansions
for the S category do not include any punctuation.
The model has learnt to differentiate between the
two different classes of S – full sentence versus
internal clause – due to their different expansions.

8 Conclusion

In this work we have presented a non-parametric
Bayesian model for inducing tree substitution
grammars. By incorporating a structured prior
over elementary rules our model is able to reason
over the infinite space of all such rules, produc-
ing compact and simple grammars. In doing so
our model learns local structures for latent linguis-
tic phenomena, such as verb subcategorisation and
lexical agreement. Our experimental results show
that the induced grammars strongly out-perform
standard PCFGs, and are comparable to a state-
of-the-art parser on small data samples. While
our results on the full treebank are well shy of the
best available parsers, we have proposed a num-
ber of improvements to the model and the parsing
algorithm that could lead to state-of-the-art perfor-
mance in the future.
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