
NAACL-HLT Workshop on the Induction of Linguistic Structure, pages 96–99,
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1 Motivation

Most unsupervised dependency systems rely on
gold-standard Part-of-Speech (PoS) tags, either di-
rectly, using the PoS tags instead of words, or indi-
rectly in the back-off mechanism of fully lexicalized
models (Headden et al., 2009).

It has been shown in supervised systems that us-
ing a hierarchical syntactic structure model can pro-
duce competitive sequence models; in other words
that a parser can be a good tagger (Li et al., 2011;
Auli and Lopez, 2011; Cohen et al., 2011). This
is unsurprising, as the parser uses a rich set of hi-
erarchical features that enable it to look at a less
localized environment than a PoS tagger which in
most cases relies solely on local contextual features.
However this interaction has not been shown for the
unsupervised setting. To our knowledge, this work
is the first to show that using dependencies for unsu-
pervised PoS induction is indeed useful.

2 Iterated learning

Although most unsupervised systems depend on
gold-standard PoS information, they can also be
used in a fully unsupervised pipeline. One reason for
doing so is to use dependency parsing as an extrinsic
evaluation for unsupervised PoS induction (Headden
et al., 2008). As discussed in that paper (and also by
Klein and Manning (2004)) the quality of the de-
pendencies drops with the use of induced tags. One
way of producing better PoS tags is to use the depen-
dency parser’s output to influence the PoS inducer,
thus turning the pipeline into a loop.

The main difficulty of this approach is to find
a way of incorporating dependency information
into a PoS induction system. In previous work
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Figure 1: The iterated learning paradigm for induc-
ing both PoS tags and dependencies.

(Christodoulopoulos et al., 2011) we have described
BMMM: a PoS induction system that makes it is
easy to incorporate multiple features either at the
type or token level. For the dependency induction
system we chose the DMV model of Klein and Man-
ning (2004) because of its simplicity and its popular-
ity. Both systems are described briefly in section 3.

Using these two systems we performed an iter-
ated learning experiment. The term is borrowed
from the language evolution literature meaning “the
process by which the output of one individual’s
learning becomes the input to other individuals’
learning” (Smith et al., 2003). Here we treat the
two systems as the individuals1 that influence each
other in successive generations starting from a run
of the original BMMM system without dependency
information (fig. 1). We start with a run of the basic
BMMM system using just context and morphology
features (generation 0) and use the output to train the
DMV. To complete the first generation, we then use
the induced dependencies as features (as described
in section 4) for a new run of the BMMM system.

As there is no single objective function, this setup

1This is not directly analogous to the language evolution no-
tion of iterated learning; here instead of a single type of indi-
vidual we have two separate systems that learn/model different
representations.
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does not guarantee that either the quality of PoS tags
or the dependencies will improve after each genera-
tion. However, in practice this iterated learning ap-
proach works well (as we discuss in section 4).

3 Component models

3.1 DMV model

The basic DMV model (Klein and Manning, 2004)
generates dependency trees based on three decisions
(represented by three probability distributions) for a
given head node: whether to attach children in the
left or right direction; whether or not to stop attach-
ing more children in the specific direction given the
adjacency of the child in that direction; and finally
whether to attach a specific child node. The proba-
bility of an entire sentence is the sum of the probabil-
ities of all the possible derivations headed by ROOT.

The DMV model can be seen as (and is equiva-
lent to) a Context Free Grammar (CFG) with only a
few rules from head nodes to generated children and
therefore the model parameters can be estimated us-
ing the Inside-Outside algorithm (Baker, 1979).

3.2 BMMM model

The Bayesian Multinomial Mixture Model
(Christodoulopoulos et al., 2011), illustrated in
figure 2, assumes that all tokens of a given word
type belong to a single syntactic class, and each
type is associated with a number of features (e.g.,
morphological or contextual features), which form
the observed variables. The generative process first
chooses a hidden class z for each word type and then
chooses values for each of the observed features of
that word type, conditioned on the class. Both the
distribution over classes θ and the distributions over
each kind of feature φ(t) are multinomials drawn
from Dirichlet priors α and β(t) respectively. A
main advantage of this model is its ability to easily
incorporate features either at the type or token
level; as in Christodoulopoulos et al. (2011) we
assume a single type-level feature m (morphology,
drawn from φ(m)) and several token-level features
f (1) . . . f (T ) (e.g., left and right context words and,
in our extension, dependency features).

Inference in the model is performed using a col-
lapsed Gibbs sampler, integrating out the model pa-
rameters and sampling the class label zj for each

αθ

z

f (1) φ(1) β(1)

. . . . . . . . .

f (T ) φ(T ) β(T )m

φ(m) β(m)

M

nj

nj

Z

Z

Z

Figure 2: The BMMM with T kinds of token-level
features (f (t) variables) and a single kind of type-
level feature (morphology, m). M is the total num-
ber of word types, Z the number of classes, and nj

the number of tokens of type j.

word type j from the following posterior distribu-
tion:

P (zj | z−j , f , α, β)
∝ P (zj | z−j , α, β)P (fj | f−j , z, α, β) (1)

where the first factor P (zj) is the prior distribu-
tion over classes (the mixing weights) and the sec-
ond (likelihood) factor P (fj) is the probability given
class zj of all the features associated with word type
j. Since the different kinds of features are assumed
to be independent, the likelihood can be rewritten as:

P (fj | f−j , z, α, β) = P (f (m)
j | f (m)

−j , z, α, β)

·
T∏

t=1

P (f (t)
j | f

(t)
−j , z, β) (2)

and, as explained in Christodoulopoulos et al.
(2011), the joint probability of all the token level
features of kind t for word type j is computed as:

P (f (t)
j | f

(t)
−j , zj = z, z−j , β)

=
∏K(t)

k=1

∏njk−1
i=0 (njk,z + i+ β)∏nj−1

i=0 (n·,z + i+ Fβ)
(3)
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(a) Using only directed dependencies as features
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(b) Using directed and undirected dependencies as features

Figure 3: Developmental results on WSJ10. The performance of the PoS inducer is shown in terms of
many-to-1 accuracy (BMMM M1) and V-Measure accuracy (BMMM VM) and the performance of the
dependency inducer is shown using directed and undirected dependency accuracy (DMV Dir and DMV
Undir respectively).

where K(t) is the dimensionality of φ(t) and njk is
the number of instances of feature k in word type j.

4 Experimental design

Because the different kinds of features are assumed
to be independent in the BMMM, it is easy to add
more features into the model; this simply increases
the number of factors in equation 2. To incorpo-
rate dependency information, we added a feature for
word-word dependencies. In the model, this means
that for a word type j with nj tokens, we observe nj

dependency features (each being the head of one to-
ken of j). Like all other features, these are assumed
to be drawn from a class-specific multinomial φ(d)

z

with a Dirichlet prior β(d).
Using lexicalized head dependencies introduces

sparsity issues in much the same way contextual in-
formation does. In the case of context words, the
BMMM and most vector-based clustering systems
use a fixed number of most frequent words as fea-
tures; however in the case of dependencies we use
the induced PoS tags of the previous generation as
grouping labels: we aggregate the head dependency
counts of words that have the same PoS tag, so the
dimension of φ(d)

z is just the number of PoS tags.
The dependency features are used in tandem with

the features used in the original BMMM system,
namely the 100 most frequent context words (±1

context window), the suffixes extracted from the
Morfessor system (Creutz and Lagus, 2005) and
the extended morphology features of Haghighi and
Klein (2006).

For designing the iterated learning experiments,
we used the 10-word version of the WSJ corpus
(WSJ10) as development data and ran the iterative
learning process for 10 generations. To evaluate the
quality of the induced PoS tags we used the many-
to-1 (M1) and V-Measure (VM) metrics and for the
induced dependencies we used directed and undi-
rected accuracy.

Figure 3a presents the developmental result of the
iterated learning experiments on WSJ10 where only
directed dependencies where used as features. We
can see that although there was some improvement
in the PoS induction score after the first generation,
the rest of the metrics show no significant improve-
ment throughout the experiment.

When we used undirected dependencies as fea-
tures (figure 3b) the improvement over iterations
was substantial: nearly 8.5% increase in M1 and
1.3% in VM after only 5 iterations. We can also see
that the results of the DMV parser are improving as
well: 7% increase in directed and 3.8% in undirected
accuracy. This is to be expected, since as Headden
et al. (2008) show, there is a (weak) correlation be-
tween the intrinsic scores of a PoS inducer and the
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performance of an unsupervised dependency parser
trained on the inducer’s output.

Using the same development set we selected the
remaining system parameters; for the BMMM we
fixed the number of induced classes to the number
of gold-standard PoS tags for each language and
used 500 sampling iterations with annealing. For
the DMV model we used 20 EM iterations. Finally
we used observed that after 5 generations the rate of
improvement seems to level, so for the rest of the
languages we use only 5 learning iterations.
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