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Abstract

Standard statistical models of language fail to captureafrtbe most
striking properties of natural languages: the power-lastribution in
the frequencies of word tokens. We present a framework feeldping
statistical models that generically produce power-lawgnaenting stan-
dard generative models with adaptorthat produces the appropriate
pattern of token frequencies. We show that taking a pagicstbchastic
process — the Pitman-Yor process — as an adaptor justifiepfiearance
of type frequencies in formal analyses of natural languagd,improves
the performance of a model for unsupervised learning of imolgyy.

1 Introduction

In general it is important for models used in unsupervisedrig to be able to describe
the gross statistical properties of the data they are iérnd learn from, otherwise these
properties may distort inferences about the parametetseafibdel. One of the most strik-
ing statistical properties of natural languages is thatikg&ibution of word frequencies is
closely approximated by a power-law. That is, the probghifiat a wordw will occur with
frequencyn,, in a sufficiently large corpus is proportionalig,?. This observation, which
is usually attributed to Zipf [1] but enjoys a long and degdihistory [2], stimulated intense
research in the 1950s (e.qg., [3]) but has largely been ighiorenodern computational lin-
guistics. By developing models that generically exhibitveolaws, it may be possible to
improve methods for unsupervised learning of linguistiosture.

In this paper, we introduce a framework for developing gatiee models for language
that produce power-law distributions. Our framework isdzhapon the idea of specifying
language models in terms of two componentgeaerator an underlying generative model
for words which need not (and usually does not) produce a ptavedistribution, and an
adaptor, which transforms the stream of words produced by the gémeireio one whose
frequencies obey a power law distribution. This framewarkxtremely general: any gen-
erative model for language can be used as a generator, vatpdver-law distribution
being produced as the result of making an appropriate ctioidbe adaptor.

In our framework, estimation of the parameters of the geteraill be affected by assump-
tions about the form of the adaptor. We show that use of aquaati adaptor, the Pitman-
Yor process [4, 5, 6], sheds light on a tension exhibited byn&d approaches to natural
language: whether explanations should be based upotyplesof words that languages
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exhibit, or the frequencies with whidiokensof those words occur. One place where this
tension manifests is in accounts of morphology, where folimguists develop accounts of
why particular words appear in the lexicon (e.g., [7]), vehsbomputational linguists focus
on statistical models of the frequencies of tokens of thosedw/(e.g., [8]). The tension
between types and tokens also appears within computatingailstics. For example, one
of the most successful forms of smoothing used in statidicguage models, Kneser-Ney
smoothing, explicitly interpolates between type and tokequencies [9, 10, 11].

The plan of the paper is as follows. Section 2 discusses agbictprocesses that can pro-
duce power-law distributions, including the Pitman-Yoopess. Section 3 specifies a two-
stage language model that uses the Pitman-Yor process amptog and examines some
properties of this model: Section 3.1 shows that estimat@sed on type and token fre-
guencies are special cases of this two-stage language naodeSection 3.2 uses these
results to provide a novel justification for the use of Knddey smoothing. Section 4
describes a model for unsupervised learning of the morgicdd structure of words that
uses our framework, and demonstrates that its performanpeoves as we move from
estimation based upon tokens to types. Section 5 conclhdgsaper.

2 Producing power-law distributions

Assume we want to generate a sequenc&obutcomesz = {z,...,zx} with each
outcomez; being drawn from a set of (possibly unbounded) sizeMany of the stochastic
processes that produce power-laws are based upon thegeinpreferential attachment
where the probability that th&h outcomey;, takes on a particular valuedepends upon
the frequency ok inz_; = {z1,..., 2,1} [2]. For example, one of the earliest and most
widely used preferential attachment schemes [3] chogsascording to the distribution
1 n,(:’i)

P(zl—k|z_z)—az+(1 a)i—l 1)
Wheren,(f’i) is the number of time occurs inz_;. This “rich-get-richer” process means
that a few outcomes appear with very high frequency-the key attribute of a power-law
distribution. In this case, the power-law has parameter1/(1 — a).

One problem with these classical models is that they assuiimediordering on the out-
comesz. While this may be appropriate for some settings, the astompf a temporal
ordering restricts the contexts in which such models cangpdied. In particular, it is
much more restrictive than the assumption of independanpbag that underlies most
statistical language models. Consequently, we will foqua different preferential attach-
ment scheme, based upon the two-parameter species sammate [4, 5] known as the
Pitman-Yor process [6]. Under this scheme outcomes foll@ewer-law distribution, but
remainexchangeablethe probability of a set of outcomes is not affected by tbeitering.

The Pitman-Yor process can be viewed as a generalizatitre@hinese restaurant process
[6]. Assume thatNV customers enter a restaurant with infinitely many tablesh ewith
infinite seating capacity. Let; denote the table chosen by tith customer. The first
customer sits at the first table, = 1. Theith customer chooses tabtenith probability
(z—i)
N —@ )
P(Z,L =k | Z,,L') = i—1+b k = K(Zfl)
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wherea andb are the two parameters of the process &h@_;) is the number of tables
that are currently occupied.

The Pitman-Yor process satisfies our need for a process thdtipes power-laws while
retaining exchangeability. Equation 2 is clearly a prefiéisd attachment scheme. When
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Figure 1: Graphical models showing dependencies amonghlas in (a) the simple two-
stage model, and (b) the morphology model. Shading of the oodtainingw reflects the
fact that this variable is observed. Dotted lines delimét ¢fenerator and adaptor.

a = 0 andb > 0, it reduces to the standard Chinese restaurant procesgJ1&ed in
Dirichlet process mixture models [13]. Whén< a < 1, the number of people seated at
each table follows a power-law distribution with= 1 + a [5]. It is straightforward to
show that the customers are exchangeable: the probaHikityartition of customers into
sets seated at different tables is unaffected by the ordehich the customers were seated.

3 Atwo-stage language model

We can use the Pitman-Yor process as the foundation for aitegggmodel that generi-
cally produces power-law distributions. We will define a tatage model by extending the
restaurant metaphor introduced above. Imagine that eaéd/itas labelled with a wordy,
from a vocabulary of (possibly unbounded) size The first stage is to generate these la-
bels, samplind;, from a generative model for words that we will refer to as gle@erator
For example, we could choose to draw the labels from a muttiabdistributiond. The
second stage is to generate the actual sequence of wolldisTtsis is done by allowing a
sequence of customers to enter the restaurant. Each custboeses a table, producing a
seating arrangemert, and says the word used to label that the table, producinguesee
of words,w. The process by which customers choose tables, which weefdt to as the
adaptor, defines a probability distribution over the sequence ofdsev produced by the
customers, determining the frequency with which tokensefdifferent types occur. The
statistical dependencies among the variables in one sudelrace shown in Figure 1 (a).

Given the discussion in the previous section, the Pitmanpyocess is a natural choice
for an adaptor. The result is technically a Pitman-Yor migtmodel, withz; indicating
the “class” responsible for generating tite word, and/;, determining the multinomial
distribution over words associated with classwith P(w; = w|z; = k,l,) = 1 if
{;, = w, and0 otherwise. Under this model the probability that tfie customer produces
word w given previously produced wordg_; and current seating arrangement; is

Plwi=w|w_i,z_,0) = > Y P(wi=wl|z=k)Pl|w_i,2,0)P(z =k|z;)
ko £y

K(z_; z_
B (z:)nl(c V_q K(z—i)a+b

iy (= ®)

k=1
wherel(-) is an indicator function, beingy when its argument is true artdotherwise. If
0 is uniform over alllW words, then the distribution over reduces to the Pitman-Yor
process a$l — oo. Otherwise, multiple tables can receive the same labeleasing the
frequency of the corresponding word and producing a distigm with ¢ < 1 + a. Again,
it is straightforward to show that words are exchangeabéieuthis distribution.



3.1 Types and tokens

The use of the Pitman-Yor process as an adaptor providesféciaison for the role of word
types in formal analyses of natural language. This can beIsgeonsidering the question
of how to estimate the parameters of the multinomial distidn used as a generatér:

In general, the parameters of generators can be estimateglMarkov chain Monte Carlo
methods, as we demonstrate in Section 4. In this section, Welvow that estimation
schemes based upon type and token frequencies are spesgalafeour language model,
corresponding to the extreme values of the parametéalues ofa between these extremes
identify estimation methods that interpolate between $ygoed tokens.

Taking a multinomial distribution with parametefisas a generator and the Pitman-Yor
process as an adaptor, the probability of a sequence of woglsend is

K(z) (2)
r'(b) L(n,~ —a)
P(w|6) = przew %F(N“)kl:[l(eék(( Da+b) (1_ 2

where in the Iast sum and/ are constrained such th@at = w; for all <. In the case where
b = 0, this simplifies to

z K(z) n® _
P(w|6)=>" Ht% -—)))-amz)—l. Hré(’{_a)) @)

20 \ k=1 k=1

The distributionP(w | #) determines how the data influence estimates df, so we will
consider howP(w | §) changes under different limits of

In the limit asa approaches, estimation o) is based upon word tokens. When— 1,
Fr(?lk ‘;) is 1 for nkz) = 1 but approaches for n(z) > 1. Consequently, all terms in the
sum over(z, £) go to zero, except that in which every word token has its owtetan this

case K (z) = N and{;, = wy. It follows thatlim,_,;, P(w |§) = Hszl B.,.- Any form of
estimation using”(w | #) will thus be based upon the frequencies of word tokens.in

In the limit asa approaches, estimation of) is based upon word types. The appearance
of a®(®~1 in Equation 4 means that as— 0, the sum oveg is dominated by the seating
arrangement that minimizes the total number of tables. Utigeconstraint that,, = w;

for all 4, this minimal configuration is the one in which every wordéygceives a single
table. Consequentlyim,_.o P(w|#) is dominated by a term in which there is a single
instance of),, for each wordw that appears inv.? Any form of estimation using®(w | §)

will thus be based upon a single instance of each word type in

3.2 Predictions and smoothing

In addition to providing a justification for the role of typesformal analyses of language
in general, use of the Pitman-Yor process as an adaptor casdukto explain the assump-
tions behind a specific scheme for combining token and typguiencies: Kneser-Ney
smoothing. Smoothing methods are schemes for regularesimgirical estimates of the
probabilities of words, with the goal of improving the pretive performance of language
models. The Kneser-Ney smoother estimates the probabflayword by combining type

and token frequencies, and has proven particularly effedtir n-gram models [9, 10, 11].

'Under the interpretation of this model as a Pitman-Yor pssamixture model, this is analogous
to estimating the base measi@e in a Dirichlet process mixture model (e.g. [13]).

?Despite the fact thaP(w | §) approaches) in this limit, a’®~* will be constant across all
choices of. Consequently, estimation schemes that depend only ondh&anstant terms in
P(w | 0), such as maximum-likelihood or Bayesian inference, witheén well defined.



To use am-gram language model, we need to estimate the probabibtyilslition over
words given theihistory, i.e. then preceding words. Assume we are given a vectaNof
wordsw that all share a common history, and want to predict the nextiyw y 11, that will

occur with that history. Assume that we also have vectorsarfiwfromH other histories,

w ..., wl, The interpolated Kneser-Ney smoother [11] makes the piedi
™ — 1™ > D)D T I(n$) >D)D 3, I(we wh)
N N S > Iwewm)

Pluns1 =w|w) = (5)
where we have suppressed the dependence®h ..., w), D is a “discount factor”
specified as a parameter of the model, and the sum/oireriudesw.

We can define a two-stage model appropriate for this settyngsBuming that the sets of
words for all histories are produced by the same adaptor andrgtor. Under this model,
the probability of wordwy ;1 givenw and@ is

Pwyti1 =w]|w,0) = ZP(wN+1 = w|w,z,0)P(z|w,0)

whereP(wy 41 = w|w, z, 0) is given by Equation 3. Assumirig= 0, this becomes

nyy — By Ky (2z)]a Zu} E, [Kw (Z)] a
~ + N Ou (6)

whereE,[K.,(z)] = ), K (z)P(z|w,0), andK,,(z) is the number of tables with label
w under the seating assignment The other histories enter into this expression #ia
Since the words associated with each history is assumed poooleiced from a single set
of parameterg, the maximum-likelihood estimate 6f, will approach

0. — S l(w e wh)
S Iw € wi)

asa approache®, since only a single instance of each word type in each comtik
contribute to the estimate @¢f Substituting this value of,, into Equation 6 reveals the
correspondence to the Kneser-Ney smoother (Equation %.only difference is that the
constant discount factadp is replaced by F,[K,,(z)], which will increase slowly as.,
increases. This difference might actually lead to an impcosmoother: the Kneser-Ney
smoother seems to produce better performance viharcreases as a function af, [11].

Pluyy =w|w,0) =

4 Types and tokens in modeling morphology

Our attempt to develop statistical models of language teatgcally produce power-law
distributions was motivated by the possibility that modélst account for this statistical
regularity might be able to learn linguistic informationttee than those that do not. Our
two-stage language modeling framework allows us to cregdetly these sorts of mod-
els, with the generator producing individual lexical iteragd the adaptor producing the
power-law distribution over words. In this section, we shiwat taking a generative model
for morphology as the generator and varying the paramefetisecadaptor results in an
improvement in unsupervised learning of the morphologitaicture of English.

4.1 A generative model for morphology

Many languages contain words built up of smaller units of nmieg, ormorphemesThese
units can contain lexical information (as stems) or granicahinformation (as affixes).
For example, the English wordalkedcan be parsed into the stemalk and the past-tense
suffix ed Knowledge of morphological structure enables languagmkrs to understand
and produce novel wordforms, and facilitates tasks suckeasrsing (e.g., [14]).



As a basic model of morphology, we assume that each word stsnsf a single stem

and suffix, and belongs to some inflectional class. Each tdaassociated with a stem
distribution and a suffix distribution. We assume that steamd suffixes are independent
given the class, so we have

P(ly =w) =Y I(w=tf)P(cr=c)P(ty =t|ck =)P(fr=fler=0c) (7)
c,t, f

wherecy, ti, and f; are the class, stem, and suffix associated Wjthandt. f indicates
the concatenation afand f. In other words, we generate a label by first drawing a class,
then drawing a stem and a suffix conditioned on the class. Bhtttese draws is from a
multinomial distribution, and we will assume that these tinoimials are in turn generated
from symmetric Dirichlet priors, with parametets 7, and¢ respectively. The resulting
generative model can be used as the generator in a two-stagedge model, providing a
more structured replacement for the multinomial distribtd. As before, we will use the
Pitman-Yor process as an adaptor, setting 0. Figure 1 (b) illustrates the dependencies
between the variables in this model.

Our morphology model is similar to that used by Goldsmith i inmsupervised morpho-

logical learning system [8], with two important differersceFirst, Goldsmith’s model is

recursive, i.e. a word stem can be further split into a smalflem plus suffix. Second,

Goldsmith’s model assumes that all occurrences of each typeihave the same analysis,
whereas our model allows different tokens of the same typate different analyses.

4.2 Inference by Gibbs sampling

Our goal in defining this morphology model is to be able to emdtically infer the morpho-
logical structure of a language. This can be done using Gibbwling, a standard Markov
chain Monte Carlo (MCMC) method [15]. In MCMC, variableslretmodel are repeatedly
sampled, with each sample conditioned on the current valtia other variables in the
model. This process defines a Markov chain whose stationaiytdition is the posterior
distribution over model variables given the input data.

Rather than sampling all the variables in our two-stage rmsideultaneously, our Gibbs
sampler alternates between sampling the variables in therger and those in the adaptor.
Fixing the assignment of words to tables, we sanplé;, andf; for each table from

Plek =c,te =t, fr = fle—p, t—p, f1, €)
o< I(ly =tk.fx) Plex =clek) Pltx =t[t_p,c) P(fr=[|f-k c)
B B . ne+ kK . Net+ 7 . Nest9
= I(Zk—tk-fk) K(Z)—l‘i‘fic ne + 711 ne + F

wheren, is the number of other labels assigned to clgss. ; andn. ; are the number of
other labels in classwith stemt and suffixf, respectively, and’, T', and F, are the total
number of possible classes, stems, and suffixes, which & fi¥e use the notatian
here to indicate all members ofexcept forc,. Equation 8 is obtained by integrating over
the multinomial distributions specified in Equation 7, eipihg the conjugacy between
multinomial and Dirichlet distributions.

(8)

Fixing the morphological analysis,(t, f), we sample the table for each word token from
1(4y, = wi)(n,(:’i) —a) n,(:”) >0

9
Pty = w;)(K(z_)a+b) nl*? =0 ©

P(zi =k|z_;,w,c,t,f) x {

where P(¢;, = w;) is found using Equation 7, witi?(c), P(t), and P(f) replaced with
the corresponding conditional distributions from Equati
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Figure 2: (a) Results for the morphology model, varyingb) Confusion matrices for the
morphology model witlu = 0. The area of a square at locati@n;) is proportional to the
number of word types (top) or tokens (bottom) with true suffand found suffixj.

4.3 Experiments

We applied our model to a data set consisting of all the ventike training section of

the Penn Wall Street Journal treebank (137,997 tokens beigrio 7,761 types). This
simple test case using only a single part of speech makessults easy to analyze. We
determined the true suffix of each word using simple hegddiased on the part-of-speech
tag and spelling of the worlWe then ran a Gibbs sampler using 6 classes, and compared
the results of our learning algorithm to the true suffixesfdin the corpus.

As noted above, the Gibbs sampler does not converge to asanglysis of the data, but
rather to a distribution over analyses. For evaluation, sedua single sample taken after
1000 iterations. Figure 2 (a) shows the distribution of seffifound by the model for
various values ofi, as well as the true distribution. We analyzed the resultesmways:
by counting each suffix once for each word type it was assediaith, and by counting
once for each word token (thus giving more weight to the tsdof frequent words).

The most salient aspect of our results is that, regardleafiether we evaluate on types or
tokens, it is clear that low values afare far more effective for learning morphology than
higher values. With higher values of the system has too strong a preference for empty
suffixes. This observation seems to support the linguistsiof type-based generalization.

It is also worth explaining why our morphological learnerdiso manye andessulffixes.
This problem is common to other morphological learning eyst with similar models (e.g.
[8]) and is due to the spelling rule in English that deletessfinale before certain suffixes.
Since the system has no knowledge of spelling rules, it temtigpothesize analyses such
as {stat.e, stat.ing, stat.ed, statjesvhere thee andessuffixes take the place ®iULL
ands. This effect can be seen clearly in the confusion matricesvatin Figure 2 (b). The
remaining errors seen in the confusion matrices are thoseenthe system hypothesized an
empty suffix when in fact a non-empty suffix was present. Asialpf our results showed
that these cases were mostly words where no other form wétBdame stem was present in

3The part-of-speech tags distinguish between past tenseppeticiple, progressive, 3rd person
present singular, and infinitive/unmarked verbs, and foegaoughly correlate with actual suffixes.



the corpus. There was therefore no reason for the systeneter@ non-empty suffix.

5

Conclusion

We have shown that statistical language models that exdileitof the most striking prop-
erties of natural languages — power-law distributions —lmadefined by breaking the pro-
cess of generating words into two stages, with a generatalyzing a set of words, and an
adaptor determining their frequencies. Our morphology ehadd the Pitman-Yor process
are particular choices for a generator and an adaptor. Tdresees produce empirical and
theoretical results that justify the role of word types inf@l analyses of natural language.
However, the greatest strength of this framework lies irggserality: we anticipate that
other choices of generators and adaptors will yield sinyilateresting results.
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