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Abstract

Despite years of speech recognition research, little isvknabout which words tend to be

misrecognized and why. Previous work has shown that emargase for infrequent words,

short words, and very loud or fast speech, but many otheupred causes of error (e.g.,

nearby disfluencies, turn-initial words, phonetic neigtiiood density) have never been
carefully tested. The reasons for the huge differencesdauerror rates between speakers
also remain largely mysterious.

Using a mixed-effects regression model, we investigatsetand other factors by ana-
lyzing the errors of two state-of-the-art recognizers onvessational speech. Words with
higher error rates include those with extreme prosodicattaristics, those occurring turn-
initially or as discourse markers, amubly confusable pairsaacoustically similar words
that also have similar language model probabilities. Wanesceding disfluent interrup-
tion points (first repetition tokens and words before fragtagalso have higher error rates.
Finally, even after accounting for other factors, speakéemnces cause enormous vari-
ance in error rates, suggesting that speaker error ratanagiis not fully explained by
differences in word choice, fluency, or prosodic charastes. We also propose that dou-
bly confusable pairs, rather than high neighborhood dgnsitly better explain phonetic
neighborhood errors in human speech processing.
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1 Introduction

Conversational speech is one of the most difficult genresatdomatic speech
recognition (ASR) systems to recognize, due to high levéldisfluency, non-
canonical pronunciations, and acoustic and prosodiclviitia In order to improve
ASR performance, itis important to understand which of &fastors is most prob-
lematic for recognition. Previous work on recognition obspaneous monologues
and dialogues has shown that infrequent words are morg likdde misrecognized
(Fosler-Lussier and Morgan, 1999; Shinozaki and Furui12@dd that fast speech
is associated with higher error rates (Siegler and Ster@51Bosler-Lussier and
Morgan, 1999; Shinozaki and Furui, 2001). In some studies; slow speech has
also been found to correlate with higher error rates (Sreghel Stern, 1995; Shi-
nozaki and Furui, 2001). In Shinozaki and Furui’'s (2001)lgsia of a Japanese
ASR system, word length (in phones) was found to be a useédigtor of error
rates, with more errors on shorter words. In Hirschberg & g004) analysis of
two human-computer dialogue systems, misrecognized tuense found to have
(on average) higher maximum pitch and energy than correettpgnized turns.
Results for speech rate were ambiguous: faster utterarazb$ilgher error rates
in one corpus, but lower error rates in the other. FinallydAdDecker and Lamel
(2005) demonstrated that both French and English ASR sgsaah more trouble
with male speakers than female speakers, and suggestedlgm&sible explana-
tions, including higher rates of disfluencies and more réduoc

In parallel to these studies within the speech-recogniiommunity, a body of
work has accumulated in the psycholinguistics literatxanening factors that af-
fect the speed and accuracy of spoken word recognition inamsmExperiments
are typically carried out using isolated words as stimutigl @ontrolling for nu-
merous factors such as word frequency, duration, and lehgth ASR systems,
humans are better (faster and more accurate) at recogrfiaggent words than
infrequent words (Howes, 1954; Marslen-Wilson, 1987; Dabkaal., 2001). In
addition, it is widely accepted that recognition is worse fiwrds that are pho-
netically similar to many other words than for highly distiive words (Luce and
Pisoni, 1998). Rather than using a graded notion of phosetidarity, psycholin-
guistic experiments typically make the simplifying assuimp that two words are
“similar” if they differ by a single phone (insertion, sulistion, or deletion). Such
pairs are referred to aseighbors Early on, it was shown that both the number of
neighbors of a word and the frequency of those neighborsgndisant predictors
of recognition performance; it is now common to see thosefaetors combined
into a single predictor known dgequency-weighted neighborhood dengltuce
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and Pisoni, 1998; Vitevitch and Luce, 1999), which we disdnsmore detail in
Section 3.1.

Many questions are left unanswered by these previous stulidhe word-level
analyses of Fosler-Lussier and Morgan (1999) and Shincaadti Furui (2001),
only substitution and deletion errors were considered, il unclear whether
including insertions would have led to different resultsofdover, these studies
primarily analyzed lexical, rather than prosodic, factdigschberg et al.’s (2004)
work suggests that utterance-level prosodic factors cgaaterror rates in human-
computer dialogues, but leaves open the question of whiclorfa are important
at the word level and how they influence recognition of ndtemmversational
speech. Adda-Decker and Lamel's (2005) suggestion thdtehigates of disflu-
ency are a cause of worse recognition for male speakersypesas that disfluen-
cies raise error rates. While this assumption seems nattivahs never carefully
tested, and in particular neither Ada-Decker and Lamel ngrad the other papers
cited investigated whether disfluent words are associaidd evrors in adjacent
words, or are simply more likely to be misrecognized themesl Many factors
that are often thought to influence error rates, such as a’svstatus as a content
or function word, and whether it starts a turn, also remaineedxamined. Next,
the neighborhood-related factors found to be importantiman word recognition
have, to our knowledge, never even been proposed as possiulenatory vari-
ables in ASR, much less formally analyzed. Additionallynyaf these factors are
known to be correlated. Disfluent speech, for example, kelirto changes in both
prosody and rate of speech, and low-frequency words tendue longer duration.
Since previous work has generally examined each factompiaa@ently, it is not
clear which factors would still be linked to word error af@eccounting for these
correlations.

A final issue not addressed by these previous studies is tispeaker differences.
While ASR error rates are known to vary enormously betweaakers (Dodding-
ton and Schalk, 1981; Nusbaum and Pisoni, 1987; Nusbaum, €t9%5), most
previous analyses have averaged over speakers rathentharingng speaker dif-
ferences explicitly, and the causes of such differencesatrevell understood. Sev-
eral early hypotheses regarding the causes of these diffese such as the user’s
motivation to use the system or the variability of the usspsech with respect to
user-specific training data (Nusbaum and Pisoni, 1987)beamnled out for recog-
nition of conversational speech because the user is sppakanother human and
there is no user-specific training data. However, we stilhdbknow the extent to
which differences in error rates between speakers can lmated for by the lexi-
cal, prosodic, and disfluency factors discussed above, ethen additional factors
are at work.

The present study is designed to address the questiond &isee by analyzing
the effects of a wide range of lexical and prosodic factorsh@naccuracy of two
English ASR systems for conversational telephone speeehintkbduce a new



measure of erroindividual word error rate(IWER), that allows us to include in-
sertion errors in our analysis, along with deletions andsstudions. Using this
measure, we examine the effects of each factor on the retmymerformance
of two different state-of-the-art conversational telepb@peech recognizers — the
SRI/ICSI/UW RT-04 system (Stolcke et al., 2006) and the 2004HTK system
(Evermann et al., 2004b, 2005). In the remainder of the payeefirst describe the
data used in our study and the individual word error rate meadNext, we present
the features we collected for each word and the effects cfelieatures individu-
ally on IWER. Finally, we develop a joint statistical modeléxamine the effects
of each feature while accounting for possible correlatiamsl to determine the rel-
ative importance of speaker differences other than thdkeeted in the features we
collected.

2 Data

Our analysis is based on the output from two state-of-the@eech recognition
systems on the conversational telephone speech evalwktiarirom the National
Institute of Standards and Technology (NIST) 2003 Rich 3caiption exercise
(RT-03).! The two recognizers are the SRI/ICSI/UW RT-04 system (Stoét al.,
2006) and the 2004 CU-HTK system for the DARPA/NIST RT-04lesBon (Ev-
ermann et al., 2004b, 2005) Our goal in choosing these two systems, which we
will refer to henceforth as the SRI system and the Cambriggéesm, was to se-
lect for state of the art peformance on conversational $pebese were two of the
four best performing single research systems in the worlaf #se NIST evaluation
(Fiscus et al., 2004).

The two systems use the same architecture that is standarddern state-of-the-
art conversational speech recognition systems. Bothsygstatract Mel frequency
cepstral coefficients (MFCCs) with standard normalizaton adaptation tech-
niques: cepstral vocal tract length normalization (VTLINgteroscedastic linear
discriminant analysis (HLDA), cepstral mean and variarmenalization, and max-

imum likelihood linear regression (MLLR). Both systems bayender-dependent
acoustic models trained discriminatively using variantsntnimum phone error

(MPE) training with maximum mutual information (MMI) prisi(Povey and Wood-
land, 2002). Both train their acoustic models on approxétya2400 hours of con-

versational telephone speech from the Switchboard, Catiéland Fisher corpora,

1 We describe the NIST RT-03 data set briefly below; full dstaihcluding annotation
guidelines, can be found at http://www.itl.nist.gov/iadlg/tests/rt/2003-fall/index.html.

2 The SRI/ICSI/UW system was developed by researchers atr@&hhtional, the Inter-
national Computer Science Institute, and the UniversityMashington. For more detailed
descriptions of previous CU-HTK (Cambridge University Hah Markov Model Toolkit)
systems, see Hain et al. (2005) and Evermann et al. (2004a).



consisting of 360 hours of speech used in the 2003 evaluatios 1820 hours
of noisy “quick transcriptions” from the Fisher corpus haltigh with different seg-
mentation and filtering. Both use 4-gram models trainedgisirdomain telephone
speech data as well as data harvested from the web (Bulykg 20@3). Both use
many passes or tiers of decoding, each pass producingkttiat are passed on to
the next pass for further processing.

The systems differ in a number of ways. The SRI system (S¢ottkal., 2006)
uses perceptual linear predictive (PLP) features in anldito MFCC features, uses
novel discriminative phone posterior features estimatethhltilayer perceptrons,
and uses a variant of MPE called minimum phone frame erroffE)PThe acous-
tic model includes a three-way system combination (MFCC-cramss-word tri-
phones, MFCC cross-word triphones, and PLP cross-worhdrips). Lattices are
generated using a bigram language model, and rescored wigttich models, a
pause language model (Vergyri et al., 2002), and a syntdistiich SuperARV
‘almost-parsing’ language model (Wang and Harper, 2002ell as the 4-gram
models mentioned above. The word error rate of the SRI systetine NIST RT-03
evaluation data is 18.8%.

The Cambridge system (Evermann et al., 2004b, 2005) malesfusoth single-
pronunciation lexicons and and multiple-pronunciatiaxidens using pronuncia-
tion probabilities. The acoustic model also includes aghway system combina-
tion (multiple pronunciations with HLDA, multiple pronuiations without HLDA,
and single pronunciations with HLDA). Each system usesszwsrd triphones in
a preliminary pass, then rescores with cross-word quinpmadels. Whereas the
SRI system uses a bigram language model in the first pass,géegrates lat-
tices with a trigram and rescores with a 4-gram and otherdagg models, the
Cambridge system uses a trigram language model in the fisst, plaen generates
lattices with a 4-gram. The 4-gram language model includesighted combi-
nation of component models, some with Kneser-Ney and sortre®@ood-Turing
smoothing, and includes the interpolated 4-gram model usttte 2003 CU-HTK
system (Evermann et al., 2004a). The word error rate of thalialge system on
the NIST RT-03 evaluation data is 17.0%.

We examine the output of each system on the NIST RT-03 evatudata. (Note

that the developers of both the SRl and Cambridge systemadtass to the eval-
uation data, and so the results for both systems will be tjitprased.) The data set
contains 72 telephone conversations with 144 speakers@itsb#eference words.
Half of the conversations are from the Fisher corpus and fnath the Switch-

board corpus (none from the standard portions of these caned to train most
ASR systems). Utterance breakpoint timestamps (whichriaéte the speech se-
guences sent to the recognizers) were assigned by the Nigfadars. The anno-
tation guidelines state that breakpoints must be placaegratioundaries (speaker
changes), and may also be placed within turns. For within-hreakpoints, the

guidelines encourage annotators to place these duringgpdether disfluent or at



REF: but THERE are you know it is |ike »*x other stuff
HYP: but THEY are you know ** is |ike THE other stuff
Eval : S D I

Fig. 1. An example alignment between the reference traotsan (REF) and recognizer
output (HYP), with substitutions (S), deletions (D), anddrtions (I) shown. WER for this
utterance is 30%.

phrasal boundaries), but also permit long sequences oftfageech to be broken
up into smaller units for easier transcription. Thus, irstborpus, the “utterances”
being analyzed may comprise part or all of a turn, but do natlinases correspond
to natural breath groupings or phrasal units.

The standard measure of error used in ASRasd error rate(WER), computed as
100(1 + D+ S)/R, wherel, D andS are the total number of insertions, deletions,
and substitutions found by aligning the ASR hypotheses thigreference tran-
scriptions, and? is the total number of reference words (see Figuré However,
WER can be computed only over full utterances or corporaceSive wish to know
what features of a reference word increase the probabifignoerror, we need a
way to measure the errors attributable to individual wordsarndividual word
error rate (IWER). We assume that a substitution or deletion error eaadsigned
to its corresponding reference word (given a particulagratient), but for insertion
errors, there may be two adjacent reference words that dmitésponsible. Since
we have no way to know which word is responsible, we simplygassqual partial
responsibility for any insertion errors to both of the adjacwords. That is, we
define IWER for theth reference word as

IWER(w;) = del; + sub; + « - ins; Q)

wheredel; andsub; are binary variables indicating whethey is deleted or substi-
tuted, andns; counts the number of insertions adjacentito The discount factor
« is chosen so that )~ ins; = I for the full corpus (i.e., the total penalty for
insertion errors is the same as when computing WER). We teénaedlWER for a
set of words as the average IWER for the individual words endét:

IWER(w, ... w,) — © zn: IWER(w;) )

n;3

We will sometimes refer to the IWER for a set of words as theaye IWER (if
necessary to distinguish from IWER for single words), arsljsastandard with
WER, we will present it as a percentage (e.g., as 18.2 ralttaer 182). Note that,
due to the choice of the discount facterIWER = WER when computed over the
entire data set, facilitating direct comparisons with otstedies that use WER. In

3 Our alignments and error rates were computed using theatamd ST speech recogni-
tion evaluation scripscl i t e, along with the normalization (.gIm) file used in the RT-03
evaluation, kindly provided by Phil Woodland.



SRI system Cambridge system

Ins Del Sub Totall Ins Del Sub Totall % of data
Full word 15 65 104 18415 6.2 91 16.8 94.2
Filled pause 0.6 — 154 16.10.9 - 151 16.0 2.9
Fragment 2.2 - 188 21120 - 18.0 20.0 1.8
Backchannel 0.1 31.3 3.1 34505 252 21 279 0.7
Guess 2.0 — 253 27325 - 26.7 29.2 0.4
Total 14 64 107 18%15 6.0 95 17(0 100

Table 1

Individual word error rates for different word types in theda systems. Final column gives
the proportion of words in the data belonging to each typdetimns of filled pauses,

fragments, and guesses are not counted as errors in theslaswbring method. The total
error rate for the SRI system is slightly lower than the 18.BRVfrom the NIST evaluation

due to the removal of the 229 insertions mentioned in FoetAot

Reference Forced alignment
(%esitation) in what way umin what way
0. k. okay

(Yesitation) i think it is because uh i think it’'s because
Table 2
Examples of differences in normalization between the esfee transcriptions used for
scoring and the transcriptions used to create a forcedrakgm with the speech signal.

this study, = .584 for the SRI system and .672 for the Cambridge systém.

The reference transcriptions used in our analysis distgigetween five different
types of words: filled pausesi, ub), fragments\h-, redistr-), backchannelsuh-
huh, mm-hm), guesses (where the transcribers were unsure of the tovords),
and full words (everything else). Using our IWER measure,computed error
rates for each of these types of words, as shown in Table JalBecmany of the
features we wish to analyze can be extracted only for fulldspand because these
words constitute the vast majority of the data, the remaimdehis paper deals
only with the 71579 in-vocabulary full words in the referenttanscriptions (145
OOV full words are excluded). Nevertheless, we note the hadg of deletions for
backchannel words; the high rate of substitutions for fragta and guesses is less
surprising.

4 Before computingy or doing any analysis, we first removed some recognized-utter
ances consisting entirely of insertions. These utteranttesame from a single conversa-
tion (sw.46732) in which one speaker’s turns are (barely) audiblehencther speaker’s
channel, and some of these turns were recognized by thevsyséetotal of 225 insertions
were removed from the SRI output, 29 from the Cambridge dutpu



A final point worth noting about our data set is that the refeeetranscriptions or-
dinarily used to compute WER (and here, IWER) are normalineskveral ways,
including treating all filled pauses as identical tokens aptitting contractions
such ast’s andcan’tinto individual words { is, can noj. Unless otherwise spec-
ified in Section 3.1, all features we analyzed were extraawdg the reference
transcriptions. A few features were extracted with the help forced alignment
(performed using the SRI recognizer, and kindly providedAmdreas Stolcke)
between the speech signal and a slightly different set ngtiaptions that more ac-
curately reflects the speakers’ true utterances. Examptés differences between
the reference transcriptions and the transcriptions usdéide forced alignment are
shown in Table 2. We describe below how this mismatch was lednfdr each
relevant feature.

3 Analysis of individual features

In this section, we first describe all of the features we @bdd for each word and
how the features were extracted. We then provide resultslohgf the association
between each individual feature and recognition errorstate

3.1 Features

3.1.1 Disfluency features

Disfluencies are widely believed to increase ASR error rddesthere is little pub-

lished evidence to support this belief. In order to examimehypothesis, and deter-
mine whether different kinds of disfluencies have differeffiécts on recognition,

we collected several binary features indicating whethehe®ord in the data oc-

curred before, after, or as part of a disfluency. These featare listed below and
illustrated in Figure 2.

Before/after filled pause. These features are present for words that appear imme-
diately preceding or following a filled pause in the referem@nscription.

Before/after fragment. These features are present for words that appear immedi-
ately preceding or following a fragment in the references$iption.

Before/after repetition. These features are present for words that appear imme-
diately preceding or following a sequence of repeated wordise reference tran-
scription. Only identical repeated words with no intenrenivords or filled pauses
were considered repetitions. While not all repeated wordsacessarily disfluen-
cies, we did not distinguish between disfluent and inteafiogpetitions.



yeah Before repetition
[ First repetition
[ Middle repetition

[ Last repetition

t hi nk After repetition
you

shoul d Before filled pause
um

ask After filled pause
for

t he Before fragment
ref-

reconmendat i on After fragment

Fig. 2. Example illustrating disfluency features: wordswdag before and after repeti-
tions, filled pauses, and fragments; first, middle, and lasti®/in a repeated sequence.

Position in repeated sequenceThese additional binary features indicate whether
aword is itself the first, middle, or last word in a sequenceepktitions (see Figure
2).

3.1.2 Other categorical features

Of the remaining categorical (non-numeric) features wéectéd, we are aware of
published results only for speaker sex (Adda-Decker anddlap®05). However,

anecdotal evidence suggests that the other features mayploetant in determining

error rates. These features are:

Broad syntactic class. We divided words into three classes: open class (e.g., nouns
and verbs), closed class (e.g., prepositions and artjaesliscourse marker (e.g.,
okay, wel). To obtain the feature value for each word, we first taggeddata set
automatically and then collapsed the POS tags down to tlee ttiasses used for
this feature. We used a freely available tagger (Ratnapatl®6) and trained it

on the parsed portion of the Switchboard corpus in the PeeebEnk-3 release
(Marcus et al., 1999j.

> We used the parsed files rather than the tagged files becausun the tags to be
more accurate in the parsed version. Before training thgeiagve removed punctuation
and normalized hesitations. Words tagged as foreign word®bers, adjectives, adverbs,



First word of turn. To compute this feature, turn boundaries were assigned au-
tomatically at the beginning of any utterance following aipa of at least 100 ms
during which the other speaker spoke. Preliminary analgsisated that utterance-
initial words behave similarly to turn-initial words; naveeless, due to the possi-
bility of within-turn utterance breakpoint annotationsaaing during fluent speech
(as described in Section 2), we did not include utterancethdeatures.

Speaker sex. This feature was extracted from the corpus meta-data.

3.1.3 Probability features

Previous work has shown that word frequencies and/or laggunaodel probabil-
ities are an important predictor of word error rates (Foslessier and Morgan,
1999; Shinozaki and Furui, 2001). We used thgram language model from the
SRI system in computing our probability features (see $ac. Bulyko et al.
(2003) provides details). Because the language model \aasett on transcrip-
tions whose normalization is closer to that of the forcedratient than to that of
the reference transcriptions, we computed the probalwfitgach reference word
by heuristically aligning the forced alignment transadpss to the reference tran-
scriptions. For contractions listed as one word in the fdraBgnment and two
words in the reference transcriptions (eitjs versusit is), both reference words
were aligned to the same forced alignment wérdhe probability of each refer-
ence word was then determined by looking up the probabifithe corresponding
forced alignment word in the language model. We used twefit probability
features, listed below.

Unigram log probability. This feature is based on simple word frequency, rather
than context.

Trigram log probability. This feature corresponds more closely to the log proba-
bilities assigned by language models in the two systemsasteomputed from the
language model files using Katz backoff smoothing.

3.1.4 Pronunciation-based features

The previous set of features allows us to examine the relstip between lan-
guage model probabilities and word error rates; in thisiseave describe a set
of features designed to focus on factors that might be ml&teacoustic con-

verbs, nouns, and symbols were assumed to be content wdlags avere assumed to
be function words. In a hand-checked sample of 71 uttera@out of 795 full words

(98.4%) were labeled with the correct broad syntactic class

6 Due to slight differences between the two sets of transoriptthat could not be ac-
counted for by normalization or other obvious changes, 4diréference words (0.6%)
could not be aligned, and were excluded from further anslysi

10



fusability. Of the features we collect here, only word ldngas been examined
previously in the ASR literature, to our knowledge (Shindzand Furui, 2001).
Most of our pronunciation-based features are inspired bgkwo psycholinguis-
tics demonstrating that human subjects have more diffia@tpgnizing spoken
words that are in dense phonetic neighborhoods, i.e., wihere tare many other
words that differ from the target word by only a single phohede and Pisoni,
1998). In human word recognition studies, the effect of theber of neighbors
of a word has been found to be moderated by the total frequehttyose neigh-
bors, with high-frequency neighbors leading to slower a&$ laccurate recogni-
tion (Luce and Pisoni, 1998; Vitevitch and Luce, 1999). Tle factors (number
of neighbors and frequency of neighbors) are often combintxa single mea-
sure,frequency-weighted neighborhood densiich is generally thought to be a
better predictor of recognition speed and accuracy thamaWenumber of neigh-
bors. Frequency-weighted neighborhood density is contpagehe sum of the (log
or raw) frequencies of a word’s neighbors, with frequences\puted from a large
corpus! Itis worth noting that, unlike the words we examine here stm@uli used
in studies of human word recognition are generally condébfior many potential
confounds such as word length, syllable shape and numbger ¢aly monosyl-
labic CVC words are used), intensity, and speaker. In agldistimuli are nearly
always words presented in isolation. Thus, acousticallyfusable words cannot
be disambiguated based on context. It is an open questiotherhne standard
neighborhood-based psycholinguistic measures are ipigutedictors of error in
ASR, where words are recognized in context.

Since we did not have access to the pronunciation dictiesarsed by the two
systems in our study, we computed our pronunciation-basatlifes using the
CMU Pronouncing Dictionary. This dictionary differs from those ordinarily used
in ASR systems in distinguishing between several leveldrefs, distinguishing
multiple unstressed vowels (as opposed to only two, ARPABeandi x), and
including multiple pronunciations for a large proportioihveords. In order to bring
the dictionary more in line with standard ASR dictionaritee following prepro-
cessing steps were performed, as illustrated in Figurer8t,vhere two pronunci-
ations differed only by one containing a schwa where therattvetained a different
unstressed short vowel (non-diphthong), the pronunciatiith the schwa was re-
moved. Second, the unstressed central vofud) was converted té&\X, and all
other stress marks were removed. After preprocessing dittienary, the follow-

" The literature is inconsistent on the precise calculatibineguency-weighted neighbor-
hood density, with the same authors using raw frequencissrite cases (Luce and Pisoni,
1998) and log frequencies in others (Luce et al., 2000; Witbvand Luce, 1999). Since
these studies generally group stimuli into only two grodps/(vs. high FWND), there is
no way to determine whether log or raw frequencies are argttelictor. We will use log
frequencies in this paper.

8 The CMU Pronouncing Dictionary is available from http://wvspeech.cs.cmu.edu/cgi-
bin/cmudict.

11



Word Original pronunciation Final pronunciation

A AHO AX

A(2) EY1l EY

ABDQOVEN AEO B D OM M AHO N AE B D OWM AX N
ABDOVEN( 2) AE1 B D AHO M AHO N AE B D AX M AX N
ABDOM NAL AEO B D AAL MAHO N AHO L AE B D AA MAX N AX L
ABDOM NAL(2) AHO B D AAL M AHO N AHO L [removed]

BARGAI N B AAL R G AHO N [removed]

BARGAI N( 2) BAALRGIHO N BAARGIHN
THE DH AHO DH AX

THE( 2) DH AHL DH AH

THE( 3) DH I YO DH 1Y
Table 3

Example illustrating the preprocessing of the CMU Pronaumdictionary done before
computing homophone and neighbor features. Numbers apdaiodphones in the origi-
nal pronunciations indicate stress levels (0=none, 1=gmy2= secondary). Stress marks
are removed after deleting extra pronunciations diffeendy in unstressed non-diphthong
vowels and converting\HO to AX.

ing features were extracted.

Word length. Each word’s length in phones was determined from its dietrgn
entry. If multiple pronunciations were listed for a singlend, the number of phones
in the first (longest) pronunciation was used. (Frequenzigise different pronun-
ciations are not provided in the dictionary.)

Number of pronunciations. We extracted the number of different pronunciations
for each word from the dictionary. Note that this number i$ the same as the
number of pronunciations used in the ASR systems’ dictiesai-or all but very
frequent words, ASR systems typically include only a singlenunciation; this
feature may provide a better estimate of the actual prowtioci variability of dif-
ferent words.

Number of homophones. We defined a homophone of the target word to be any
word in the dictionary with a pronunciation identical to apfythe pronunciations
of the target word, and counted the total number of these.

Number of neighbors. We computed the number of neighbors of each word by
counting the number of distinct orthographic represeateti(other than the target
word or its homophones) whose pronunciations were neighbbany of the pro-
nunciations of the target word. For example, neighbors efwiord auntinclude
auntie, ain’t, and(based on the first pronunciaticme n t), as well asvant, on

12



anddaunt(based on the second pronunciatian, n t).

Frequency-weighted homophones/neighborsAlthough only frequency-weighted
neighborhood density is a standard measure in psychostigsiiwe also computed
frequency-weighted homophone density for completenesghors and homo-
phones were determined as above; we estimated log freqageusing the unigram
log probabilities in the SRI language model, subtracting simallest log proba-
bility from all values to obtain non-negative log frequenglues for all words.
The feature values were then computed as the sum of the lqgereies of each
homophone or neighbor.

3.1.5 Prosodic features

Of the prosodic features we collected, only speech rate bas hnalyzed exten-
sively as a factor influencing word error rates in spontasespeech (Siegler and
Stern, 1995; Shinozaki and Furui, 2001; Fosler-LussieModyan, 1999). We also
extracted features based on three other standard acqussodic factors which
could be expected to have some effect on recognition acgupdich, intensity,
and duration. The final prosodic feature we extracted wtes jivhich is a correlate
of creaky voice. Creaky voice is becoming widespread amangger Americans,
especially females (Pennock-Speck, 2005; Ingle et al.5RGd thus could be
important to consider as a factor in recognition accuracytese speakers.

To extract prosodic features, the transcriptions usedherfoérced alignment were
first aligned with the reference transcriptions as desdribghe section on proba-
bility features. The start and end time of each word in thenagice transcriptions
could then be determined from the timestamps in the foragdment. For contrac-
tions listed as two reference words but one forced alignmemd, any word-level

prosodic features will be identical for both words. The s features we ex-
tracted are as follows.

Pitch. The minimum, maximum, mean, and log range of pitch for eactdwaere
extracted using Praat (Boersma and Weenink, 2007). Minimmaximum, and
mean values were then normalized by subtracting the avexhitiee mean pitch
values for speakers of the appropriate sex, i.e., thesareaalues are relative to
gender norms. We used the log transform of the pitch range due to the highly
skewed distribution of this feature; the transformationdarced a symmetric dis-
tribution.

Intensity. The minimum, maximum, mean, and range of intensity for eactdw
were extracted using Praat.

9 Preliminary analysis revealed that the normalized pitdnes show a more systematic
relationship with error rates than the unnormalized valtreaddition, normalizing by gen-

der average removes the correlation between sex and pattrés, which is useful when
building the combined model in Section 4.
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Speech rate. The average speech rate (in phones per second) was computed f
each utterance and assigned to all words in that utterarieen@imber of phones
was calculated by summing the word length feature of eacl yveod utterance du-
ration was calculated using the start and end times of theafird last words in the
utterance, as given by the forced alignment. We used theratiically generated
utterance timestamps of the forced alignment because theé-d@notated utter-
ance boundary timestamps in the reference transcriptiaiisde variable amounts

of silence and non-speech noises at the beginnings andgandirutterances and
we found the forced alignment boundaries to be more accurate

Duration. The duration of each word was extracted using Praat.

Log jitter. The jitter of each word was extracted using Praat. Like preaige,
the distribution of jitter values is highly skewed; takirtgetlog transform yields a
symmetric distribution.

Note that not all prosodic features could be extracted frmwerds in the data
set. In what follows, we discuss results using three diffesubsets of our data:
the full-word set (all 71579 full words in the data), the prdi set (the 67302 full
words with no missing feature values; 94.0% of the full-wdeda set), and the no-
contractions set (the 60618-word subset of the prosodiotst@ined by excluding
all words that appear as contractions in the forced aligrirtranscriptions and as
two separate words in the reference transcriptions; 84 .fa%edull-word data set).

3.2 Results and discussion

Error rates for categorical features can be found in Tablandl error rates for
numeric features are illustrated in Figures 3 and 4. (Fingt eniddle repetitions
are combined as non-final repetitions in the table, becange 32 words were
middle repetitions, and their error rates were similar titiahrepetitions.) Despite
differences in the overall error rates between the two systeve examined, the
patterns of errors display a striking degree of similaritye discuss results for
individual features in more detail below, after describthg methodology used
to produce the figures and significance values shown.

The error rates shown in Table 4 are based on the full-word dat, with signifi-
cance levels computed using a Monte Carlo permutation‘te§or each feature,
we generated 10,000 random permutations of the words inate end assigned
the firstn words in the permuted set to one group, and the remaining sMoré
second group (witle equal to the number of words exhibiting the given feature).
The significance level of a given feature’s effect on errdesacan be estimated
as the proportion of these samples for which the differend®MER between the
two groups is at least as large as the actual difference leetwerds that do or

10 The permutation test is a standard nonparametric test dmabe used with data like ours
that may not conform to any particular known distributiof@m (Good, 2004).
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SRI system Cambridge system

Feature IWER MCtest IWER MCtest % of data
Before FP 16.7 1146 15.9 4099 1.9
After FP 16.8 .2418 15.3 .1884 1.8
Before frag 32.2** 0000 29.2*  .0000 1.4
After frag 22.0* .0008 18.5 .0836 14
Before rep 19.6 .4508 17.0 .8666 0.7
After rep 15.3* .0486 13.5* .0222 0.9
Non-final rep 28.4* 0000  28.6** .0000 1.2
Final rep 12.8** .0001 11.8**  .0003 1.1
Open class 17.3** .0000 16.0**  .0000 50.3
Closed class 19.3** .0000 17.2**  .0002 43.7
Discourse marker 18.1 .8393 18.2* .0066 6.0
Starts turn 21.0* .0000 19.5**  .0000 6.2
Male 19.8** .0000 18.1*  .0000 49.6
Female 16.7** .0000 15.3**  .0000 50.4
All words 18.2 17.0 100

Table 4

IWER by feature for the two systems on the full-word dataBKE.testgives the proportion
of samples (out of 10,000) in a Monte Carlo permutation testwhich the difference
between groups was at least as large as that observed betwedsiwith and without the
given feature. Features with a significant effect on err@gaccording to the Monte Carlo
test are indicated with *( < .05) or ** (p < .005). % of datais the percentage of words in
the data set having the given featufd.wordsis the IWER for the entire data set. (Overall
IWER is slightly lower than in Table 1 due to the removal of O@drds.)

do not exhibit the given feature. Although not shown, we categd error rates and
significance levels on the prosodic and no-contractiors skiis as well. Overall er-
ror rates are somewhat lower for these data sets (SRI: 1B,2 75 prosodic, 17.4
no-contractions; Cambridge: 16.7 full, 16.0 prosodic8Ito-contractions), but the
pattern of errors is similar. For nearly all featurgsyalues for the smaller data sets
are equal to or larger than those for the full data set; e simaller data sets pro-
vide a more conservative estimate of significance. Consglyyee feel justified in
basing the remaining analyses in this paper on the smaliest@ntractions) data
set, which provides the most accurate feature values fovalls.

Figures 3 and 4 were produced using the no-contractionsseéat&igure 3 includes
the pronunciation-based and probability features, whigkth(the exception of tri-
gram probability) are allexical, in the sense that every instance of a particular
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lexical item takes on the same feature value. Figure 4 irdutie prosodic fea-
tures, which vary across different instances of each léxieen. To estimate the

effects of each of these numeric features and determinene@h#éitey have signif-

icant predictive value for error rates, we used logistiaesgion (as implemented
by thel r mpackage in R). In logistic regression, tlig oddsof a binary outcome

variable is modeled as a linear combination of feature \&alye. . z,,:

loglp :60$0+/611’1+...+6n1’n

wherep is the probability that the outcome occurs afid . . 5, are coefficients

(feature weights) to be estimated. If IWER were a binaryalale, we could es-
timate the effect of our features by building a separateaggjon model for each
feature based on a single predictor variable — the value aiffdature. However,
IWER can take on values greater than 1, so we cannot use tlileodthdnstead,

we build a model that predicts the probability of an errog.(ithe probability that
IWER is greater than zero). This model will be slightly diffat than a model
that predicts IWER itself, but for our data sets, the diffexe should be minor: the
number of words for which IWER is greater than one is very $iff@ss than 1%

of words in either system), so the difference between theageelWER and the
probability of an error is minimal (SRI: average IWER = 17{gerror) = 17.4%;

Cambridge: average IWER = 15.8, P(error) = 15.6%). Thederdifices are neg-
ligible compared to the sizes of the effects of many of theufies illustrated in

Figures 3 and 4.

While many of our numeric features exhibit a primarily line@lationship with the
log odds of an error, several appear to have more complegrpattTo allow for this
possibility, we used restricted cubic splines to createaméunctions of the input
features!! It is then these functions that are assumed to have a linkdioreship
with the log odds. We limited the possible functions to thegth at most one
inflection point (i.e., quadratic-like functions) and hailregression model for each
feature to predict the probability of an error based on thieieraf that feature
alone. The predicted values are plotted in Figures 3 and $potthe observed
IWER. (Note that, although feature values were binned ireotd plot the average
observed IWER for each bin, the regression models were Uity the raw data.)
For each feature, we determined whether that feature israfis@nt predictor of
errors by performing a likelihood-ratio test comparing thedel fitted using that
feature as its sole predictor to a baseline model that sirfifgythe overall error
probability in the data. All features were found to be sigmfit predictors; the
slopes of the fitted probabilities in Figures 3 and 4 give asseof the relative
importance of different features in predicting errdfs.

11 Restricted cubic splines were fit using thes function in the Design package (Har-
rell Jr., 2007) of R (R Development Core Team, 2007).

12 Note that, when considering onlinear relationships between feature values and the
log odds of an error, the number of neighbors and mean irte(fsir both systems) and
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Fig. 3. Effects of lexical features and trigram probabildg IWER for (a) the SRI sys-
tem and (b) the Cambridge system on the no-contractionssgatall feature values were
binned, and the IWER for each bin is plotted, with the areahefdurrounding circle pro-
portional to the number of points in the bin. The mean value standard deviation of
each feature is provided along the bottom of each plot. dditees show the IWER over
the entire data set. Solid lines show the predicted proibhalwf an error using a logistic
regression model fit to the data using the given feature asrilyepredictor (see text).

3.2.1 Disfluency features

Perhaps the most interesting result in Table 4 is that treeesffof disfluencies are
highly variable depending on the type of disfluency and thetjmm of a word rela-
tive to it. Non-final repetitions and words preceding fragnisehave an IWER 10.2—
14 pointshigherthan the average word (e.g., words preceding fragment®iS i
system have a 32.2% IWER, 14 points above the 18.2% averag#g,final repe-
titions and words following repetitions have an IWER 2.9+pointslower (note,
however, that the results for words after repetitions ase febust — they just barely
reach the .05 significance level for the full-word SRI data aed do not reach sig-
nificance in some of the other data subsets). Words folloiiagments show a
smaller increase in errors in the SRI data set, and a norifis@nt increase in the

frequency-weighted neighbors (for the Cambridge systempat significant predictors of
errors.
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Fig. 4. Effects of prosodic features on IWER for (a) the SRiteyn and (b) the Cambridge
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system on the no-contractions data set. Details of the pletas in Figure 3.

Cambridge data set. Words occurring before repetitionseat to filled pauses do
not have significantly different error rates than words imestpositions. Our results
with respect to repetitions are consistent with the work lofitgerg (1995), which
suggested that only non-final repetitions are disfluengibde the final word of a
repeated sequence is fluent.
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3.2.2 Other categorical features

Consistent with common wisdom, we find that open class woade lower error
rates than other words and that words at the start of a tura lhigier error rates. In
addition, we find worse recognition for males than for fersalsithough some of
these effects are small, they are all statistically robast@resent in both systems.
The difference in recognition accuracy of 2.8—-3.1% betweates and females is
larger than the 2% found by Adda-Decker and Lamel (2003)palgh less than the
3.6% we found in our own preliminary work in this area (Goldereet al., 2008),
which analyzed only the SRI system and used a smaller data set

3.2.3 Word probability

Turning to Figure 3, we find that low-probability words haveuhatically higher
error rates than high-probability words, consistent widlvesal previous studies
(Shinozaki and Furui, 2001; Fosler-Lussier and Morgan,91%oldwater et al.,
2008). Comparing the effects of unigram and trigram prolitégs, we see that
trigram probability shows a far more linear relationshiglwiWER. This is not
surprising: words that have lower language model probadslican be expected
to have worse recognition. Unigram probabilitity, whileredated with trigram
probability, is a less direct measure of the language maaeks and therefore has
a more complex relationship with error.

3.2.4 Pronunciation features

While all of the pronunciation features we examined do hasigaificant effect on

error rates, the sizes of the effects are in most cases fmbll. Not surprisingly,

words with more possible pronunciations have higher erabes than those with
fewer, and longer words have slightly lower error rates tshorter words. The
small size of the word length effect may be explained by tleé thzat word length

is correlated with duration, but anti-correlated with pabbity. (Table 5 shows the
correlations between various features in our model.) Loageds have longer du-
ration, which tends to decrease errors (Figure 4), but alael probability, which

tends to increase errors (Figure 3).

In contrast to the primarily linear effects of length and rhenof pronunciations,
we find that words withntermediatenumbers of neighbors (or frequency-weighted
neighbors) are the most difficult to recognize. This findiegras to contradict those
of psycholinguistic studies, but it is important to rememtat those studies con-
trolled for word frequency and length, while the resultshistsection do not con-
trol for other variables. Also, the psycholinguistic resypertain to recognition of
isolated words, while our results are based on recognitia@ontext.

Finally, we see that words with more homophones (or frequemeighted homo-
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phones) have significantly lower error rates than other wofdthough the effect
is very small, it is nevertheless surprising, and is not obsly due to correlations
with other features we examined — the number of homophonsisaagly corre-

lated only with the other homophone and neighbor featurabl€l5). There are
moderate correlations with word duration and word lengtlt, toth of these are
in the wrong direction, i.e., they would predict that wordshamore homophones
have a greater chance of misrecognition because they téyegborter.

3.2.5 Prosodic features

In contrast to the pronunciation-based features, Figurbo#vs that most of the
prosodic features we examined are strongly predictive adrelates. Decreased
duration is associated with increased IWER, and (as in pusvivork), we find
that IWER increases dramatically for fast speech. Mearhpitso has a large ef-
fect, with higher error rates for words with higher pitchat¥e to gender averages.
Minimum and maximum pitch, which are highly correlated witlean pitch (Table
5), show similar trends, but to a slightly lesser degree.d&avith smaller ranges
of pitch or intensity are more likely to be misrecognizedaes words with higher
minimum intensity (a feature that is highly anti-corretht&ith intensity range).
The final three prosodic features — jitter and intensity mmaxin and mean — show
little to no linear effect on errors. Instead, these featae associated with higher
error rates at extreme values than at average values. The gattern, but to a
lesser degree, can be observed for several of the othergioogatures. This kind
of pattern has been noted before by several authors in tieeatapeech rate (Shi-
nozaki and Furui, 2001; Siegler and Stern, 1995; Goldwatat.£2008), but was
first discussed for other prosodic features only in the priglary version of this
work (Goldwater et al., 2008).

4 Analysis using a joint model

In the previous section, we investigated the effects ofouariindividual features
on ASR error rates. However, there are many correlationsdxst these features —
for example, words with longer duration are likely to haveaeger range of pitch
and intensity. In this section, we build a single model fateaystem’s output with
all of our features as potential predictors in order to datae the effects of each
feature after accounting for possible correlations. Wethseno-contractions data
set, and simplify modeling (as above) by predicting only thlee each token is
responsible for an error or not. That is, we use a binary depetvariable for each
token, which takes on the value 1 if the IWER for that tokenrsager than zero,
and O otherwise.
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Feature pair T statistic
Duration, Min intensity —0.31
Unigram prob, # neighbors 0.32
Duration, Log pitch range 0.33
Unigram prob, Trigram prob 0.33
# neighbors, Duration —0.36
Trigram prob, Length —0.37
Duration, Intensity range 0.40
Unigram prob, Freg-wtd neighbors 0.40
Length, # homophones —0.42
Unigram prob, Duration —0.42
Max pitch, Log pitch range 0.43
Freg-wtd neighbors, Duration —0.44
Length, Freg-wtd homophones —0.48
Unigram prob, Length —0.48
Length, Duration 0.50
Max pitch, Min pitch 0.52
# homophones, Freqg-wtd neighbors 0.52
Freqg-wtd homophones, Freg-wtd neighbors 0.54
# neighbors, Freq-wtd homophones 0.56
Length, # neighbors —0.61
Min intensity, Intensity range —0.63
# homophones, # neighbors 0.64
Mean pitch, Min pitch 0.71
Length, Freg-wtd neighbors —0.72
# homophones, Freq-wtd homophones 0.75
Mean pitch, Max pitch 0.77
# neighbors, Freq-wtd neighbors 0.78
Mean intensity, Max intensity 0.85

Table 5

Correlations between the numeric features examined hegasuned using Kendall’s
statistic, a nonparametric method. Possible values odnge from—1 (perfect anti-
correlation) to 1 (perfect correlation). Only absoluteuesd above 0.3 are shown.
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4.1 Model

Standard logistic regression models assume that all catedjbeatures ardixed
effects meaning that all possible values for these features arevknio advance,
and each value may have an arbitrarily different effect @dbtcome. However,
features such as speaker identity do not fit this patternedas we account for
speaker differences by assuming that speaker identityasn@om effegtmeaning
that the speakers observed in the data are a random sammpla fewger population.
The baseline probability of error for each speaker is trweefaissumed to be a
normally distributed random variable, with mean equal ®pgbpulation mean, and
variance to be estimated by the model. Stated differentgndom effect allows us
to add a factor to the model for speaker identity, withoudaihg arbitrary variation
in error rates between speakers. Models such as ours, withfized and random
effects, are known amixed-effects modeland are becoming a standard method for
analyzing linguistic data (Baayen, 2008). We fit our modsiagithe Ime4 package
(Bates, 2007) of R (R Development Core Team, 2007).

To analyze the joint effects of all of our features, we inigiduilt as large a model
as possible, and usédckwards eliminatioto remove features one at a time whose
presence did not contribute significantly fa& .05) to model fit. The predictors in
our initial model are summarized in Table 6. They includddathe features de-
scribed above, with the exception of number of neighboesjdency-weighted ho-
mophones, pitch minimum and maximum, and intensity mininauna maximum.
These features were excluded because of high correlatidghsother features in
the model, which makes parameter estimation in the combimael difficult. All
categorical features (those in Table 4) were convertedariivariables, and addi-
tional binary features were added to account for corpuhéfisr Switchboard) and
telephone line type (standard, cellular, cordless, laAtihumeric features (those
in Figures 3 and 4) were rescaled to values between 0 and Her to make the
model coefficients for different features comparableand then centered to ensure
a mean value of 0.

To account for the possibility that some of the numeric feggun our model have
non-linear effects (as suggested by our analysis in Se8ioour initial model in-
cluded functions of these features with at most one inflagbi@int, again modeled
using the restricted cubic splinesds) function in R. (The backwards elimination
process can be used to eliminate the extra parameters aiesbwith the non-linear
components of each predictor as necessary.) In additionneleded random ef-
fects for speaker identity and word identity. Thus, theiahimodel includes 44
degrees of freedom: 43 for the features shown in Table 6, apdar the intercept.

13 Before rescaling, 39 data points with outlying feature ealwere removed: two words
with speech rate above 27 phones per second, 13 words witialuabove 1.25 seconds,
and 24 words with log jitter below -7.
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Feature F/IR Type d.fi Feature FIR Type d.f.
BEFOREFP F B 1 | UNIGRAM-PROB F N 2
AFTER-FP F B 1 | TRIGRAM-PROB F N 2
BEFOREFRAG F B 1 | WORD-LENGTH F N 2
AFTER-FRAG F B 1 | NUM-PRONUNCIATIONS F N 1
BEFOREREP F B 1 | NUM-HOMOPHONES F N 2
AFTER-REP F B 1 | FREQWTD-NEIGHBORS F N 2
FINAL-REP F B 1 | PITCH-MEAN F N 2
NONFINAL-REP F B 1 | LOG-PITCH-RANGE F N 2
OPEN-CLASS F B 1 | INTENSITY-MEAN F N 2
DISCOURSECLASS F B 1 | INTENSITY-RANGE F N 2
STARTS-TURN F B 1 | SPEECHRATE F N 2
SEX F B 1 | DURATION F N 2
CORPUS F B 1 JITTER F N 2
CELLULAR-LINE F B 1 | SPEAKERID R C 1
LAND-LINE F B 1 | worbD-ID R C 1
CORDLESSLINE F B 1

Table 6

Summary of features used in the unreduced joint model, sigppwihether each feature
is a F(ixed) or R(andom) effect, whether it is B(inary), N(@mg), or C(ategorical), and
the associated degrees of freedom (d.f.). Numeric featuege fit using restricted cubic
splines with two degrees of freedom, except flmrM-PRONUNCIATIONS which does not

take on enough different values to fit a non-linear spline.

4.2 Results and discussion

Figure 5 shows the estimated coefficients and standardsewoeach of the fixed
effect categorical features remaining in the reduced md@del| after backwards
elimination). Since all of the features are binary, a coedfitof 3 indicates that the
corresponding feature, when present, adds a weightothe log odds (i.e., multi-
plies the odds of an error by a factor@). Thus, features with positive coefficients
increasethe odds of an error, and features with negative coefficidatseasehe
odds of an error. The magnitude of the coefficient correspdondhe size of the
effect.

The coefficients for our numeric features are not directlierpretable in most
cases, since they are computed in terms of the orthogone fuasctions of the
restricted cubic splines used to fit the non-linear comptmehthe model. How-
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(a) SRI system (b) Cambridge system
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Fig. 5. Estimates and standard errors of the coefficientshiicategorical features found
to be significant predictors in the reduced model for eactegys

ever, the coefficients can be used to plot the predictedteffezach feature on the
log odds of an error, yielding the visualization in FigurePasitivey values indi-
cate increased odds of an error, and negajivalues indicate decreased odds of
an error. Ther axes in these plots reflect the rescaled and centered vdlgesio
feature, so that alt axes are one unit long, with the mean observed value of each
feature always equal to zero.

4.2.1 Disfluencies

In our analysis of individual features, we found that differ types of disfluen-
cies have different effects: non-final repeated words andisvbefore fragments
have higher error rates, while final repetitions and wordie¥ang repetitions have
lower error rates. After accounting for correlations bedgwéactors, a slightly dif-

ferent picture emerges. Non-final repeated words and wasttsd fragments still

have the greatest chance of an error, but there is no longenefibial effect for

final repetitions, and the effect for words after repetisamonly found in the Cam-
bridge system. Both systems now show increased chance®of@rwords before

filled pauses, and words before repetitions are also agedanth more errors in

the SRI system. Overall, disfluencies tend to have a negettiget on recognition,

increasing the odds of an error by as much as a factor of 3.7.

Many of the differences in disfluency patterns from Sectio(s@ecifically, the

reduction or elimination of the apparent beneficial effectimal repetitions and

words following repetitions, and the appearance of a negatifect before filled

pauses) may be explained as follows. Words near filled parskgepetitions have
longer duration than other words (Bell et al., 2003), andglEmduration lowers
IWER. Taking duration into account therefore reduces ampaggnt positive effects
of disfluencies, and reveals previously obscured negédftieets. Also, according to
Shriberg (1995), the vast majority of repetitions are sledd’retrospective” repe-
titions (Heike, 1981), in which the initial word(s) are diséht, but the final word
resumes fluent speech. Our results fit nicely with this hygsith) since final repeti-
tions have no significant effect in our combined model, whiv@-final repetitions
incur a penalty.
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Fig. 6. Predicted effect of each numeric feature on the ladsaaf an error. Only features
found to be significant predictors in the reduced model fahesystem are shown. The
mean value and standard deviation of each feature (aftealieg and centering) is pro-
vided along the bottom of each plot. Due to rescaling,zatixes are one unit long; the
range of values shown reflects the range of values obsentbeé itata.

4.2.2 Other categorical features

Without including in the model other lexical or prosodic tie@es, we found that a
word is more likely to be misrecognized at the beginning afratand less likely

to be misrecognized if it is an open class word. Accordinguojoint model, the

start-of-turn effect still holds even after accounting tioe effects of other features.
This suggests that contextual (i.e., language modelirggdpifa are not the explana-
tion for the start-of-turn effect; articulatory strengttieg is a possible alternative
(Fougeron and Keating, 1997; Keating et al., 2003). The -atess effect appears
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in our joint model for the SRI system, although in the Camppeidystem open-class
words do not seem to have a beneficial effect; instead, diseguarkers are found
to have a negative effect. As in the individual model, allltége effects are fairly

small.

As for speaker sex, we find that male speakers no longer hgudisantly higher
error rates than females in the Cambridge system. Males de significantly
higher error rates than females in the SRI system, but tHerdiice is small (a
factor of 1.2 in the odds), and the significance level is noly d, as compared to
below .0001 in the individual analysis. These results sleaslight on the work of
Adda-Decker and Lamel (2005), who suggested several fattat could explain
males’ higher error rates. In particular, they showed thalies have higher rates of
disfluency, produce words with slightly shorter duratioasd use more alternate
(“sloppy”) pronunciations. Our joint model incorporatéetfirst two of these fac-
tors, and by doing so greatly reduces the difference in eatas between males
and females. This suggests that disfluency and duratiorechdecount for much
of the difference in recognition accuracy. The remainin@kmifferences may be
accounted for by males’ increased use of alternate proations, as suggested by
Adda-Decker and Lamel (2005). Another possibility is treahgle speech is more
easily recognized because females tend to have expandetisjmaces (Diehl et al.,
1996), a factor that is associated with greater intelligyp(Bradlow et al., 1996)
and is characteristic of genres with lower ASR error rategk@mnura et al., 2008).

4.2.3 Word probability

Not surprisingly, we find that even after accounting for tliteas of correlated
features, word probability still has a very strong effectrecognition performance,
with higher error rates for low-probability words. Intetesgly, both unigram and
trigram probabilities have strong independent effectghwhe trigram language
model probability being the more influential. It is also wortoting that the non-
linear trends appearing in the individual analysis werefoahd to be significant
in the combined model, except for a small but significantafte < 0.025) in the
Cambridge unigram probability. Thus, our modeling resaliggest that a word’s
frequency and its language model probability are both ieddently related to the
chance of its being recognized correctly in a near linear.way

4.2.4 Pronunciation features

Our combined model considered four pronunciation-basatufes: word length,
number of pronunciations, number of homophones, and freyuereighted neigh-
bors. Only two of these were found to be significant prediiarboth systems:
word length (with longer words having lower error rates) dretjuency-weighted
neighbors (with intermediate values having higher erroesp The effect of word
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length is greater than in the individual analysis, whichprts our hypothesis that
correlations with duration and probability obscured thedviength effect in that

analysis. We have no explanation at this time for the noealireffect of frequency-

weighted neighbors, which persists despite our modelsriparation of other fac-

tors such as word frequency and length.

Number of pronunciations was found to be a significant ptedienly in the Cam-
bridge system, where words with more pronunciations habdrigrror rates.

4.2.5 Prosodic features

Examining the effects of pitch and intensity individuallye found that increased
range for these features is associated with lower IWER, evhigher pitch and
extremes of intensity are associated with higher IWER. éjtint model, we now
see that means of pitch and intensity are actually stable avade range of the
most common values, but errors increase for extreme valupsgoh (on the high

end) and intensity (on the low end). A greater range of intgns still associated

with lower error rates despite accounting for the effectdofation, which one
might expect to be the cause of this trend in the individualysis. However, the
benefit of greater pitch range is no longer seen; insteaderaxt values of pitch
range on either end seem to be problematic (although thetegfemall).

In the individual analysis, both speech rate and duratiorew&ongly tied to error
rates. While both of these features are still important exdbmbined model, dura-
tion is shown to have by far the greater effect of the two. kimlinost of the other
prosodic features we examined, including speech rateageeralues of duration
do not have the lowest error rates. Rather, above-averagéaluis associated with
the lowest error rates. For words with extremely long dwmtirecognition begins
to degrade again. Note that, although one might expect Bpaée and duration to
be highly correlated, we found a relatively low correlatioinr = —0.15. Only a
small part of the variability in duration can be explaineddpeech rate; the rest is
due to variations in word length and other factors.

For our final prosodic feature, log jitter, we found in the iidual analysis that
extreme values were associated with higher error rates. firfding was replicated
in the combined model.

Overall, the results from our joint analysis suggest thtteothings being equal,
recognition performance is best for words with typical vdwf most prosodic fea-
tures (duration being the notable exception), and degrasléssature values become
more extreme.
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SRI Cambridge

Model Neg. log lik. Diff. df Neg.loglik. Diff. d.f.
Full 24305 0 44 22644 0 44
Reduced 24316 11 27 22651 7 29
Baseline 28006 3701 1 26195 3551 1
No categorical 24475 159 32 22836 185 32
No probability 24981 664 40 23367 716 40
No pronunciation 24347 31 37 22689 38 37
No prosodic 25150 834 30 23449 797 30
No speaker 25069 753 43 23379 727 43
No word 24627 322 43 22901 257 43
Table 7

Fit to the data of various models and their degrees of freeftbfr). Full model contains
all predictors;Reducedcontains only predictors contributing significantly to ftaseline
contains only intercept. Other models are obtained by rémgdieatures frontull: all cat-
egorical features (disfluencies, sex, syntactic classt-atdurn), all probability features
(unigram and trigram probabilities), all pronunciatiorafieres (length, number of homo-
phones, frequency-weighted neighbors, number of promtinas), all prosodic features
(pitch, intensity, rate, duration, jitter), the randomeeff for speaker identity, or the random
effect for word identity.Diff is the difference in log likelihood between each model and
Full. Fits are significantly different for all pairwise compamis exceptull vs. Reduced

as computed using a likelihood ratio test.

4.2.6 Differences between lexical items

As discussed above, our models contain a random effect fod wientity, to ac-
count for the possibility that certain lexical items havgher error rates that are
not explained by any of the other factors in the model. It isttvasking whether
this random effect is really necessary. To address thistiquesve compared the fit
to each system’s data of two different models: our initidl foodel containing all
of our fixed effects (including both linear and non-lineante) and random effects
for both speaker identity and word identity, and a similard®loccontaining all the
same features except for word identity. Results are showale 7. For both sys-
tems, the fit of the model without a random effect for word ittgris significantly
worse than that of the full model; in fact, this single paréenés more important
than all of the categorical and pronunciation features doeth

In mixed-effects models, it is possible to extract estirmatkthe by-word adjust-
ments to the model predictions, that is, the amount by whatdhdexical item’s
odds of an error deviates from the mean. Figure 7 lists, fochesystem, the 30
words with the greatest negative deviation from the meanwAsmight expect
given the similarities between the two systems in our otesults, the two lists
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(a) SRI: yup yep a., halloween phonesinto, half, though then after, wanted
watched whether happenedthem says than worked started somethingfor-
eign theater island, r., room, tastes space salad called goes

(b) Cambridge: yup, yep something phones him, after, then though ask
couple wanted half, into, tried, faith, than whether them space happened
watchedalready, worked four, thinking, stay, god thanks yes probably.

Fig. 7. The 30 lexical items for each system with the greagsimated negative effect on
the probability of correct recognition.

contain many words in common. In fact, the correlation betwthe estimated ef-
fect of each lexical item in the two different systems (oB867 lexical items)
is fairly high: »=0.69 linear correlation.

Some of these errors are clearly due to inconsistenciesimetierence transcrip-
tions that are not covered by the normalization rules usederNIST evaluation.
The two words with the highest estimated error in both systgnmp andyep are
orthographic variants of the same word. Similarly, the nfosuent misrecogni-
tion of theateris a substitution byheatre(for the (American) SRI system as well
as the (British) CU-HTK system). Both systems frequentlystituted hypothesis
yeahfor referenceyes this is likely another problem with inconsistent tranption

in the reference.

Many of the other high-error words involve morphologicabstitutions, particu-
larly between the bare stem and the past tense forms. Thadgegmodel is of-
ten insufficient to distinguish these two forms, since thag occur with similar
neighboring words (e.gthey watch thenandthey watched therare both gram-
matical and sensible), and they are also similar acoubtiéatamples of this kind
of error, with their most frequent substitution in parergég, include the following
reference wordscalled (call), asked(ask, asks(asked, happenedhappen, says
(said), started(start), thinking (think), tried (try), wanted(wani), watchedwatch,
tasteq(tastg, phonegphong, andgoes(go).

In addition to these morphological substitutions, sevetaker high-error words
are also frequently substituted with homophones or neardpihones that can oc-
cur in similar contexts, in particulahan (and), then(and), him (then), andthem
(him). The high error rates found for these words may explain weydd not find
strong effects for neighborhood density overall. In mosiations, the context in
which a word is spoken is sufficient to disambiguate betwesustically simi-
lar candidates, so competition from phonetically neightmpwords is not usually
a problem. Errors in ASR are caused not by words with large bemof similar
neighbors, but by words with one or two strong competitoas tan occur in similar
contexts. Put another way, acoustically confusable worelsat typically a prob-
lem, butdoubly confusable pairs- word pairs with similar language model scores
in addition to similar acoustic scores — can be a source of&ri his finding also
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suggests that the effects of neighborhood density in hunad recognition might
also be significantly reduced when words are recognized et rather than in
isolation, as is typical in experimental settings.

Finally, we note that the words in the previous paragraplar{ then him, and
them) are very frequently deleted as well as being substitutds i§ probably due
to a combination of lack of disambiguating context (ewgpuld want him to beand
would want to bere both acceptabland thenandandmean essentially the same
thing) and the fact that these words are subject to masseeéiyced pronunciations,
often due to cliticizationifim andthemare generally cliticized to the preceding
verb; thenis often cliticized to the following word). Other words witkigh error
that are known to be subject to massive reduction inckateethingalready, and
probably suggesting that all these examples may be due to pronuncitctors
beyond those captured by simple duration.

4.2.7 Differences between speakers

As we have already mentioned, ASR error rates are knownterdgjfeatly between
speakers. Using the mixed-effects logistic regressiorhotilogy presented here,
it is possible to examine the extent to which these diffeesncan be explained
by variation in speakers’ patterns of lexical choice, pohsor disfluency. We first
used the same method described above to analyze the ougpalitance of the ran-
dom effect for speaker identity in our fitted models. As shawmable 7, removing
the random effect for speaker identity from the full modesuits in a much worse
fit to the data. That is, the lexical, prosodic, and disflueraryables examined here
are not sufficient to fully explain the differences in erratas between speakers. In
fact, the speaker effect is the single most important faattve models for both the
SRI and Cambridge data sets, and is more important than &mey f@ature group
aside from the prosodic features. Note that, as with therddagures we analyzed,
the error rates of different speakers are similar in the tatadets, with a linear
correlation of .92. Figure 8 illustrates. Thus, whichewasstors are responsible for
the speaker-specific differences in recognition, they stebehave similarly with
respect to both systems, unlike some of the speaker diffesefound in the work
of Nusbaum and Pisoni (1987) with much earlier systems.

In addition to analyzing the overall importance of speakientity in our models,

we can also examine the estimated effects of individuallsreajust as we did
for individual words in the previous section. Figure 9 shdkes by-speaker adjust-
ments to the model predictions, with the actual probabdftgrror for each speaker
given for reference. Notice that the estimated adjustmeémisot completely track
speaker error rates, as they would if speaker identity wieeeonly factor in the

model. This indicates that the other factors in our model xjdan some of the

variation in error rates between speakers, just not all.
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single speaker.
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Fig. 9. Empirical probability of a recognition error for daspeaker (top) and estimated
change in the log odds of an error for each speaker (bottoah Bar corresponds to a
single speaker, with both graphs for a single system soredrding to the speakers’ error
probability under that system.

At this point, it seems natural to ask whether different ggesamight not only have

different overall error rates, but different patterns afoes — that is, does changing
the values of certain features affect error rates diffdyefur different speakers?
The models presented here assume that each speaker hasentliffaseline error
rate, but that the effects of each feature are the same forsggmeaker. Using tech-
niques similar to those used here, it would theoreticallypbssible to introduce
additional random effects for the intercepts (or even o each feature on a
speaker-by-speaker basis, and to test for the significaitbese additional param-
eters. However, the number of possible models for compaismld be enormous,
so a purely exploratory analysis (similar to our own) is adile at present. To
our knowledge, there are currently no automated model sefetools for mixed-
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Fig. 10. Estimated effects of various features on the emtes of two different speakers
(top: speaker fsi60682b, bottom: speaker swW7282b) using the SRI system. Dashed
lines illustrate the baseline probability of error for eageaker. Solid lines were obtained
by fitting a logistic regression model to each speaker’s,daith the variable labeled on

the z-axis as the only predictor.

effects models with multiple random effects, so analysi®lves a human in the
loop. Moreover, the complexity of our current models alepdshes the boundary
of what can be done with reasonable time and accuracy usagumerical opti-
mization procedures that are available to fit the modélslevertheless, it is possi-
ble to get some sense of the variability between speakerstimg fseparate logistic
regression models to each speaker’s data and plotting shétseFigure 10 illus-
trates some of the differences between two speakers chasbnafrbitrarily from
our data set, showing that the estimated effects of vareatsifes are quite different
for the two speakers. For example, the estimated error nareases dramatically
for speaker fskt60682b as mean pitch increases, while speaked§@82b shows
almost no effect of pitch. Similar kinds of variability apgrein the rest of the data
set in both systems and for many of the features we examindtbu#gh we do not
know whether these differences are statistically significdhey are certainly sug-
gestive that the effects of many features may vary condidetzetween speakers.

Since our models assume that features behave similarlgasmeakers, this sug-
gestion might cause some readers to question the validityioanalysis and con-
clusions. However, we emphasize that the trends we havelfaastill an accurate
reflection of the average behavior of the systems across d&uof speakers. Sta-
tistical analyses of complex data sets have always beetelinfiy the available
technology, and we can only hope to incrementally improveuuaerstanding of
the phenomena in question by making use of the best toolebiaat the time. The
mixed-effects models used here are a step up from previodsiwavhich speaker
differences were not modeled at all, and even correlati@t&éden features were
often ignored. As new statistical modeling tools becomelabke, we may be able
to further refine our understanding of speaker differenemsyever, it is already

1 Our largest model takes about an hour to fit on a 2.66 GHz watikst Introducing
more random effects would increase this time significaithg could create problems with
the accuracy of the final model fit as well.
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clear that, despite the speaker adaptation models used By#tems we analyzed,
speaker differences remain an important source of errorSRAnd an important
challenge for future research.

5 Conclusion

In this paper, we introduced thedividual word error rate(IWER) for measuring
ASR performance on individual words, including insertiaswell as deletions
and substitutions. Using IWER, we analyzed the effects @irgel variety of lex-
ical, disfluency, contextual, and prosodic features in tufteient ASR systems,
both individually and in a joint model. We found that despiifferences in the
overall performance of the two systems, the effects of tlutofa we examined
were extremely similar. In particular, our analysis reeebthe following effects.
(1) Words at the start of a turn have slightly higher IWER tlaaerage, and open
class (content) words have slightly lower IWER. Howevettydhe former effect
persists in both systems after accounting for the effectstioér factors. (2) Dis-
fluencies heavily impact error rates: IWER for non-final riggens and words pre-
ceding fragments rises by up to 14% absolute, while IWER falfiepetitions and
words following repetitions decreases by up to 5.4% absolfter accounting for
the effect of prosodic features, the latter benefit is negriyinated, and a negative
effect for words before filled pauses is revealed, sugggstiat the effects of these
disfluencies are normally obscured by the greater duratioearby words. (3) For
most acoustic-prosodic features (including pitch meanrande, intensity mean,
jitter, and speech rate) there is little effect on recogmifperformance over a range
of typical values, but errors increase for words with moré&r&xe values in one
or both directions (other factors being equal). The exoepis duration, for which
higher-than-average values yield the best performangéf{ér accounting for the
effects of other factors, both unigram and trigram probghbilave strong indepen-
dent effects on error rates, with the odds of an error inéngasearly linearly as
probability decreases. (5) The probability of misrecogmza word is only very
weakly correlated with the number of neighbors of that wastinflar-sounding
words), and is uncorrelated with the number of homophordEn(ical-sounding
words). However, these factors seem to be more importanhwbatextual cues
(language model probabilities) are insufficient to disagobite similar-sounding
words. (6) Although the factors we examined can accountdoresof the variance
in error rates between speakers, unexplained differenewsden speakers are still
a major factor in determining word error rates.

Our results have a number of implications for automatic speecognition. The
first concerns the role of disfluencies. About 15% of the wandsir conversational
telephone speech corpora are either disfluencies or adjardisfluencies, under-
scoring the importance of understanding how disfluenciesritute to error rates.
We find that in fact, only some types of disfluencies are prolbliec — specifi-

33



cally, fragments, non-final repetitions, and words preegdiiagments. These kinds
of words constitute about 4% of our corpora, but neverttseteaise a significant
number of errors due to their hugely inflated error rates efatogether, these re-
sults highlight the importance of continued research ofiudiacies for decreasing
recognition error rates in spontaneous speech, and alsalpra guide as to which
types of disfluencies might be more profitable to study.

Similarly, the fact that extreme prosodic values led to memers, as well as the

large individual differences we found, suggests that owrezu systems are not do-
ing a good job of adapting to prosodic variation within ancdbagnspeakers. Current
algorithms for speaker-adaptive training such as MLLR aiidlM, focused as they

are on cepstral values, are capable only of adjusting falsgealifferences in seg-

mental (phone) realization. While prosodic factors in geprocessing have tra-
ditionally been studied in the context of speech synthediser than speech recog-
nition, augmenting speaker-adaptive training to deal \pitbsodic variation may

require explicit representation of prosodic aspects ofsiheech signal in recogni-
tion.

Our results suggest not only that speaker variation is amitapt remaining source
of errors, but also provide at least a first step toward refjiine search for the pos-
sible locus of this variation. Even after accounting forgwdic factors like pitch,

intensity, and rate of speech, as well as language modelupoiation, and disflu-

ency factors, we found speaker differences to have a latgenraetermining error

rates. This shows that none of the other basic factors we ieeahis the crucial

source of speaker differences affecting recognition strBetter understanding of
speaker differences must remain a major direction for fitesearch.

Finally, our analysis of the random effect for word idenstyggests a new impor-
tant factor that increases error when a word is a memberddubly confusable
pair: a pair of similar-sounding words that can also occur in vsirpilar con-
texts. Such pairs include morphological substitutionsveen bare stem and past
tense (preterite) forms likask/asked, says/saidatch/watche@ndwant/wanted
or pairs that are homophones when reduced,thiea/andandhim/them Because
examples likehey ask himandthey asked hinare acoustically similar and simi-
larly grammatical, neither the acoustic model nor the laggumodel has sufficient
evidence to distinguish them.

One way to improve discrimination of these pairs in recagnimight be to build
sets of binary classifiers that are designed to disambigaiatetly these situations
when run as a rescoring procedure on lattice or confusiowar&toutput. For ex-
ample, ahim/thentlassifier might be able to make use of sophisticated natamal
guage features, such as coreferring singular or plural sthat occur elsewhere in
the discourse. A stem/preterite classifier could make useleérbial or other hints
about tense or aspect in the clause.
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Our results on these lexical effects may also have impbaoatifor the study of
human speech recognition. As we mentioned above, one of tst raplicated
studies in human speech recognition shows that humanscssithjave difficulty
recognizing similar-sounding words (Luce and Pisoni, 19d&vitch and Luce,
1999). This result has been modeled by proposing that retogof a target word
is affected by the number and frequency of similar-soungingls, the frequency-
weighted neighborhood density. But previous studies of dnumvord recognition
generally consist of isolated words. Our findings suggestbssibility that such
difficulties may disappear when words are presented in gbaritemost situations,
the context in which a word is spoken is sufficient to disarmabig between acous-
tically similar candidates, and indeed we saw that for ASRppetition from pho-
netically neighboring words is not usually a problem. lastewe suggest that dif-
ficulties in human word recognition in context are causedayotvords with large
numbers of similar neighbors, but by doubly confusablegaie., homophones
or neighbors with similar contextual predictability. Theect that our error analysis
of automatic speech recognition helped us to develop a hgget about human
speech recognition highlights the importance of the jointg of human and ma-
chine language processing.
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