
ACCEPTED TO THE IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, 2016 1

Unsupervised Word Segmentation and Lexicon
Discovery Using Acoustic Word Embeddings
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Abstract—In settings where only unlabelled speech data is
available, speech technology needs to be developed without
transcriptions, pronunciation dictionaries, or language modelling
text. A similar problem is faced when modelling infant language
acquisition. In these cases, categorical linguistic structure needs
to be discovered directly from speech audio. We present a novel
unsupervised Bayesian model that segments unlabelled speech
and clusters the segments into hypothesized word groupings.
The result is a complete unsupervised tokenization of the input
speech in terms of discovered word types. In our approach, a
potential word segment (of arbitrary length) is embedded in a
fixed-dimensional acoustic vector space. The model, implemented
as a Gibbs sampler, then builds a whole-word acoustic model in
this space while jointly performing segmentation. We report word
error rates in a small-vocabulary connected digit recognition
task by mapping the unsupervised decoded output to ground
truth transcriptions. The model achieves around 20% error rate,
outperforming a previous HMM-based system by about 10%
absolute. Moreover, in contrast to the baseline, our model does
not require a pre-specified vocabulary size.

Index Terms—unsupervised speech processing, word discovery,
speech segmentation, word acquisition, unsupervised learning.

I. INTRODUCTION

GREAT advances have been made in speech recognition in
the last few years. However, most of these improvements

have come from supervised techniques, relying on large corpora
of transcribed speech audio data, texts for language modelling,
and pronunciation dictionaries. For under-resourced languages,
only limited amounts of these resources are available. In the
extreme zero-resource case, only raw speech audio is available
for system development. In this setting, unsupervised methods
are required to discover linguistic structure directly from audio.
Similar techniques are also necessary to model how infants
acquire language from speech input in their native language.

Researchers in the speech processing community have
recently started to use completely unsupervised techniques
to build zero-resource technology directly from unlabelled
speech data. Examples include the query-by-example systems
of [1]–[4], and the unsupervised term discovery (UTD) systems
of [5], [6], which aim to find repeated words or phrases in
a speech collection. Few studies, however, have considered
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an unsupervised system able to perform a full-coverage
segmentation of speech into word-like units—the goal of this
paper. Such a system would perform fully unsupervised speech
recognition, allowing downstream applications, such as query-
by-example search and speech indexing (grouping together
related utterances in a corpus), to be developed in a manner
similar to when supervised systems are available.

Another community that would have significant interest in
such a system is the scientific cognitive modelling community.
Here, researchers are interested in the problems faced during
early language learning: infants have to learn phonetic cate-
gories and a lexicon for their native language using speech
audio as input [7]. In this community, unsupervised models have
been developed that perform full-coverage word segmentation
of data into a sequence of words, proposing word boundaries
for the entire input. However, these models take transcribed
symbol sequences as input, rather than continuous speech [8].

A few recent studies [9]–[12], summarized in detail in Sec-
tion II-C, share our goal of full-coverage speech segmentation.
Most of these follow an approach of phone-like subword
discovery with subsequent or joint word discovery, working
directly on the frame-wise acoustic speech features.

The model we present is a novel Bayesian model that jointly
segments speech data into word-like segments and then clusters
these segments, each cluster representing a discovered word
type.1 Instead of operating directly on acoustic frames, our
model uses a fixed-dimensional representation of whole seg-
ments: any potential word segment of arbitrary length is mapped
to a fixed-length vector, its acoustic embedding. Because the
model has no subword level of representation and models whole
segments directly, we refer to the model as segmental.2 Using
these fixed-dimensional acoustic embeddings, we extend the
Bayesian segmentation model of Goldwater et al. [8] (which
took symbolic input) to the continuous speech domain. In an
evaluation on an unsupervised digit recognition task using
the TIDigits corpus, we show that our model outperforms the
unsupervised HMM-based model of Walter et al. [11], without
specifying the vocabulary size and without relying on a UTD
system for model initialization.

The main contribution of this work is to introduce a novel
segmental Bayesian model for unsupervised segmentation and
clustering of speech into hypothesized words—an approach

1‘Word type’ refers to distinct words, i.e. the entries in a lexicon, while
‘word token’ refers to different realizations of a particular word.

2 ‘Segmental’ is used here, as in [13], to distinguish approaches operating on
whole units of speech from those doing frame-wise modelling. This is different
from the traditional linguistic usage of ‘segment’ to refer to phone-sized units.
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which is distinct from any presented before. Our preliminary
work in this direction was presented in [14]. Here we present
a complete mathematical description of the model and much
more extensive experiments and discussion. In particular, we
provide a thorough analysis of the discovered structures and
model errors, investigate the effects of model hyperparameters,
and discuss the challenges involved in scaling our approach to
larger-vocabulary tasks.

II. RELATED WORK

In the following we describe relevant studies from both the
speech processing and cognitive modelling communities.

A. Discovery of words in speech

Unsupervised term discovery (UTD), sometimes referred to
as ‘lexical discovery’ or ‘spoken term discovery’, is the task
of finding meaningful repeated word- or phrase-like patterns in
raw speech audio. Most state-of-the-art UTD systems are based
on the seminal work of Park and Glass [5], who proposed a
method to find pairs of similar audio segments and then cluster
them into hypothesized word types. The pattern matching
step uses a variant of dynamic time warping (DTW) called
segmental DTW, which allows similar sub-sequences within
two vector time series to be identified, rather than comparing
entire sequences as in standard DTW. Follow-up work has
built on Park and Glass’ original method in various ways, for
example through improved feature representations [1], [2] or
by greatly improving its efficiency [6].

Like our own system, many of these UTD systems operate
on whole-word representations, with no subword level of
representation. However, each word is represented as a vector
time series with variable dimensionality (number of frames),
requiring DTW for comparisons. Since our own system uses
fixed-dimensional word representations, we can define an
acoustic model over these embeddings and make comparisons
without requiring any alignment. In addition, UTD systems
aim to find and cluster repeated, isolated acoustic segments,
leaving much of the input data as background. In contrast, we
aim for full-coverage segmentation of the entire speech input
into hypothesized words.

B. Word segmentation of symbolic input

Cognitive scientists have long been interested in how infants
learn to segment words and discover the lexicon of their native
language, with computational models seen as one way to specify
and test particular theories (see [7], [8] for reviews). In this
community, most computational models of word segmentation
perform full-coverage segmentation of the data into a sequence
of words. However, these models generally take phonemic or
phonetic strings as input, rather than continuous speech.

Early word segmentation approaches using phonemic input
include those based on transition probabilities [15], neural net-
works [16] and probabilistic models [17]. The model presented
here is based on the non-parametric Bayesian approach of
Goldwater et al. [8], which was shown to yield more accurate
segmentations than previous work. Their approach learns a

language model over the tokens in its inferred segmentation,
incorporating priors that favour predictable word sequences and
a small vocabulary.3 The original method uses a Gibbs sampler
to sample individual boundary positions; our own sampler is
based on the later work of Mochihashi et al. [18] who presented
a blocked sampler that uses dynamic programming to resample
the segmentation of a full utterance at once.

Goldwater et al.’s original model assumed that every instance
of a word is represented by the same sequence of phonemes;
later studies [19]–[21] proposed noisy-channel extensions in
order to deal with variation in word pronunciation. Our model
can also be viewed as a noisy-channel extension to the original
model, but with a different type of channel model. In [19]–
[21], variability is modeled symbolically as the conditional
probability of an output phone given the true phoneme (so the
input to the models is a sequence or lattice of phones), whereas
our channel model is a true acoustic model (the input is the
speech signal). As in the phonetic noisy channel model of [20],
we learn the language model and channel model jointly.

C. Full-coverage segmentation of speech

We highlight four recent studies that share our goal of full-
coverage word segmentation of speech.

Sun and Van hamme [9] developed an approach based on
non-negative matrix factorization (NMF). NMF is a technique
which allows fixed-dimensional representations of speech
utterances (typically co-occurrence statistics of acoustic events)
to be factorized into lower-dimensional parts, corresponding
to phones or words [22]. To capture temporal information,
Sun and Van hamme [9] incorporated NMF in a maximum
likelihood training procedure for discrete-density HMMs. They
applied this approach to an 11-word unsupervised connected
digit recognition task using the TIDigits corpus. They learnt 30
unsupervised HMMs, each representing a discovered word type.
They found that the discovered word clusters corresponded
to sensible words or subwords: average cluster purity was
around 85%. Although NMF itself relies on a fixed-dimensional
representation (as our system does) the final HMMs of their
approach still perform frame-by-frame modelling (as also in
the studies below). Our approach, in contrast, operates directly
on a fixed-dimensional representation of speech segments.

Chung et al. [10] used an HMM-based approach which
alternates between subword and word discovery. Their system
models discovered subword units as continuous-density HMMs
and learns a lexicon in terms of these units by alternating
between unsupervised decoding and parameter re-estimation.
For evaluation, the output from their unsupervised system
was compared to the ground truth transcriptions and every
discovered word type was mapped to the ground truth label
that resulted in the smallest error rate. This allowed their system
to be evaluated in terms of unsupervised WER; on a four-hour
Mandarin corpus with a vocabulary size of about 400, they
achieved WERs around 60%.

3They experimented with learning either a unigram or bigram language
model, and found that the proposed boundaries of both models were very
accurate, but the unigram model proposed too few boundaries.
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Lee et al. [12, Ch. 3], [23] developed a non-parametric
hierarchical Bayesian model for full-coverage speech segmen-
tation. Using adaptor grammars (a generalized framework for
defining such Bayesian models), an unsupervised subword
acoustic model developed in earlier work [24] was extended
with syllable and word layers, as well as a noisy channel
model for capturing phonetic variability in word pronunciations.
When applied to speech from single speakers in the MIT
Lecture corpus, most of the words with highest TF-IDF scores
were successfully discovered, and Lee et al. showed that joint
modelling of subwords, syllables and words improved term
discovery performance. In [23], although unsupervised WER
was not reported, the full-coverage segmentation of the system
was evaluated in terms of word boundary F -score. As in these
studies, we also follow a Bayesian approach. However, our
model operates directly at the whole-word level instead of
having a hierarchy of layers from words down to acoustic
features. In addition, we evaluate on a small-vocabulary multi-
speaker corpus rather than large-vocabulary single-speaker data.

The work that is most directly comparable to our own is
that of Walter et al. [11]. They developed a fully unsupervised
system for connected digit recognition, also using the TIDigits
corpus. As in [10], they followed a two-step iterative approach
of subword and word discovery. For subword discovery, speech
is partitioned into subword-length segments and clustered based
on DTW similarity. For every subword cluster, a continuous-
density HMM is trained. Word discovery takes as input the
subword tokenization of the input speech. Every word type is
modelled as a discrete-density HMM with multinomial emission
distributions over subword units, accounting for noise and
pronunciation variation. HMMs are updated in an iterative
procedure of parameter estimation and decoding. Eleven of the
whole-word HMMs were trained, one for each of the digits in
the corpus. Using a random initialization, their system achieved
an unsupervised WER of 32.1%; using UTD [5] to provide
initial word identities and boundaries, 18.1% was achieved. In
a final improvement, the decoded output was used to train from
scratch standard continuous-density whole-word HMMs. This
led to further improvements by leveraging the well-developed
HMM tools used for supervised speech recognition.

This study of Walter et al. shows that unsupervised multi-
speaker speech recognition on a small-vocabulary task is
possible. It also provides useful baselines on a standard dataset,
and gives a reproducible evaluation method in terms of the
standard WER. Our model is comparable to Walter et al.’s
word discovery system before the refinement using a traditional
HMM-GMM recognizer. We therefore use the results they
obtained before refinement as baselines in our experiments. It
would be possible to apply the same refinement step to our
model, but we have not done so here.

Most of the above studies perform explicit subword mod-
elling, while our approach operates on fixed-dimensional
embeddings of whole-word segments. We do not argue that
the latter is necessarily superior, but rather see our approach
as a new contribution; direct whole-word modelling has both
advantages and disadvantages. On the positive side, it is often
easier to identify cross-speaker similarities between words than
between subwords [25], which is why most UTD systems focus

on longer-spanning patterns. And from a cognitive perspective,
there is evidence that infants are able to segment whole words
from continuous speech before phonetic contrasts in their
native language have been fully learned [26], [27]. On the
other hand, direct whole-word modelling in our approach
makes it more difficult to explicitly include intermediate
modelling layers (phones, syllables, morphemes) as Lee et
al. did. Furthermore, our whole-word approach is completely
reliant on the quality of the embeddings; in Section V we show
that the embedding function we use deals poorly with short
segments. Improved embedding techniques are the subject of
current research [28] and it would be straightforward to replace
the current embedding approach with any other (including one
that incorporates subword modelling).

III. THE SEGMENTAL BAYESIAN MODEL

In our approach, any potential word segment (of arbitrary
length) is mapped to a vector in a fixed-dimensional space RD.
The goal of this acoustic word embedding procedure is that
word instances of the same type should lie close together in this
space. The different hypothesized word types are then modelled
in this D-dimensional space using a Gaussian mixture model
(GMM) with Bayesian priors. Every mixture component of the
GMM corresponds to a discovered type; the component mean
can be seen as an average embedding for that word. However,
since the model is unsupervised, we do not know the identities
of the true word types to which the components correspond.

Assume for the moment such an ideal GMM exists. This
Bayesian GMM is the core component in our overall approach,
which is illustrated in Fig. 1(a). Given a new unsegmented
unlabelled utterance of acoustic feature frames y1:M =
y1,y2, . . . ,yM , the aim is to hypothesize where words start
and end in the stream of features, and to which word type
(GMM mixture component) every word segment belongs. Given
a proposed segmentation hypothesis (Fig. 1(a) bottom), we can
calculate the acoustic embedding vector for every proposed
word segment (Fig. 1(a) middle), calculate a likelihood score
for each embedding under the current GMM (Fig. 1(a) top), and
obtain an overall score for the current segmentation hypothesis.
The aim then is to find the optimal segmentation under the
current GMM, which can be done using dynamic programming.
In our model, we sample a likely segmentation with a dynamic
programming Gibbs sampling algorithm using the probabilities
we obtain from the Bayesian GMM. The result is a complete
segmentation of the input utterance and a prediction of the
component to which every word segment belongs.

In our actual model, the Bayesian GMM is built up jointly
while performing segmentation: the GMM provides the likeli-
hood terms required for segmentation, while the segmentation
hypothesizes the boundaries for the word segments which
are then clustered using the GMM. The GMM (details in
Section III-B) can thus be seen as an acoustic model which
discovers the underlying word types of a language, while the
segmentation component (Section III-C) discovers where words
start and end. Below we provide complete details of the model.
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Fig. 1. (a) Overview of the segmental Bayesian model for unsupervised segmentation and clustering of speech. (b) The graphical model of the Bayesian
Gaussian mixture model with fixed spherical covariance used as acoustic model.

A. Fixed-dimensional representation of speech segments

Our model requires that any acoustic speech segment in
an utterance be embedded in a fixed-dimensional space. In
principle, any approach that is able to map an arbitrary-length
vector time series to a fixed-dimensional vector can be used.
Based on previous results, we follow the embedding approach
developed by Levin et al. [29], as summarized below.

The notation Y = y1:T is used to denote a vector time series,
where each yt is the frame-level acoustic features (e.g. MFCCs).
We need a mapping function f(Y ) that maps time series Y into
a space RD in which proximity between mappings indicates
similar linguistic content, so embeddings of word tokens of
the same type will be close together. In [29], the mapping f is
performed as follows. For a target speech segment, a reference
vector is constructed by calculating the DTW alignment cost
to every exemplar in a reference set Yref = {Yi}Nref

i=1. Applying
dimensionality reduction to the reference vector yields the
embedding in RD. Dimensionality reduction is performed using
Laplacian eigenmaps [30].

Intuitively, Laplacian eigenmaps tries to find an optimal non-
linear mapping such that the k-nearest neighbouring speech
segments in the reference set Yref are mapped to similar regions
in the target space RD. To embed an arbitrary segment Y
which is not an element of Yref, a kernel-based out-of-sample
extension is used [31]. This performs a type of interpolation
using the exemplars in Yref that are similar to target segment Y .

In all experiments we use a radial basis function kernel:

K(Yi, Yj) = exp

{
− [DTW(Yi, Yj)]

2

2σ2
K

}
(1)

where DTW(Yi, Yj) denotes the DTW alignment cost between
segments Yi and Yj , and σK is the kernel width parameter.
In [31], it was shown that the optimal projection to the jth

dimension in the target space is given by

hj(Y ) =

Nref∑
i=1

α
(j)
i K(Yi, Y ) (2)

The α(j)
i terms are the solutions to the generalized eigenvector

problem (LK+ ξI)α = λKα, with L the normalized graph
Laplacian, K the Gram matrix with elements Kij = K(Yi, Yj)
for Yi, Yj ∈ Yref, and ξ a regularization parameter. An arbitrary
speech segment Y is then mapped to the embedding x ∈ RD
given by x = f(Y ) = [h1(Y ), h2(Y ), . . . , hd(Y )]

T.

We have given only a brief outline of the embedding method
here; complete details can be found in [29]–[31].

B. Acoustic modelling: discovering word types

Given a segmentation hypothesis of a corpus (indicating
where words start and end), the acoustic model needs to
cluster the hypothesized word segments (represented as fixed-
dimensional vectors) into groups of hypothesized word types.
Note again that acoustic modelling is performed jointly with
word segmentation (next section), but here we describe the
acoustic model under the current segmentation hypothesis.
Formally, given the embedded word vectors X = {xi}Ni=1

from the current segmentation hypothesis, the acoustic model
needs to assign each vector xi to one of K clusters.

We choose for the acoustic model a Bayesian GMM with
fixed spherical covariance. This model treats its mixture
weights and component means as random variables rather
than point estimates as is done in a regular GMM. In [32] we
showed that the Bayesian GMM performs significantly better
in clustering word embeddings than a regular GMM trained
with expectation-maximization. The former also fits naturally
within the sampling framework of our complete model.

The Bayesian GMM is illustrated in Fig. 1(b). For each ob-
served embedding xi, latent variable zi indicates the component
to which xi belongs. The prior probability that xi belongs to
component k is πk = P (zi = k). Given zi = k, xi is generated
by the kth Gaussian mixture component with mean vector
µk. All components share the same fixed covariance matrix
σ2I; preliminary experiments, based on [32], indicated that it
is sufficient to only model component means while keeping
covariances fixed. Formally, the model is then defined as:

π ∼ Dir (a/K1) (3)
zi ∼ π (4)

µk ∼ N (µ0, σ
2
0I) (5)

xi ∼ N (µzi , σ
2I) (6)

We use a symmetric Dirichlet prior in (3) since it is conjugate
to the categorical distribution in (4) [33, p. 171], and a spherical-
covariance Gaussian prior in (5) since it is conjugate to the
Gaussian distribution in (6) [34]. We use β = (µ0, σ

2
0 , σ

2) to
denote all the hyperparameters of the mixture components.

Given X , we infer the component assignments z =
(z1, z2, . . . , zN ) using a collapsed Gibbs sampler [35]. Since
we chose conjugate priors, we can marginalize over π and
{µk}Kk=1 and only need to sample z. This is done in turn
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for each zi conditioned on all the other current component
assignments:

P (zi = k|z\i,X ; a,β)
∝ P (zi = k|z\i; a)p(xi|X\i, zi = k, z\i;β) (7)

where z\i is all latent component assignments excluding zi
and X\i is all embedding vectors apart from xi.

By marginalizing over π, the first term on the right hand
side of (7) can be calculated as:

P (zi = k|z\i; a) =
Nk\i + a/K

N + a− 1
(8)

where Nk\i is the number of embedding vectors from mixture
component k without taking xi into account [36, p. 843]. This
term can be interpreted as a discounted unigram language
modelling probability. Similarly, it can be shown that by
marginalizing over µk, the second term

p(xi|X\i, zi = k, z\i;β) = p(xi|Xk\i;β) (9)

is the posterior predictive of xi for a Gaussian distribution
with known spherical covariance and a conjugate prior over
its means, which is itself a spherical covariance Gaussian
distribution [34]. Here, Xk\i is the set of embedding vectors
assigned to component k without taking xi into account.
Since the multivariate distributions in (5) and (6) have known
spherical covariances, the probability density function (PDF)
of the multivariate posterior predictive simply decomposes into
the product of univariate PDFs; for a single dimension xi of
vector xi, this PDF is given by

p(xi|Xk\i) = N (xi|µNk\i , σ
2
Nk\i

+ σ2) (10)

where

σ2
Nk\i

=
σ2σ2

0

Nk\iσ2
0 + σ2

, µNk\i = σ2
Nk\i

(
µ0

σ2
0

+
Nk\ixk\i

σ2

)
(11)

and xk\i is component k’s sample mean for this dimension [34].
Although we use a model with a fixed number of components

K, Bayesian models that marginalize over their parameters
have been shown to prefer sparser solutions than maximum-
likelihood models with the same structure [37]. Thus, our
Bayesian GMM tends towards solutions where most of the
data are clustered into just a few components, and we can find
good minimally constrained solutions by setting K to be much
larger than the expected true number of types and letting the
model decide how many of those components to use.

C. Joint segmentation and clustering

The acoustic model of the previous section can be used to
cluster existing segments. Our joint segmentation and clustering
system works by first sampling a segmentation of the current
utterance based on the current acoustic model (marginalizing
over cluster assignments for each potential segment), and then
resampling the clusters of the newly created segments. The
inference algorithm is a blocked Gibbs sampler using dynamic
programming, based on the work of Mochihashi et al. [18].

More formally, given acoustic data {si}Si=1, where every
utterance si consists of acoustic frames y1:Mi

, we need to

hypothesize word boundary locations and a word type (mixture
component) for each hypothesized segment. X (si) denotes the
embedding vectors under the current segmentation for utterance
si. Pseudo-code for the blocked Gibbs sampler, which samples
a segmentation utterance-wide, is given in Fig. 2. An utterance
si is randomly selected; the embeddings from the current
segmentation X (si) are removed from the Bayesian GMM; a
new segmentation is sampled; and finally the embeddings from
this new segmentation are added back into the Bayesian GMM.

For each utterance si a new set of embeddings X (si)
is sampled in line 6 of Fig. 2. This is done using the
forward filtering backward sampling dynamic programming
algorithm [38]. Forward variable α[t] is defined as the density
of the frame sequence y1:t, with the last frame the end of
a word: α[t] , p(y1:t|h−). The embeddings and component
assignments for all words not in si, and the hyperparameters
of the GMM, are denoted as h− = (X\s, z\s; a,β). To derive
recursive equations for α[t], we use a variable qt to indicate
the number of acoustic observation frames in the hypothesized
word that ends at frame t: if qt = j, then yt−j+1:t is a word.
The forward variables can then be recursively calculated as:

α[t] = p(y1:t|h−) =
t∑

j=1

p(y1:t, qt = j|h−)

=

t∑
j=1

p(yt−j+1:t|h−)p(y1:t−j , qt = j|h−)

=

t∑
j=1

p(yt−j+1:t|h−)α[t− j] (12)

starting with α[0] = 1 and calculating (12) for 1 ≤ t ≤M − 1.
The p(yt−j+1:t|h−) term in (12) is the value of a joint PDF

over acoustic frames yt−j+1:t. In a frame-based supervised
setting, this term would typically be calculated as the product
of the PDF values of a GMM (or prior-scaled posteriors of a
deep neural network) for the frames involved. However, we
work at a whole-word segment level, and our acoustic model
is defined over a whole segment, which means we need to
define this term explicitly. Let x′ = f(yt−j+1:t) be the word
embedding calculated on the acoustic frames yt−j+1:t (the
hypothesized word). We then treat the term as:

p(yt−j+1:t|h−) ,
[
p
(
x′|h−

)]j
(13)

1: Choose an initial segmentation (e.g. random).
2: for j = 1 to J do . Gibbs sampling iterations
3: for i = randperm(1 to S) do . Select utterance si
4: Remove embeddings X (si) from acoustic model.
5: Calculate α’s using (12).
6: Draw X (si) by sampling word boundaries using (15).
7: for embedding xi in newly sampled X (si) do
8: Sample zi for embedding xi using (7).
9: end for

10: end for
11: end for

Fig. 2. Gibbs sampler for word segmentation and clustering of speech.
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Thus, as in the frame-based supervised case, each frame is
assigned a PDF score. But instead of having a different PDF
value for each frame, all j frames in the segment yt−j+1:t

are assigned the PDF value of the whole segment under the
current acoustic model. Another interpretation is to see j as a
language model scaling factor, used to combine the continuous
embedding and discrete unigram spaces. In initial experiments
we found that without this factor, severe over-segmentation
occurred. The marginal term in (13) can be calculated as:

p(x′|h−) =
K∑
k=1

p(x′, zh = k|X\h, z\h; a,β)

=

K∑
k=1

P (zh = k|z\h; a)p(x′|Xk\h;β) (14)

The two terms in (14) are provided by the Bayesian GMM
acoustic model, as given in equations (8) and (9), respectively.

Once all α’s have been calculated, a segmentation can be
sampled backwards [18]. Starting from the final positition
t =M , we sample the preceding word boundary position using

P (qt = j|y1:t, h
−) ∝ p(yt−j+1:t|h−)α[t− j] (15)

We calculate (15) for 1 ≤ j ≤ t and sample while t− j ≥ 1.
Fig. 2 gives the complete sampler for our model, showing

how segmentation and clustering of speech is performed jointly.
The inner part of Fig. 2 is also illustrated in Fig. 1(a): lines 4
to 6 perform word segmentation which proceeds from top
to bottom in Fig. 1(a), while lines 7 to 9 perform acoustic
modelling which proceeds from bottom to top.

D. Iterating the model

As explained in Section III-A, the fixed-dimensional embed-
ding extraction relies on a reference set Yref. In [29], this set was
composed of true word segments. In this unsupervised setting,
we do not have such a set. We therefore start with exemplars
extracted randomly from the data. Using this set, we extract
embeddings and then run our sampler in an unconstrained
setup where it is free to discover an order of magnitude more
clusters than the true number of word types. From the biggest
clusters discovered in this first iteration (those that cover 90%
of the data), we extract a new exemplar set, which is used to
recalculate embeddings. We repeat this procedure for a number
of iterations, resulting in a refined exemplar set Yref.

IV. EXPERIMENTS

A. Evaluation setup

We evaluate using the TIDigits connected digit corpus [39],
which has a vocabulary of 11 English digits: ‘oh’ and ‘zero’
through ‘nine’. Using this simple small-vocabulary task, we
are able to thoroughly analyze the discovered units and report
results on the same corpus as several previous unsupervised
studies [9], [11], [40], [41]. In particular, we use the recent
results of Walter et al. [11] as baselines in our own experiments.

TIDigits consists of an official training set with 112 speakers
(male and female) and 77 digit sequences per speaker, and a
comparable test set. Each set contains about 3 hours of speech.

Our model is unsupervised, which means that the concepts of
training and test data become blurred. We run our model on
both sets separately—in each case, unsupervised modelling and
evaluation is performed on the same set. To avoid confusion
with supervised regimes, we relabel the official TIDigits training
set as ‘TIDigits1’ and the test set as ‘TIDigits2’. TIDigits1
was used during development for tuning hyperparameters (see
Section IV-B); TIDigits2 was treated as unseen final test set.

For evaluation, the unsupervised decoded output of a system
is compared to the ground truth transcriptions. From this
comparison a mapping matrix G is constructed: Gij is the
number of acoustic frames that are labelled as digit i in the
ground truth transcript and labelled as discovered word type j
by the model. We then use three quantitative evaluation metrics:

• Average cluster purity: Every discovered word type (cluster)
is mapped to the most common ground truth digit in that
cluster, given by i′ = argmaxiGij for cluster j. Average
purity is then defined as the total proportion of the correctly
mapped frames:

∑
j maxiGij/

∑
i,j Gij . If the number of

discovered types is more than the true number of types,
more than one cluster may be mapped to a single ground
truth type (i.e. a many-to-one mapping, as in [9]).

• Unsupervised WER: Discovered types are again mapped,
but here at most one cluster is mapped to a ground truth
digit [11]. By then aligning the mapped decoded output
from a system to the ground truth transcripts, we calculate
WER = S+D+I

N , with S the number of substitutions, D
deletions, I insertions, and N the tokens in the ground truth.
In cases where the number of discovered types is greater
than the true number, some clusters will be left unassigned
and counted as errors.

• Word boundary F -score: By comparing the word boundary
positions proposed by a system to those from forced
alignments of the data (falling within 40 ms), we calculate
word boundary precision and recall, and report the F -scores.

We consider two system initialization strategies, which were
also used in [11]: (i) random initialization; and (ii) initialization
from a separate UTD system. In the UTD condition, the
boundary positions and cluster assignments for the words
discovered by a UTD system can be used. Walter et al. used
both the boundaries and assignments, while we use only the
boundaries for initialization (we didn’t find any gain by using
the cluster identities as well). We use the UTD system of [6].

As mentioned in Section II-C, Walter et al. constrained their
system to only discover 11 clusters (the true number). For our
model we consider two scenarios: (i) in the constrained setting,
we fix the number of components of the model to K = 15;
(ii) in the unconstrained setting, we allow the model to discover
up to K = 100 clusters. For the first, we use K = 15 instead
of 11 since we found that more consistent performance is
achieved when allowing some variation in cluster discovery. In
the second setting, K = 100 allows the model to discover many
more clusters than the true number of types. Since the Bayesian
GMM is able to (and does) empty out some of its components
(not all 100 clusters need to be used) this represents the case
where we do not know vocabulary size upfront and the model
itself is required to find a suitable number of clusters.
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B. Model implementation and hyperparameters

The hyperparameters of our model are set mainly based on
previous work on other tasks [32]. However, some parameters
were changed by hand during development. These changes
were made based on performance on TIDigits1. Below, we
also note the changes we made from our own preliminary
work [14]. The hyperparameters we used in [14] led to far
less consistent performance over multiple sampling runs: WER
standard deviations were in the order of 9% absolute, compared
to the deviations of less than 1% that we obtain in Section IV-C.

For the acoustic model (Section III-B), we use the following
hyperparameters, based on [32], [34], [42]: all-zero vector
for µ0, a = 1, σ2 = 0.005, σ2

0 = σ2/κ0 and κ0 = 0.05.
Based on [29], [32] we use the following parameters for
the fixed-dimensional embedding extraction (Section III-A):
dimensionality D = 11, k = 30, σK = 0.04, ξ = 2.0 and
Nref = 8000. The embedding dimensionality for this small-
vocabulary task is less than that typically used for other larger-
vocabulary unsupervised tasks (e.g. D = 50 in [32]). In our
preliminary work on TIDigits [14], we used D = 15 with
Nref = 5000, but here we found that using D = 11 with
a bigger reference set Nref = 8000 gave more consistent
performance on TIDigits1. For embedding extraction, speech
is parameterized as 15-dimensional frequency-domain linear
prediction features [43] at a frame rate of 10 ms, and cosine
distance is used as similarity metric in DTW alignments.

As in [32], embeddings are normalized to the unit sphere.
We found that some embeddings were close to zero, causing
issues in the sampler. We therefore add low-variance zero-mean
Gaussian noise before normalizing: the standard deviation of
the noise is set to 0.05 · σE , where σE is the sample standard
deviation of all possible embeddings. Changing the 0.05 factor
within the range [0.01, 0.1] made little difference.

In Section III-D we explained that to find the reference
set Yref for embedding extraction, we start with exemplars
extracted randomly from the data, and then iteratively refine
the set by using the decoded output from our model. In the first
iteration we use Nref = 8000 random exemplars. In subsequent
iterations, we use terms from the biggest discovered clusters
that cover at least 90% of the data: we use the word tokens
with the highest marginal densities as given by (14) in each of
these clusters to yield 4000 discovered exemplars which we
use in addition to 4000 exemplars again extracted randomly
from the data, to give a total set of size Nref = 8000. We found
that performance was more consistent when still using some
random exemplars in Yref after the first iteration.

To make the search problem in Fig. 2 tractable, we require
potential words to be between 200 ms and 1 s in duration,
and we only consider possible word boundaries at 20 ms
intervals. By doing this, the number of possible embeddings
is greatly reduced. Although embedding comparisons are fast,
the calculation of the embeddings is not, and this is the main
bottleneck of our approach. In our implementation, all allowed
embeddings are pre-computed. The sampler can then look up a
particular embedding without the need to compute it on the fly.

To improve sampler convergence, we use simulated anneal-
ing [8], by raising the boundary probability in (15) to the

power 1
γ before sampling, where γ is a temperature parameter.

We also found that convergence is improved by first running
the sampler in Fig. 2 without sampling boundaries. In all
experiments we do this for 25 iterations. Subsequently, the
complete sampler is run for J = 25 Gibbs sampling iterations
with 5 annealing steps in which 1

γ is increased linearly from
0.01 to 1. In all cases we run 5 sampling chains in parallel [35],
and report average performance and standard deviations.

C. Results and analysis

Unconstrained model evaluation:
As explained, we use our model to iteratively rediscover the

embedding reference set Yref. Table I shows the performance
of the unconstrained segmental Bayesian model on TIDigits1
as the reference set is refined. Random initialization is used
throughout. Unconstrained modelling represents the most realis-
tic setting where vocabulary size is not known upfront. Standard
deviations were less than 0.3% absolute for all metrics.

Despite being allowed to discover many more clusters (up
to 100) than the true number of word types (11), the model
achieves a WER of 35.4% in the first iteration, which improves
to around 21% in iterations 3 and 4. Error rate increases slightly
in iteration 5. Cluster purity over all iterations is above 86.5%,
which is higher than the scores of around 85% reported by
Sun and Van hamme [9]. Word boundary F -scores are around
70% over all iterations. As mentioned, the Bayesian GMM is
biased not to use all of its 100 components. Despite this, none
of the models empty out any of their components. However,
most of the data is covered by only a few components: the
last row in Table I shows that in the first iteration, 90% of the
data is covered by the 20 biggest mixture components, while
this number drops to 13 clusters in subsequent iterations.

In order to analyze the type of errors that are made, we
visualize the mapping matrix G, which gives the number
of frames of overlap between the ground truth digits and
the discovered word types (Section IV-A). Fig. 3 shows the
mappings for the 15 biggest clusters of the unconstrained
models of iterations 3 and 5 of Table I, respectively.

Consider the mapping in Fig. 3(a) for iteration 3. Qualita-
tively we observe a clear correspondence between the ground
truth and discovered word types, which coincides with the
high average purity of 89.2%. Apart from cluster 66, all other
clusters overlap mainly with a single digit. Listening to cluster
66 reveals that most tokens correspond to [ay v] from the
end of the digit ‘five’ and tokens of [ay n] from the end of
the ‘nine’, both dominated by the diphthong. Correspondingly,
most of the tokens in cluster 14 are the beginning [f ay] of

TABLE I
PERFORMANCE OF THE UNCONSTRAINED SEGMENTAL BAYESIAN MODEL

ON TIDIGITS1 AS THE REFERENCE SET IS REFINED

Iteration 1 2 3 4 5

WER (%) 35.4 23.5 21.5 21.2 22.9

Avg. cluster purity (%) 86.5 89.7 89.2 88.5 86.6

Bound. F -score (%) 70.6 72.2 71.8 70.9 69.4

Clusters covering 90% 20 13 13 13 13
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Fig. 3. Mapping matrices between ground truth digits and discovered word types for (a) the third and (b) the fifth iteration unconstrained models in Table I.

‘five’, while cluster 92 is mainly the beginning [n ay] of ‘nine’.
The digit ‘eight’ is split across two clusters: cluster 51 mainly
contains ‘eight’ tokens where the final [t] is not pronounced,
while in cluster 89 the final [t] is explicitly produced.

Table I shows that performance deteriorates slightly in
iteration 5. By comparing Figures 3(a) and (b), the source
of the extra errors can be observed: overall the mapping in the
fifth iteration (b) looks similar to that of the third (a), except
the digit ‘five’ is now also partly covered by a third cluster
(73). This cluster mainly contains beginning portions of ‘five’
and ‘nine’, again dominated by the diphthong [ay]. Cluster 62
in this case mainly contains tokens of the fricative [f] from
‘five’. Note that both WER and boundary F -score penalize the
splitting of digits, although the discovered clusters correspond
to consistent partial words. Below we discuss this issue further.

One might suspect from the analysis in Fig. 3 that some of
the discovered word types are bi-modal, i.e. that when a single
component of the Bayesian GMM contains two different true
types (e.g. cluster 66 in Fig. 3(a), with tokens of both ‘five’
and ‘nine’), there might be two relatively distinct sub-clusters
of embeddings within that component. However, this is not
the case. Fig. 4 shows the embeddings of the discovered word
types for a single speaker from the model in iteration 3 of
Table I; embeddings are ordered and stacked by discovered type

Embedding dimensions
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Fig. 4. Embedding vectors for the discovered word types from a single speaker
for the iteration 3 unconstrained model in Table I. The greedy mapping from
discovered to true word type (for calculating WER) is given on the right; since
there are more clusters than digits, some clusters are left unmapped.

along the y-axis, with the embedding values coloured along
the x-axis. The embeddings for cluster 66 appear uni-modal,
despite containing both [ay v] and [ay n] tokens; yet they are
distinct from the embeddings in cluster 92 ([n ay] tokens) and
cluster 14 ([f ay]). This analysis suggests that the model is
finding sensible clusters given the embedding representation
it has, and to consistently improve results we would need to
focus on developing more discriminative embeddings.

Constrained model evaluation and comparison:
To compare with the discrete HMM-based system of Walter

et al. [11], we use the exemplar set discovered in iteration 3 of
Table I (using an unconstrained setup up to this point) and then
constrain the Bayesian segmental model to 15 components.
Table II shows WERs achieved on TIDigits1. Under random
initialization, the constrained segmental Bayesian model per-
forms 12.7% absolute better than the discrete HMM. When
using UTD for initialization, the discrete HMM does better by
1.3% absolute. The WER of the third-iteration unconstrained
model in Table I is repeated in the last row of Table II.
Despite only mapping 11 out of 100 clusters to true labels, this
unconstrained model still yields 10.6% absolute lower WER
than the randomly-initialized discrete HMM with the correct
number of clusters. By comparing rows 2 and 3, we observe
that there is only a 2.1% absolute gain in WER by constraining
the Bayesian model to a stricter number of types.

Generalization and hyperparameters:
As noted in Section IV-B, some development decisions were

made based on performance on TIDigits1. TIDigits2 was kept
as unseen data up to this point. Using the setup developed on
TIDigits1, we repeated exemplar extraction and segmentation
separately on TIDigits2. Three iterations of exemplar refinement
were used. Table III shows the performance of randomly-
initialized systems on both TIDigits1 and TIDigits2, with the

TABLE II
WER (%) ON TIDIGITS1 OF THE UNSUPERVISED DISCRETE HMM

SYSTEM OF WALTER ET AL. [11] AND THE SEGMENTAL BAYESIAN MODEL

Model Constrained Random init. UTD init.

Discrete HMM [11] yes 32.1 18.1
Segmental Bayesian yes 19.4± 0.3 19.4± 0.1

Segmental Bayesian no 21.5± 0.1 -
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TABLE III
PERFORMANCE OF THE BAYESIAN SEGMENTAL MODEL ON TIDIGITS1 AND TIDIGITS2, WITH RANDOM INITIALIZATION

Model
TIDigits1 (%) TIDigits2 (%)

WER Cluster purity Boundary F -score WER Cluster purity Boundary F -score

Constrained segmental Bayesian 19.4± 0.3 88.4± 0.06 70.6± 0.2 13.2± 1.0 91.2± 0.2 76.7± 0.7

Unconstrained segmental Bayesian 21.5± 0.1 89.2± 0.1 71.8± 0.2 17.6± 0.2 92.5± 0.1 77.6± 0.3
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Fig. 5. Mapping matrix between ground truth digits and discovered word
types for the constrained segmental Bayesian model in Table III on TIDigits2.

performance on TIDigits1 repeated from Table II.
Across all metrics, performance is better on TIDigits2 than

on TIDigits1: WERs drop by 6.2% and 3.9% absolute for the
constrained and unconstrained models, respectively; cluster pu-
rity improves by around 3% absolute; and boundary F -score is
higher by 6% absolute. To understand this discrepancy, consider
the mapping matrix in Fig. 5 for the constrained segmental
Bayesian model on TIDigits2 (13.2% WER, Table III). The
figure shows that every cluster is dominated by data from a
single ground truth digit. Furthermore, all digits apart from
‘eight’ are found in a single cluster. Now consider the mapping
in Fig. 3(a) for the unconstrained segmental Bayesian model
on TIDigits1 (giving the higher WER of 21.5%, Table III).
This mapping is similar to that of Fig. 5, apart from two digits:
both ‘five’ and ‘nine’ are split into two clusters, corresponding
to beginning and end partial words. Although these digits
are consistently decoded as the same sequence of clusters,
WER counts the extra clusters as insertion errors. These small
differences in the discovered word types results in a non-
negligible difference in WER between TIDigits1 and TIDigits2.

This analysis and our previous discussion of Fig. 3 indicate
that unsupervised WER is a particularly harsh measure of
unsupervised word segmentation performance: the model may
discover consistent units, but if these units do not coincide with
whole words, the system will be penalized. This is also the
case for word boundary F -score. Average cluster purity is less
affected since a many-to-one mapping is performed; Table III
shows that purity changes the least of the three metrics when
moving from TIDigits1 to TIDigits2.

In a final set of experiments, we considered the effect of
model hyperparameters. We found that performance is most
sensitive to changes in the maximum number of allowed
Gaussian components K and the component variance σ2. Fig. 6
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Fig. 6. WERs of the segmental Bayesian model on TIDigits1 as the number
of Gaussian components K and variance σ2 is varied (log-scale on x-axis).

shows the effect on WER when changing these hyperparameters.
Results are reasonably stable for σ2 in the range [0.0025, 0.02],
with WERs below 25%. When allowing many components
(K = 100) and using a small variance, as on the left of the
figure, fragmentation takes place with digits being separated
into several clusters. On the right side of the figure, where
large variances are used, a few garbage clusters start to capture
the majority of the data, leading to poor performance. The
figure also shows that lower WER could be achieved by using a
σ2 = 0.02 instead of 0.005 (which we used in the experiments
above, based on [32]). The reason for the three curves meeting
at this σ2 setting is that, for all three settings of K, more than
90% of the data are captured by only the 11 biggest clusters.

We similarly varied the target embedding dimensionality D
using a constrained setup (K = 15), as shown in Fig. 7. For
D = 6, garbage clusters start to capture the majority of the
tokens at lower settings of σ2 than for D = 11 and D = 20.
Much more stable performance is achieved in the latter two
cases. The slightly worse performance of the D = 20 setting
compared to the others is mainly due to a cluster containing
the diphthong [ay], which is present in both ‘five’ and ‘nine’.

V. CHALLENGES IN SCALING TO LARGER VOCABULARIES

We evaluated our system on a small-vocabulary dataset in
order to compare to previous work and to allow us to thoroughly
analyze the discovered structures. Our long-term aim (shared
by many of the researchers mentioned in Section II-C) is to
scale our system to more realistic multi-speaker corpora with
larger vocabularies. Here we discuss the challenges in doing so.

The fixed-dimensional embedding calculations are the main
bottleneck in our overall approach, since embeddings must
be computed for each of the very large number of potential
word segments. The embeddings also limit accuracy; one case
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Fig. 7. WERs of the segmental Bayesian model on TIDigits1 as the embedding
dimensionality D and variance σ2 is varied (log-scale on x-axis; K = 15).

in particular where the embedding function produces poor
embeddings is for very short speech segments. An example
is given in Fig. 8. The first embedding is from cluster 33 in
Fig. 4, which is reliably mapped to the digit ‘one’. The bottom
three embeddings are from short segments not overlapping with
the true digit ‘one’, with respective durations 20 ms, 40 ms
and 80 ms. Although these three speech segments have little
similarity to the segments in cluster 33, Fig. 8 shows that
their embeddings are a good fit to this cluster. This is possibly
due to the aggressive warping in the DTW alignment of these
short segments, together with artefacts from normalizing the
embeddings to the unit sphere. This failure-mode is easily dealt
with by setting a minimum duration constraint (Section IV-B),
but again shows our model’s reliance on accurate embeddings.

To scale to larger corpora, both the efficiency and accuracy of
the embeddings would therefore need to be improved (see [28]
for recent supervised efforts in this direction). More importantly,
the above discussion highlights a shortcoming of our approach:
the sampler considers potential word boundaries at any position,
without regard to the original acoustics or any notion of a
minimal unit. Many of the previous studies [11], [12], [23],
[44] use a first-pass method to find positions of high acoustic
change and then only allow word boundaries at these positions.
This implicitly defines a minimal unit: the pseudo-phones or
pseudo-syllables segmented in the first pass. By using such
a first-pass method in our system, the number of embedding
calculations would greatly be reduced and it would provide a
more principled way to deal with artefacts from short segments.

Another challenge when dealing with larger vocabularies is
the choice of the number of clusters K. An upper-bound of
K = 100, as we use for our unconstrained model, would not
be sufficient for realistic vocabularies. However, the Bayesian
framework would allow us to make our model non-parametric:
the Bayesian GMM could be replaced by an infinite GMM [45]
which infers the number of clusters automatically.

Finally, in this study we made a unigram word predictability
assumption (Section III-C) since the digit sequences do not
have any word-word dependencies. However, in a realistic
corpus, such dependencies will exist and could prove useful
(even essential) for segmentation and lexicon discovery. In par-
ticular, [20] showed that for joint segmentation and clustering of

Word embedding from cluster 33 (→ one)

Embedding dimensions

Embeddings close to the above (non-word segments)

Fig. 8. Four embeddings from the same speaker as in Fig. 4: the top one is
from cluster 33, the bottom three are from short non-word speech segments.

noisy phone sequences, a bigram model was needed to improve
clustering accuracy. Following [8], [18] it is mathematically
straightforward to extend the algorithm of Section III-C to
more complex language models. Exact computation of the
extended model will be slow (e.g. the bigram extension of
equation (14) requires marginalizing over the cluster assignment
of both the current and preceding embeddings) but we anticipate
that reasonable approximations will be possible (e.g. only
marginalizing over a handful of the most probable clusters).
The development of these extensions and approximations is an
important part of our future work on larger vocabularies.

VI. CONCLUSION

We introduced a novel Bayesian model, operating on
fixed-dimensional embeddings of speech, which segments
and clusters unlabelled continuous speech into hypothesized
word units—an approach which is very different from any
presented before. We applied our model to a small-vocabulary
digit recognition task and compared performance to a more
traditional HMM-based approach of a previous study. Our
model outperformed the baseline by more than 10% absolute in
unsupervised word error rate (WER), without being constrained
to a small number of word types (as the HMM was). Analysis
showed that our model is reliant on the whole-word fixed-
dimensional segment representation: when partial words are
consistently mapped to a similar region in embedding space,
the model proposes these as separate word types. Most of the
errors of the model were therefore due to consistent splitting of
particular digits into partial-word clusters, or separate clusters
for the same digit based on pronunciation variation. The
model, however, is not restricted to a particular embedding
method. Future work will investigate more accurate and efficient
embedding approaches and unsupervised language modelling.
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