
Vectors and their uses

Sharon Goldwater
Institute for Language, Cognition and Computation

School of Informatics, University of Edinburgh

DRAFT Version 0.95: 3 Sep 2015. Do not redistribute without permission.

This tutorial reviews the basics of vector arithmetic and gives a taste of some uses of
vectors in cognitive science, natural language processing (NLP), and maching learning. If
you’ve never seen vector arithmetic before and find the explanations here insufficient, there
are some good videos from Khan Academy that should give you a lot more intuition about
the relationship between the different ways of thinking about vectors, and what arithmetic
operations on vectors mean (though note that Khan writes vectors as columns rather than
rows as we do here).

If you want to watch the videos, the ones that cover roughly the material in this tutorial
(except Sections 4 and 6) are the first five videos (up to ‘Scaling Vectors’) that start here:
https://www.khanacademy.org/math/linear-algebra/vectors_and_spaces/
vectors/v/vector-introduction-linear-algebra
plus one additional video here:
https://www.khanacademy.org/math/linear-algebra/vectors_and_spaces/dot_
cross_products/v/vector-dot-product-and-vector-length.

1 Definition, notation, dimensionality

You may have learned that a VECTOR is a quantity with both magnitude and direction. While VECTOR

this is one way of defining a vector, here we follow a different (though compatible, as
we’ll see below) definition. We say that a vector is simply an ordered sequence of numbers,
normally denoted using square or round brackets, as in [1.0,2.3,−5.6] or (0,2).1

The number of items in the vector is also called its DIMENSIONALITY, for reasons that DIMENSIONALITY

will become clear. So [1.0,2.3,−5.6] is a 3-dimensional vector and (0,2) is a 2-dimensional
vector.

If you’ve seen vectors before, you may have used special notation for the variables that
refer to them, to distinguish from variables that refer to SCALARS (single numbers). For SCALARS

example, some people use an arrow or bar over a variable name to indicate that it refers to a
vector, as in

~x = (1.0,2.3,−5.6) (1)

or

x̄ = (1.0,2.3,−5.6) (2)

These are good for handwritten maths, but in computer science textbooks and articles it is
also common to see vectors denoted using bold variables, as in

x = (1.0,2.3,−5.6) (3)

1In linear algebra and parts of machine learning that make heavy use of linear algebra, you will also see

column vectors in which the numbers are stacked vertically, as in
[

0
2

]
. Here, we will just use row vectors.

1

All of these are simply conventions, and you will also sometimes see vectors referred to
using variables that don’t have any special “vector” notations.

2 Vectors as points in multidimensional space, vector length

A d-dimensional vector can be interpreted as a point in d-dimensional space, where the i’th
number in the vector corresponds to the coordinate along the i-th dimension in the space. For
example, if y = (1,3), we can locate y on a 2-dimensional plot at coordinates (1,3):

To recover the “magnitude and direction” view of vectors, we simply draw an arrow
from the origin (0,0) to the point y:

This arrow shows graphically both the MAGNITUDE (more commonly called LENGTH or MAGNITUDE
LENGTHNORM) and direction of y. Since this arrow representing y is the hypoteneuse of a triangle
NORMwith sides of length 1 and 3, its length is

√
12 +32 (computed using the Pythagorean formula).

More generally, the length of a d-dimensional vector z = (z1,z2, . . .zd) is written as ‖z‖ (or
sometimes just |z|) and is computed as:

‖z‖ =

√
d

∑
i=1

z2
i (4)

=
√

z2
1 + z2

2 + . . .z2
d (5)

The summation notation ∑ in (4) is simply a shorthand for what is spelled out in (5); if you
are uncomfortable with this notation please go through the Sums, Products, and Functions
tutorial.

2

3 Adding and subtracting vectors, multiplying by a scalar

Suppose x and y are two d-dimensional vectors, so x = (x1,x2, . . .xd) and y = (y1,y2, . . .yd).
To compute x+y, we simply add each dimension separately:

x+y = (x1 + y1, x2 + y2, . . .xd + yd) (6)

so (1,3,6)+(6,2,8) = (7,5,14).
Not surprisingly, we do the same for subtraction:

x−y = (x1− y1, x2− y2, . . .xd− yd) (7)

so (1,3,6)− (6,2,8) = (−5,1,−2).
Just as individual vectors can be interpreted geometrically, the addition of two vectors

can also be interpreted geometrically. Again, for simplicity, we will use two-dimensional
vectors. Let’s start with the same vector we used in our earlier example: y = (1,3) and add
to it the vector x = (2,−4). The answer we get from computing y+x using Eq 6 is (3,−1).
This is represented as the dotted arrow in the figure, with its head at (3,−1):

But notice that (3,−1) is also what we get by placing the arrow representing the mag-
nitude and direction of y with its tail at the origin (as we did earlier), and then placing the
arrow representing the magnitude and direction of x with its tail at the head of y. So, vector
addition can also be viewed as following the magnitude and direction of each of the summed
vectors in turn.

In this case, we placed the arrows in such a way as to represent y+ x. You should
convince yourself now that we would end up in the same location on the plot if we had
instead added x+y. As with scalar addition, vector addition is COMMUTATIVE: order doesn’t COMMUTATIVE

matter.
Warning: Vectors can only be added together if they have the same dimensionality!

Trying to add vectors of different dimensionality is not a legal or sensible operation.
Finally, we can multiply a vector x by a scalar a, which yields a vector with the same

direction as x but a magnitude which is a times as big. We do so by multiplying each element
separately:

ax = (ax1,ax2, . . .axd) (8)

For example, if x = (2,1) (solid arrow), then 2x = (4,2) (dashed arrow, which starts at
origin but is partly covered by the solid arrow) and −1.5x = (−3,−1.5) (dotted arrow):

3

4 Representing data using vectors

In machine learning, NLP, and cognitive science, one of the most common uses of vectors is
as a way of representing information. For example, each of the numbers in a vector might
correspond to the value of some particular FEATURE of an object. So, maybe we have a bowl FEATURE

of fruit, and we measure the width and height of each piece of fruit. We could then represent
each piece of fruit as a two-dimensional FEATURE VECTOR, in this case a (width, height) FEATURE VECTOR

vector.
Suppose there are a few different types of fruit—say, different varieties of oranges and

lemons.2 We also have a few different instances of each type. If we plot each of our (width,
height) measurements as a separate data point, we might find that the data points (each
representing a single piece of fruit) cluster into somewhat distinct groups, where each group
is a particular variety of orange or lemon:

In the figure, oranges and lemons are given different colors/shapes, but notice that even
within the oranges, there are a few distinct clusters; and similarly for the lemons. It turns out
that those clusters roughly coincide with the different varieties of oranges and lemons.

The example with oranges and lemons is very simple, but it illustrates an important point.
Different categories (here, varieties of fruit) often have different sets of properties (features).
By representing those properties as vectors of feature values, we may be able to distinguish
between different categories simply by looking at how the data points cluster together in
VECTOR SPACE. VECTOR SPACE

Of course, real problems are usually much more complex, and real data often has a much
larger number of features. Sometimes we don’t even know which features are relevant for the
categorization task we are working on. I won’t discuss that issue further here, but I will give

2This example, and the figure associated with it, are from the “oranges and lemons” data set here:
http://homepages.inf.ed.ac.uk/imurray2/teaching/oranges_and_lemons/, which has a more exten-
sive discussion of clustering and analysis of the data than I have here.

4

a slightly more realistic example to illustrate the use of feature vectors. This example deals
with the task of DOCUMENT CLUSTERING: given a set of documents, try to cluster them into DOCUMENT

CLUSTERINGgroups according to topic, for example politics or sport or travel.
For this task, each document can be represented as a single vector, where the features

in the vector are word counts. That is, each feature (dimension of the vector) represents a
particular word in the vocabulary, and the value of that feature is the number of times the
word appears in the document.

I’ll start with a simplified example, where the vocabulary is only ten words. Our document
vectors will represent (in order) the counts of each word:

the a and big small chased walked girl dog cat

Suppose we have two very short documents:

doc1 : the big cat chased the big girl and the dog

doc2 : a small girl walked a big dog

Then our vector representation of these documents would be:

v = (3,0,1,2,0,1,0,1,1,1)

w = (0,2,0,1,1,0,1,1,1,0) (9)

But now what? Remember, we are trying to find groups of documents that share a topic.
Intuitively, documents with a similar topic should use similar words, and therefore have
similar feature vectors. Just like the oranges and lemons, documents that have similar feature
vectors should be close together in the vector space we defined. So, what we need is a way to
measure distance between vectors. The next section discusses a few standard ways to do so.

5 Euclidean distance, dot product, cosine similarity

In the preceding sections, we saw that vectors can be interpreted geometrically as points in a
multi-dimensional space. So perhaps the most obvious way to measure the distance between
two vectors x and y is to consider the length of a straight line connecting the two points
representing x and y. This measure is known as the EUCLIDEAN DISTANCE, and is defined EUCLIDEAN

DISTANCEas

EucDist(x,y) =

√
d

∑
i=1

(xi− yi)2 (10)

To see where this equation comes from, let’s consider a two-dimensional example. Let
x = (−2,1) and y = (−3,−3). In this case, we can compute the distance between the two
points by constructing a right triangle whose legs are parallel to the axes of our space, and
whose hypotenuse is the distance we want to compute:

5

From the picture, we see that the lengths of the legs are |x1 − y1| and |x2 − y2|,
so we use the Pythagorean theorem to compute the length of the hypotenuse as√
(x1− y1)2 +(x2− y2)2 =

√
1+16 =

√
17.

The formula in (10) is simply a generalization of the two-dimensional case into multiple
dimensions. Based on our intuitions from two- and three-dimensional spaces, it would seem
to be a reasonable way to measure distance in a vector space. Unfortunately, our intuitions
from two- and three-dimensional spaces can be misleading when we are working with higher
dimensional spaces, and it turns out that Euclidean distance is often not the best way to
measure distances in high-dimensional space.3.

There are a lot of different alternative ways to measure distances, but I will just give
one commonly used one here. Before we define this metric, we first need to define the DOT

PRODUCT between two vectors x and y, written as x ·y:4 DOT PRODUCT

x ·y =
d

∑
i=1

xiyi (11)

That is, to get the dot product, we multiply together the values in each dimension in turn,
and add up all the results. For our example document vectors in (9), we’d get:

v ·w = 3 ·0+0 ·2+1 ·0+2 ·1+0 ·1+1 ·0+0 ·1+1 ·1+1 ·1+1 ·0
= 4 (12)

(where the dots on the righthand side indicate multiplication as you’ve always known it. As
with much notation in maths, you need to understand from context whether the dot is a dot
product of vectors, or just multiplication of two scalars.)

It should be clear that if xi and yi are both large (for text clustering, if both documents
have many occurrences of a particular word), then xiyi will be large, and contribute to a larger
dot product. Whereas if xi or yi is small, then xiyi will be relatively small, and will contribute
less to the dot product. So, the dot product between two documents will be largest if those
two documents contain a lot of words in common, and those shared words occur frequently in
both documents. Very roughly, then, vector pairs with large dot products indicate document
pairs with greater topic similarity, which is what we wanted from a similarity measure.

There are two problems with using the dot product as a similarity measure, however.
First, you might have noticed that in our example, the absence of a particular word from
both documents, i.e., having both xi and yi be small or zero, does not make any difference to
the dot product. But coinciding absences like this might actually be informative about the
similarity of documents. It turns out that for the particular problem of document clustering,
one of the best ways to deal with this issue is not by changing the distance (or similarity)
measure, but by changing the way the features are computed, so they aren’t just word counts.
However, I won’t go into that here; it’s better treated in an NLP or machine learning course.

The other problem is more straightforward to fix. Consider that documents may contain
different numbers of words. A long document will tend to have larger word counts in general
than a short document, simply because of its length. Put another way, a long document will
be represented by a long vector: one with a large magnitude. But a vector with larger word
counts overall will tend to look more similar to all other vectors, if dot product is our measure
of similarity.

As a simple example, consider a new document that just contains two copies of doc2,
so its feature vector is 2w. The dot product of this new document with v is 2(v ·w) (if you
don’t see why, write out the maths!). So, we got a bigger dot product just by making a longer
document that repeats the same words more often.

To get a more sensible measure of similarity that doesn’t depend on the document length
(or, more generally, on the magnitude of our feature vectors), we need to NORMALIZE each NORMALIZE

3StackExchange has a good discussion of this issue with a number of useful and interesting links:
http://stats.stackexchange.com/questions/99171/why-is-euclidean-distance-not-a-good-metric-in-high-dimensions

4As usual, there are other notations too: you may see 〈x,y〉 or, if using column vectors, xT y.

6

vector. That is, we divide each vector by its length so that all vectors end up with length
1 (UNIT LENGTH): they simply point to different locations on the surface of a sphere with UNIT LENGTH

radius 1 that is centered at the origin.
We already showed how to compute the length of the vector in Eq 4, so we use that

equation here to define the NORMALIZED DOT PRODUCT, which is also called the COSINE NORMALIZED DOT
PRODUCTSIMILARITY:
COSINE SIMILARITY

CosSim(x,y) =
x
‖x‖
· y
‖y‖

=
x ·y
‖x‖‖y‖

(13)

The reason this metric is called cosine similarity is because it turns out that the value
computed by Eq 13 is actually the cosine of the angle between x and y. So, for x = (−2,1)
and y = (−3,−3) (the same vectors we used in the Euclidean distance example), Eq 13 gives
the cosine of the angle shown below:

Recall that the cosine ranges from 1 (for an angle of 0◦) to -1 (for an angle of 180◦).
So, two vectors that are coincidental will have a cosine similarity of 1; two vectors that are
pointing in opposite directions will have a cosine similarity of -1; and two vectors that are
orthogonal (at 90◦) will have a cosine similarity of 0.

When just considering two-dimensional vectors, it isn’t obvious why this metric is
better than Euclidean distance, but for (some) high-dimensional data it can work better for
clustering and other machine learning applications. In addition, the concept of normalizing
vectors to unit length comes up in other contexts as well.

6 Interpretability of feature vectors, dimensionality reduction

As a final note, it’s worth pointing out that the different dimensions used to represent data
in multidimensional space are not always easily interpretable. In the examples above, I
said that the dimensions were used to represent width and height (for fruit) or number of
word occurrences (for documents). However, many modern machine learning methods take
interpretable vectors like these, which often have very high dimensionality,5 and perform
some mathematical tricks to greatly reduce the dimensionality while preserving, as much as
possible, the spatial relationships between the data points. In other words, points that are far
apart in the original space should be far apart in the reduced dimensional space, and those
that are close together in the original space should be close together in the reduced space.
The resulting vectors can represent nearly the same information as the original ones while

5If we are dealing with language, the natural dimensionality is the number of words in the vocabulary, which
can easily reach thousands or tens of thousands.

7

potentially having a number of benefits (such as requiring less computer memory to store,
and being less sensitive to features that are noisy or irrelevant to the problem). The downside
is that they are often less easy to interpret than the original vectors because the dimensions
no longer correspond neatly to obvious features of the data. I won’t go into dimensionality
reduction methods here—they are taught in most machine learning courses—but it’s good to
be aware that they exist.

If you are likely to be taking a course that covers dimensionality reduction, or want to
understand it better on your own, it’s very useful to have some background in linear algebra.
I have not looked in any detail at the content of the following linear algebra courses, but they
are both available for free online and are likely to cover what you will need (if not more):

• Khan Academy course on linear algebra:
https://www.khanacademy.org/math/linear-algebra

• Gilbert Strang’s linear algebra course on MIT OpenCourseWare:
http://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/

7 Exercises

1. For each vector, what is its dimension? What is its length?

(a) (3,4)

(b) (2,−1,4,0)

2. Compute ‖x‖ in each case.

(a) x = (7,3,−0.1)

(b) x = (2,−3,1,2)

3. What is the length of an n-dimensional vector with each dimension equal to 1?

4. Given x = (7,3,−0.1), compute the following:

(a) x+(−1,0.3,2)

(b) 3x
(c) x

2 − (0.5,−2,0)

5. For each pair of vectors x and y below, can you say whether the magnitude of x is
greater than, equal to, or less than the magnitude of y, without actually computing the
magnitudes? If so, explain why. If not, compute the magnitudes to compare them.

This exercise is intended to build intuitions about vectors, not just brute force calcu-
lation. In mathematics, intuitions are often more important than just memorizing an
equation—we want to understand the implications of that equation. In this particular
case, understanding the equation for computing vector length should allow you to
determine the relative lengths in many of the pairs below without actually computing
them.

(a) x = (3,4,7), y = (−3,4,−7)

(b) x = (3,4), y = (2,−1,4,0,2)

(c) x = (2,1,−5,0), y = (0,2,−5,1)

(d) x = (2,1,−5,0), y = 2x
(e) x = (2,1,3), y = (2,−5,7)

8

