
Lab 2: POS Tagging

Use the html version1 of this lab if you want to easily access the links or copy and paste commands.
Or use the pdf version2 if you want nicer formatting or a printable sheet.

Goals and motivation of this lab, and what to submit
Tagging is one of the basic steps in developing many Natural Language Processing (NLP) tools, and is often also
a first step in starting to annotate and analyze a corpus in a new language. In this lab, we will explore POS tagging
and build a (very!) simple POS tagger using an already annotated corpus, just to get you thinking about some of
the issues involved.

In addition, this lab demonstrates some basic functions of the NLTK3 library. NLTK (Natural Language
Toolkit) is a popular library for language processing tasks which is developed in Python. It has several useful
packages for tasks like tokenization, tagging, parsing, etc. In this lab, we use only very basic functions like loading
the data and reading sentences, but we hope you may be inspired to look into additional aspects of NLTK on your
own.

As before, we have written most of the code for the lab already and included a lot of explanatory comments,
but we will ask you to add a few things here and there. The ’Going Further’ section will give you a chance to
explore some more advanced topics if you finish early, or later on your own.

At the end of today’s lab session, please email me a short message including the following information (If you
are working with a partner, only one email is needed for both of you):

∙ your name and your partner’s name;

∙ a few sentences answering Q4 and Q8 (or if you didn’t get to Q8, then send your answer to the last question
you did get to).

I will post solutions to each lab but will not provide individual feedback, I just want to make sure that you are
actually making an effort.

Preliminaries
First, download the file lab2.py4 into your labs folder (or folder of your choice).

Open the file in your Python editor and start up a Python interpreter.
If you haven’t installed Anaconda, make sure you have installed NLTK (the Natural Language Toolkit) to work

with your installation of Python.
Check that nltk is working by downloading the corpus for this lab:

import nltk
nltk.download(’dependency_treebank’)

1http://homepages.inf.ed.ac.uk/sgwater/teaching/lsa2015/labs/lab2.html
2http://homepages.inf.ed.ac.uk/sgwater/teaching/lsa2015/labs/lab2.pdf
3http://www.nltk.org/
4http://homepages.inf.ed.ac.uk/sgwater/teaching/lsa2015/labs/lab2.py
5http://www.comp.leeds.ac.uk/amalgam/tagsets/upenn.html
6https://docs.python.org/3.4/tutorial/datastructures.html#tuples-and-sequences
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Examining the POS Tagset

A POS tagset is the set of Part-of-Speech tags used for annotating a particular corpus. The Penn Tagset5 is one
such tagset which is widely used for English. Click on the link and have a look at the tagset.

Q1. Based on your intuition, guess the most and least frequent tags in a data. What is the difference between
the tags DT and PDT? Can you distinguish singular and plural nouns using this tagset? If so, how? How many
different tags are available for main verbs and what are they?

Running the code
You can run this week’s lab in the iPython console of Spyder (or another iPython console) as follows:

%run lab2.py

If you get an error that Spyder can’t find lab2.py, you may need to use the full pathname to that file. For exam-
ple, if your lab2.py file is in C:/My Documents/CompLingLabs/, then type %run "C:/My Documents/CompLingLabs/lab2.py".
Or if you get sick of that, then type cd C:/My Documents/CompLingLabs/ to tell Spyder to "cd" (change
directory) into the directory (folder) where your lab2.py file is, and after that you can use just %run lab2.py.

It should print the first tagged sentence, and first (word, tag) pair. It also should print basic statistics about the
data like the total number of sentences and the average sentence length (number of words per sentence). Finally, it
should produce a figure showing a histogram of the different sentence lengths in the data set. (To display the figure
in a separate window, see Note 2 below.)

For subsequent runs, you can skip the printing by doing:

%run lab2.py -q

Note 1: If you use the green ’Run’ arrow in Spyder instead of the %run command, you may not get all the
information printing out. I’m not sure why that is!

Note 2: As you’re doing the lab, when you change anything in run.py, make sure to save the file before
running again, or the changes you made will not take effect.

Note 3: If you’re using the iPython console in Spyder, it will by default display figures in the console rather
than in a separate window. You may want to display figures in a separate window, which allows you to resize
them to make the text more visible. To do so, go to the “ Preferences“ menu (in Windows, it’s under Tools,
in Mac it is under python at top left). Choose IPython console and click on the Graphics tab. Under
Graphics backend select Automatic and click OK. To have this change take effect, you need to start a new
iPython console by clicking on Consoles -> Open an IPython console. Running the code should
now produce a figure in a separate window (although for me the window opens behind the Spyder window, which
is not ideal.)

Understanding the tsents data structure
For this lab, we consider a small part of the Penn Treebank POS annotated data. This data consists of around
3900 sentences, where each word is annotated with its POS tag using the Penn POS tagset. To access the
data, our code first imports the dependency_treebank from nltk.corpus package using the command from
nltk.corpus import dependency_treebank. We then extract the tagged sentences using the follow-
ing command (on line 95):

tsents = dependency_treebank.tagged_sents()

tsents contains a list of tagged sentences. A tagged sentence is a list of pairs, where each pair
consists of a word and its POS tag. A pair is just a Tuple with two members, and a Tuple is a data structure that
is similar to a list, except that you can’t change its length or its contents. The Python Tuple documentation (for
Python 2_ or Python 36) provides a useful summary introduction to tuples.

Once you’ve loaded lab2.py, tsents[0] contains the first tagged sentence. tsents[0][0] gives the first
tuple in the first sentence, which is a (word, tag) pair, and tsents[0][0][0] gives you the word from that pair,
tsents[0][0][1] its tag.
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Computing the distribution of tags
Construct a frequency distribution of POS tags by completing the code in the tag_distribution function,
which returns a dictionary with POS tags as keys and the number of word tokens with that tag as values. Hint:
look at the sent_length_distribution function if you aren’t sure what to do here.

Using plot_histogram, plot a histogram of the tag distribution with tags on the x-axis and their counts on
the y-axis, ordered by descending frequency. Hint: To sort the items (i.e., key-value pairs) in a dictionary by their
values, you can use:

sorted(mydict.items(), key=lambda x: x[1])

Providing reverse=True as the third argument gives the result in reverse order. help(sorted) is your
friend.

Using the histogram or commands to the interpreter, answer the following questions:
Q2. How many distinct tags are present in the data? What are the 5 most frequent and least frequent tags in

this data? How does this compare with your intuition from Q1?
Q3. What kind of distribution do you see in the histogram, and how does it compare to the histogram of

sentence lengths?

Computing the conditional distribution of tags for each word
Construct a conditional frequency distribution (CFD) by completing the code in the word_tag_distribution
function. A CFD is a dictionary whose values are themselves distributions, keyed by context or condition. In our
case we want words as conditions == keys, with values a frequency distribution of tags for that word.

For example, for the word book, the value of your CFD should be a frequency distribution of the POS tags that
occur with book. Uncomment the code at the bottom of the file once you’ve implemented the function to see the
tags for book.

Q4. How many entries are there in your big CFD? Using your CFD, compute the level of tag ambiguity in
the corpus. That is, on average, how many different tags does each word have? If you had a larger tagged corpus,
would you expect the amount of tag ambiguity to be greater than, less than, or the same as in the current corpus,
and why? (You might be able to think of arguments on both sides; if so please explain.)

Q5. What tags are used for the word the, and which is the most frequent tag? Does what you see make you
wonder about the tagging process, and how it was checked?

Feel free to look at the distributions for other words too, like in, book, eat.
Now, let’s look at which word(s) out of the whole corpus have the greatest number of distinct tags. To do so,

use the following line of code:

pprint(sorted(word_tag_dist.items(), key=lambda x: len(x[1]), reverse=True)[:10])

(pprint (think pretty print) is often useful if you have lots of nested dictionaries, lists and tuples to look at. .
.)

Q6: For the first word in this list, can you think of example sentences that use this word in a way that’s
consistent with each of its different tags?

Building a Unigram Tagger
We shall now build a simple POS tagger called a unigram tagger using the function unigram_tagger. This
function takes three arguments:

∙ The first argument is a conditional frequency distribution, which can be generated using the word_tag_distriution
you completed above.

∙ The second argument is the most frequent POS tag in the corpus.

∙ The third argument is a sentence that needs to be tagged.

The goal of this function is to tag the sentence using probabilities from the CFD and most frequent POS tag. In
order to make it work, you must complete its helper function, called ut1, to process a single word. If the word is
seen (present in the CFD), ut1 should assign the most frequent tag for that word. For unseen words (not present
in the CFD), it should assign the overall most frequent POS tag, as passed in as the 2nd argument.
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Q7. Why is this called a Unigram tagger? How does it differ from an HMM tagger?
Q8. Run this simple tagger and tag the sentences a) "book a flight to London" and b) "I bought a new book".

Look at the POS tags. Are there any errors in the POS tags? What caused the error(s), and do you think an HMM
tagger would make the same error(s)?

NLTK Frequency Distribution functions (optional)
It’s useful to practice writing your own code for things to make sure you understand how they work, but it’s
also useful to know about existing tools in NLTK. This section provides some example code demonstrating how
to use NLTK’s FreqDist() and ConditionalFreqDist() functions, which compute frequency distribu-
tions and conditional frequency distributions, respectively. These functions are similar to the ones we just imple-
mented (tag_distribution and word_tag_distribution), but have several additional features, such
as tabulate(), which prints a frequency distribution in tabular form and plot(), which plots it in inverse
frequency order.

For input to these functions, we need a single long list of word and tag pairs. Use dependency_treebank.tagged_words()
to get this list from our corpus (you can paste this line into the interpreter, or add it to your lab2.py file and rerun
that file):

wtPairs = dependency_treebank.tagged_words()

We then use a comprehension to extract just the list of words from wtPairs, and construct a FreqDist from that:

wfd=FreqDist(w for (w,t) in wtPairs)
wfd
wfd.plot(50)

And finally using ConditionalFreqDist(), we compute the conditional frequency distribution of word
and tag pairs for our corpus like this:

cfd = ConditionalFreqDist(wtPairs)
the_fd = cfd[’the’]
the_fd
len(the_fd)
the_fd.tabulate()

cfd[’the’] gives the frequency distribution of tags for the word the. tabulate() prints this distribution
in tabular form. Compare the result with the conditional frequency distribution computed in the previous section
for the word the. Both should give the same results.

You can also reimplement ut1 to take advantage of nltk. How might you do it? Hint: try help(FreqDist)
to find a method you could use.

Going further (for the ambitious)
1. Suppose you wanted to develop an probabilistic POS tagger (say, an HMM tagger) for social media text such
as Tweets. What are the steps you would need to go through in order to build the tagger? Do you think the Penn
tagset would work well for Twitter data? What are some of the differences you might need to account for and how
might you do it? Aside from the tag set, what other issues might you face in developing the tagger?

2. NLTK has libraries to train different taggers. Using these libraries, build unigram and Hidden Markov
Model taggers and evaluate them. First, split the data into two parts(90%, 10%). Consider the first 90% of the data
as training data and the remaining 10% of the data as testing data. Build taggers using the training data. Then run
the taggers on the test data and evaluate the performance of the tagger.

help(nltk.tag.hmm.HiddenMarkovModelTagger) and help(nltk.UnigramTagger) are your
friends. Note particularly the evaluate function for evaluating the tagging of a collection of test sentences.

Find some examples where the tagger made an error, and try to identify why. What are some ways you could
try to improve the tagger, hopefully reducing these errors? Consider both changing the model and changing the
data.
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