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What is Computational Linguistics?

• Using computers to address linguistic questions by analyzing linguistic data

– Collecting attested forms of a construction from a corpus
– Extracting phonetic measures from speech data
– Performing complex statistical analyses

• Maybe...

Sharon Goldwater Introduction 1

What is Computational Linguistics?

• Implementing computational theories of language acquisition/processing/change

– Simulating the spread of a linguistic change through a population
– Predicting garden-path effects in sentence processing
– Testing whether certain prosodic cues can help identify word boundaries

• Sure...
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Comp Ling vs. Natural Language Processing

• Scientific goals

– Data collection and analysis
– Making predictions and testing theories (modelling!)

• Engineering goals

– Building practical systems
– Improving application-oriented performance measures
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Core methods in CL and NLP

• Mathematical:

– Probabilistic inference
– Information theory/entropy
– Networks/graphs

• Computational:

– Probabilistic inference
– Grammars and parsing algorithms
– Finite-state machines
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This course

• Provide grounding in many of these core methods

– Mathematical and algorithmic issues
– Example probabilistic models: n-gram models, HMMs, PCFGs
– Example linguistic applications: phonology through semantics
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Course structure

• Mondays: 2 hours lecture with break; Thursdays: 1 hour lecture, 1 hour lab

• labs posted online, can start ahead/work with others

• One assignment, due Thu 23 July

• grades: 20% lecture attendance, 30% lab participation, 50% assignment

• Schedule on web page:
http://homepages.inf.ed.ac.uk/sgwater/teaching/lsa2015/
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Prerequisites and preparation

• Must have previous experience in Python and basics of probability theory

• Please check ‘software’ section of web page and install appropriate
Python/modules

• Textbook: Speech and language processing, 2nd ed., by Jurafsky and Martin

• See web page:
http://homepages.inf.ed.ac.uk/sgwater/teaching/lsa2015/
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Auditing

• Will take auditors, subject to room capacity

• Those on waitlist have priority; email me if you are not yet on waitlist

• Auditors can access all course materials (inc labs) but shouldn’t expect help
during lab sessions

• See web page:
http://homepages.inf.ed.ac.uk/sgwater/teaching/lsa2015/
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A famous quote

It must be recognized that the notion “probability of a sentence” is
an entirely useless one, under any known interpretation of this term.
Noam Chomsky, 1969
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A famous quote

It must be recognized that the notion “probability of a sentence” is
an entirely useless one, under any known interpretation of this term.
Noam Chomsky, 1969

• “useless”: To everyone? To linguists?

• “known interpretation”: What are possible interpretations?
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Intuitive interpretation

• “Probability of a sentence” = how likely is it to occur in natural language

– Consider only a specific language (English)
– Not including meta-language (e.g. linguistic discussion)

P(She studies morphosyntax) > P(She studies more faux syntax)
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Automatic speech recognition
Sentence probabilities (language model) help decide between similar-sounding
options.

speech input

↓ (Acoustic model)
She studies morphosyntax

possible outputs She studies more faux syntax
She’s studies morph or syntax
...

↓ (Language model)

best-guess output She studies morphosyntax
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Machine translation
Sentence probabilities help decide word choice and word order.

non-English input

↓ (Translation model)
She is going home

possible outputs She is going house
She is traveling to home
To home she is going
...

↓ (Language model)

best-guess output She is going home
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So, not “entirely useless”, but...

• Sentence probabilities are clearly useful for language engineering.

• But what about linguistics?
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Human sentence processing
Low probability sentences ⇒ processing difficulty

• As measured by reading speed, regressive eye movements, etc

• NB probabilities usually computed incrementally (word-by-word)

• Probabilistic models now commonplace in psycholinguistics
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But, what about zero probability sentences?

the Archaeopteryx winged jaggedly amidst foliage
vs

jaggedly trees the on flew

• Neither has ever occurred before.
⇒ both have zero probability.

• But one is grammatical (and meaningful), the other not.
⇒ “Sentence probability” is useless to linguists interested in grammaticality
(competence).
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The logical flaw

• “Probability of a sentence” = how likely is it to occur in natural language.

• Sentence has never occurred before ⇒ sentence has zero probability ??

• More generally, is the following statement true?

Event has never occurred ⇒ event has zero probability
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Events that have never occurred

• Each of these events has never occurred:

My hair turns blue
I injure myself in a skiing accident
I travel to Finland

• Yet, they clearly have differing (and non-zero!) probabilities.

Sharon Goldwater Probability estimation 10

Events that have never occurred

• Each of these events has never occurred:

My hair turns blue
I injure myself in a skiing accident
I travel to Finland

• Yet, they clearly have differing (and non-zero!) probabilities.

• Most sentences (and events) have never occurred.

– This doesn’t make their probabilities zero (or meaningless), but
– it does make estimating their probabilities trickier.
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Example: weather forecasting

What is the probability that it will rain tomorrow?

• To answer this question, we need

– data: measurements of relevant info (e.g., humidity, wind speed/direction,
temperature).

– model: equations/procedures to estimate the probability using the data.

• In fact, to build the model, we will need data (including outcomes) from
previous situations as well.
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Example: weather forecasting

What is the probability that it will rain tomorrow?

• To answer this question, we need

– data: measurements of relevant info (e.g., humidity, wind speed/direction,
temperature).

– model: equations/procedures to estimate the probability using the data.

• In fact, to build the model, we will need data (including outcomes) from
previous situations as well.

• Note that we will never know the “true” probability of rain P (rain) , only our
estimated probability P̂ (rain).
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Example: language model

What is the probability of sentence ~w = w1 . . . wn?

• To answer this question, we need

– data: words w1 . . . wn, plus a large corpus of sentences (“previous
situations”, or training data).

– model: equations to estimate the probability using the data.

• Different models will yield different estimates, even with same data.

• Deep question: what model/estimation method do humans use?
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How to get better probability estimates

Better estimates definitely help in language technology. How to improve them?

• More training data. Limited by time, money. (Varies a lot!)

• Better model. Limited by scientific and mathematical knowledge,
computational resources

• Better estimation method. Limited by mathematical knowledge,
computational resources

We will return to the question of how to know if estimates are “better”.
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Notation

• When the distinction is important, will use

– P (~w) for true probabilities
– P̂ (~w) for estimated probabilities
– PE(~w) for estimated probabilities using a particular estimation method E.

• But since we almost always mean estimated probabilities, may get lazy later
and use P (~w) for those too.
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Example: estimation for coins

I flip a coin 10 times, getting 7T, 3H. What is P̂ (T)?
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Example: estimation for coins

I flip a coin 10 times, getting 7T, 3H. What is P̂ (T)?

• Model 1: Coin is fair. Then, P̂ (T ) = 0.5
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Example: estimation for coins

I flip a coin 10 times, getting 7T, 3H. What is P̂ (T)?

• Model 1: Coin is fair. Then, P̂ (T ) = 0.5

• Model 2: Coin is not fair. Then, P̂ (T ) = 0.7 (why?)
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Example: estimation for coins

I flip a coin 10 times, getting 7T, 3H. What is P̂ (T)?

• Model 1: Coin is fair. Then, P̂ (T ) = 0.5

• Model 2: Coin is not fair. Then, P̂ (T ) = 0.7 (why?)

• Model 3: Two coins, one fair and one not; choose one at random to flip 10
times. Then, 0.5 < P̂ (T ) < 0.7.
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Example: estimation for coins

I flip a coin 10 times, getting 7T, 3H. What is P̂ (T)?

• Model 1: Coin is fair. Then, P̂ (T ) = 0.5

• Model 2: Coin is not fair. Then, P̂ (T ) = 0.7 (why?)

• Model 3: Two coins, one fair and one not; choose one at random to flip 10
times. Then, 0.5 < P̂ (T ) < 0.7.

Each is a generative model: a probabilistic process that describes how the data
were generated.
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Defining a model

Usually, two choices in defining a model:

• Structure (or form) of the model: the form of the equations, usually
determined by knowledge about the problem.

• Parameters of the model: specific values in the equations that are usually
determined using the training data.
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Example: height of 30-yr-old females

Assume the form of a
normal distribution, with
parameters (µ, σ):

p(x|µ, σ) = 1

σ
√
2π

exp

(−(x− µ)2

2σ2

)
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Example: height of 30-yr-old females

Collect data to determine values of µ, σ that fit this particular dataset.
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Example: M&M colors

What is the proportion of each color of M&M?

• Assume a discrete distribution with parameters θ.

– θ is a vector! That is, θ = (θR, θO, θY, θG, θBl, θBr).
– For discrete distribution, params ARE the probabilities, e.g., P (red) = θR.
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Example: M&M colors

What is the proportion of each color of M&M?

• Assume a discrete distribution with parameters θ.

– θ is a vector! That is, θ = (θR, θO, θY, θG, θBl, θBr).
– For discrete distribution, params ARE the probabilities, e.g., P (red) = θR.

• In 48 packages, I find1 2620 M&Ms, as follows:

Red Orange Yellow Green Blue Brown
372 544 369 483 481 371

• How to estimate θ from this data?

1Actually I got the data from: https://joshmadison.com/2007/12/02/mms-color-distribution-analysis/
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Relative frequency estimation

• Intuitive way to estimate discrete probabilities: relative frequency estimation.

PRF(x) =
C(x)

N
where C(x) is the count of x in a large dataset, and N =

∑
x′ C(x′) is the

total number of items in the dataset.

• M&M example: PRF(red) = θ̂R = 372
2620 = .142

• Or, could estimate probability of word w from a large corpus.

• Can we justify this mathematically?
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Formalizing the estimation problem

• What is the best choice of θ given the data d that we saw?

• Formalize using Bayes’ Rule, try to maximize P (θ|d).

P (θ|d) = P (d|θ)P (θ)

P (d)

– P (θ): prior probability of θ
– P (d|θ): likelihood
– P (θ|d): posterior probability of θ given d
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Maximum-likelihood estimation

• Not obvious what prior should be: maybe just uniform?

argmax
θ

P (d|θ)P (θ) = argmax
θ

P (d|θ)

• Choose θ to maximize the likelihood.

– the parameters that make the observed data most probable

• This turns out to be just the relative frequency estimator, i.e.,

PML(x) = PRF(x) =
C(x)

N
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Likelihood example

• For a fixed set of data, the likelihood depends on the model we choose.

• Our coin example, where θ = (θH, θT). Suppose we saw d = HTTTHTHTTT.

• Model 1: Assume coin is fair, so θ̂ = (0.5, 0.5).

– Likelihood of this model: (0.5)3 · (0.5)7 = 0.00097
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Likelihood example

• For a fixed set of data, the likelihood depends on the model we choose.

• Our coin example, where θ = (θH, θT). Suppose we saw d = HTTTHTHTTT.

• Model 1: Assume coin is fair, so θ̂ = (0.5, 0.5).

– Likelihood of this model: (0.5)3 · (0.5)7 = 0.00097

• Model 2: Use ML estimation, so θ̂ = (0.3, 0.7).

– Likelihood of this model: (0.3)3 · (0.7)7 = 0.00222

• Maximum-likelihood estimate does have higher likelihood!

Sharon Goldwater Probability estimation 31

Summary

• “Probability of a sentence”: how likely is it to occur in natural language?

• Useful in natural language applications AND linguistics

• Can never know the true probability, but we may be able to estimate it.

• Probability estimates depend on

– The data we have observed
– The model (structure and parameters) we choose

• One way to estimate probabilities: maximum-likelihood estimation
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Where to go from here?

Next time, we’ll start to discuss

• Different generative models for sentences (model structure), and the questions
they can address

• Weaknesses of MLE and ways to address them (parameter estimation methods)

First: one more piece of technical background.
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Introduction to Computational Linguistics:
Entropy
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Entropy

• Definition of entropy:

H(X) =
∑

x−p(x) log2 p(x)

• Intuitively: a measure of uncertainty/disorder

• If we build a probabilistic model, we want that model to have low entropy (low
uncertainty)
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Entropy Example

p(a) = 1

One event (outcome)

H(X) = − 1 log2 1

= 0
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Entropy Example

p(a) = 0.5
p(b) = 0.5

2 equally likely events:

H(X) = − 0.5 log2 0.5− 0.5 log2 0.5

= − log2 0.5

= 1
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Entropy Example

p(a) = 0.25
p(b) = 0.25
p(c) = 0.25
p(d) = 0.25

4 equally likely events:

H(X) = − 0.25 log2 0.25− 0.25 log2 0.25

− 0.25 log2 0.25− 0.25 log2 0.25

= − log2 0.25

= 2
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Entropy Example

p(a) = 0.7
p(b) = 0.1
p(c) = 0.1
p(d) = 0.1

3 equally likely events and one more
likely than the others:

H(X) = − 0.7 log2 0.7− 0.1 log2 0.1

− 0.1 log2 0.1− 0.1 log2 0.1

= − 0.7 log2 0.7− 0.3 log2 0.1

= − 0.7×−0.5146− 0.3×−3.3219

= 0.36020 + 0.99658

= 1.35678
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Entropy Example

p(a) = 0.97
p(b) = 0.01
p(c) = 0.01
p(d) = 0.01

3 equally likely events and one much
more likely than the others:

H(X) = − 0.97 log2 0.97− 0.01 log2 0.01

− 0.01 log2 0.01− 0.01 log2 0.01

= − 0.97 log2 0.97− 0.03 log2 0.01

= − 0.97×−0.04394− 0.03×−6.6439

= 0.04262 + 0.19932

= 0.24194

Sharon Goldwater Entropy 6

H(X) = 0 H(X) = 1 H(X) = 2

H(X) = 3 H(X) = 1.35678 H(X) = 0.24194
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Entropy as y/n questions

How many yes-no questions (bits) do we need to find out the outcome?

• Uniform distribution with 2n outcomes: n q’s.

• Other cases: entropy is the average number of questions per outcome in a
(very) long sequence, where questions can consider multiple outcomes at once.
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Entropy as encoding sequences

• Assume that we want to encode a sequence of events X

• Each event is encoded by a sequence of bits

• For example

– Coin flip: heads = 0, tails = 1
– 4 equally likely events: a = 00, b = 01, c = 10, d = 11
– 3 events, one more likely than others: a = 0, b = 10, c = 11
– Morse code: e has shorter code than q

• Average number of bits needed to encode X ≥ entropy of X
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The Entropy of English

• Given a number of words in a text, can we guess the next word
p(wn|w1, ..., wn−1)?

• Assuming a model with a limited window size (N = # words of history)

Model Entropy
N=0 4.76
N=1 4.03
N=2 2.8

human, unlimited 1.3
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Mutual Information

• A measure of independence between variables

– How much (on average) does knowing Y reduce H(X)?

I(X;Y ) = H(X)−H(X|Y )

H(X)

H(Y|X)H(X|Y)

H(Y)
I(X;Y)

– Ex: on avg, how much more certain will I be about wi if you tell me wi−1?

Sharon Goldwater Entropy 11

Pointwise Mutual Information

• MI for two particular outcomes (no average)

• Definition:

I(x, y) = log
p(x, y)

p(x)p(y)

• Ex. Consider I(San, Francisco) vs. I(and, a)

• Will discuss more later in course
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