What is Computational Linguistics?

Introduction to Computational LingUiStiCS: e Using computers to address linguistic questions by analyzing linguistic data
|ntl’0duCt0l’y information — Collecting attested forms of a construction from a corpus
— Extracting phonetic measures from speech data
Sharon Goldwater — Performing complex statistical analyses
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What is Computational Linguistics? Comp Ling vs. Natural Language Processing
e Implementing computational theories of language acquisition/processing/change e Scientific goals
— Simulating the spread of a linguistic change through a population — Data collection and analysis
— Predicting garden-path effects in sentence processing — Making predictions and testing theories (modelling!)

— Testing whether certain prosodic cues can help identify word boundaries
e Engineering goals

Sure...
¢ oure — Building practical systems
— Improving application-oriented performance measures
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Core methods in CL and NLP This course
e Mathematical: e Provide grounding in many of these core methods
— Probabilistic inference — Mathematical and algorithmic issues
— Information theory/entropy — Example probabilistic models: n-gram models, HMMs, PCFGs
— Networks/graphs — Example linguistic applications: phonology through semantics

e Computational:

— Probabilistic inference
— Grammars and parsing algorithms
— Finite-state machines
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Course structure Prerequisites and preparation

e Mondays: 2 hours lecture with break; Thursdays: 1 hour lecture, 1 hour lab e Must have previous experience in Python and basics of probability theory

e labs posted online, can start ahead/work with others e Please check ‘software’ section of web page and install appropriate

Python/modules
e One assignment, due Thu 23 July
e Textbook: Speech and language processing, 2nd ed., by Jurafsky and Martin
e grades: 20% lecture attendance, 30% lab participation, 50% assignment
e See web page:
e Schedule on web page: http://homepages.inf.ed.ac.uk/sgwater/teaching/1sa2015/
http://homepages.inf.ed.ac.uk/sgwater/teaching/1sa2015/
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Auditing

o Will take auditors, subject to room capacity

e Auditors can access all course materials (inc labs) but shouldn’t expect help

during lab sessions

Those on waitlist have priority; email me if you are not yet on waitlist

Introduction to Computational Linguistics:
Probability estimation

Sharon Goldwater

6 July 2015
e See web page:
http://homepages.inf.ed.ac.uk/sgwater/teaching/1sa2015/
® School of _ e
informatics
Sharon Goldwater Introduction Sharon Goldwater Probability estimation 6 July 2015

It must be recognized that the notion “probability of a sentence” is
an entirely useless one, under any known interpretation of this term.

A famous quote

Noam Chomsky, 1969

A famous quote

It must be recognized that the notion “probability of a sentence” is
an entirely useless one, under any known interpretation of this term.
Noam Chomsky, 1969

e ‘useless”: To everyone? To linguists?

e “known interpretation”: What are possible interpretations?
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e “Probability of a sentence” = how likely is it to occur in natural language

Probability estimation

Intuitive interpretation

— Consider only a specific language (English)
— Not including meta-language (e.g. linguistic discussion)

P(She studies morphosyntax) > P(She studies more faux syntax)
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Automatic speech recognition

Sentence probabilities (language model) help decide between similar-sounding
options.

speech input

b (Acoustic model)
She studies morphosyntax
possible outputs She studies more faux syntax
She’s studies morph or syntax

I (Language model)
best-guess output She studies morphosyntax
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Machine translation

Sentence probabilities help decide word choice and word order.

non-English input
N

possible outputs

!

best-guess output

(Translation model)
She is going home
She is going house
She is traveling to home
To home she is going

(Language model)

She is going home

So, not “entirely useless”, but...
e Sentence probabilities are clearly useful for language engineering.

e But what about linguistics?

Sharon Goldwater

Probability estimation
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Human sentence processing

Low probability sentences = processing difficulty

e As measured by reading speed, regressive eye movements, etc
e NB probabilities usually computed incrementally (word-by-word)

e Probabilistic models now commonplace in psycholinguistics

But, what about zero probability sentences?

the Archaeopteryx winged jaggedly amidst foliage
Vs
jaggedly trees the on flew

e Neither has ever occurred before.
= both have zero probability.

e But one is grammatical (and meaningful), the other not.

= "“Sentence probability” is useless to linguists interested in grammaticality
(competence).
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The logical flaw
e “Probability of a sentence” = how likely is it to occur in natural language.
e Sentence has never occurred before = sentence has zero probability 7?7
e More generally, is the following statement true?

Event has never occurred = event has zero probability
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Events that have never occurred
e Each of these events has never occurred:
My hair turns blue

I injure myself in a skiing accident
I travel to Finland

e Yet, they clearly have differing (and non-zero!) probabilities.

Sharon Goldwater

Events that have never occurred

e Each of these events has never occurred:
My hair turns blue

I injure myself in a skiing accident
I travel to Finland

e Yet, they clearly have differing (and non-zero!) probabilities.

e Most sentences (and events) have never occurred.

— This doesn't make their probabilities zero (or meaningless), but
— it does make estimating their probabilities trickier.

Sharon Goldwater
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Example: weather forecasting

What is the probability that it will rain tomorrow?

e To answer this question, we need

— data: measurements of relevant info (e.g., humidity, wind speed/direction,
temperature).

— model: equations/procedures to estimate the probability using the data.

e In fact, to build the model, we will need data (including outcomes) from
previous situations as well.

Probability estimation 11

Example: weather forecasting

What is the probability that it will rain tomorrow?

e To answer this question, we need

— data: measurements of relevant info (e.g., humidity, wind speed/direction,
temperature).

— model: equations/procedures to estimate the probability using the data.

e In fact, to build the model, we will need data (including outcomes) from
previous situations as well.

e Note that we will never know the “true” probability of rain P(rain) , only our
estimated probability P(rain).
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Example: language model

What is the probability of sentence w = wy ... w,?

e To answer this question, we need

— data:  words w;...w,, plus a large corpus of sentences (‘“previous
situations”, or training data).

— model: equations to estimate the probability using the data.
e Different models will yield different estimates, even with same data.

e Deep question: what model/estimation method do humans use?
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How to get better probability estimates
Better estimates definitely help in language technology. How to improve them?
e More training data. Limited by time, money. (Varies a lot!)

o Better model. Limited by scientific and mathematical knowledge,
computational resources

e Better estimation method.
computational resources

Limited by mathematical knowledge,

We will return to the question of how to know if estimates are “better”.

Notation

e When the distinction is important, will use

— P(u) for true probabilities
— P(w) for estimated probabilities
— Pg(w) for estimated probabilities using a particular estimation method E.

e But since we almost always mean estimated probabilities, may get lazy later
and use P(w) for those too.
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Example: estimation for coins

I flip a coin 10 times, getting 7T, 3H. What is P(T)?
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Example: estimation for coins

I flip a coin 10 times, getting 7T, 3H. What is P(T)?

o Model 1: Coin is fair. Then, P(T) = 0.5
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Example: estimation for coins
I flip a coin 10 times, getting 7T, 3H. What is P(T)?
e Model 1: Coin is fair. Then, P(T) = 0.5

e Model 2: Coin is not fair. Then, P(T) = 0.7 (why?)
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Example: estimation for coins
I flip a coin 10 times, getting 7T, 3H. What is P(T)?
o Model 1: Coin is fair. Then, P(T) = 0.5
o Model 2: Coin is not fair. Then, P(T) = 0.7 (why?)

e Model 3: Two coin§, one fair and one not; choose one at random to flip 10
times. Then, 0.5 < P(T) < 0.7.
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Example: estimation for coins
I flip a coin 10 times, getting 7T, 3H. What is P(T)?
e Model 1: Coin is fair. Then, P(T) = 0.5
e Model 2: Coin is not fair. Then, P(T) = 0.7 (why?)

o Model 3: Two coin§, one fair and one not; choose one at random to flip 10
times. Then, 0.5 < P(T') < 0.7.

Each is a generative model: a probabilistic process that describes how the data
were generated.
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Defining a model

Usually, two choices in defining a model:

e Structure (or form) of the model: the form of the equations, usually
determined by knowledge about the problem.

e Parameters of the model: specific values in the equations that are usually
determined using the training data.
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Example: height of 30-yr-old females

Assume the form of a
normal distribution, with
parameters (11, 0):

(i) = ——exp (L)
T\, o) = exp
p(|u, o 503

Example: height of 30-yr-old females

Collect data to determine values of p, o that fit this particular dataset.

o 300
S 250

0.4} —
0.3
3 60 65
802 height in inches
0.1 L)
0'9—6 4 6
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Example: M&M colors

What is the proportion of each color of M&M?

e Assume a discrete distribution with parameters 6.

— @ is a vector! That is, 0 = (0r, 00,0y, 0c, Op., Opr)-
— For discrete distribution, params ARE the probabilities, e.g., P(red) = 0i.

Example: M&M colors

What is the proportion of each color of M&M?

e Assume a discrete distribution with parameters 6.
— 0 is a vector! That is, = (0r, 00, Ov,0c,0p., O, )-
— For discrete distribution, params ARE the probabilities, e.g., P(red) = 0.

o In 48 packages, | find' 2620 M&Ms, as follows:

Red Orange Yellow Green Blue Brown
372 544 369 483 481 371

e How to estimate 6 from this data?

Actually | got the data from: https://joshmadison.com/2007/12/02/mms-color-distribution-analysis/
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Relative frequency estimation

e Intuitive way to estimate discrete probabilities: relative frequency estimation.

Pun () = C(\a)

where C'(x) is the count of z in a large dataset, and N = 3" ,C(a') is the
total number of items in the dataset.

o M&M example: Pgp(red) = 0 = 22 = 142

e Or, could estimate probability of word w from a large corpus.

e Can we justify this mathematically?
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Formalizing the estimation problem
e What is the best choice of # given the data d that we saw?
e Formalize using Bayes' Rule, try to maximize P(6|d).

P(d|0)P(6)

POId) = =5

— P(0): prior probability of 6
— P(d|6): likelihood
— P(f|d): posterior probability of ¢ given d
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Maximum-likelihood estimation
e Not obvious what prior should be: maybe just uniform?

argmax P(d|0)P(0) = argmax P(d|0)
0 0

e Choose ) to maximize the likelihood.
— the parameters that make the observed data most probable
e This turns out to be just the relative frequency estimator, i.e.,

C(x)
N

PAIL(:E) = Pl{l“(-l') =
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Likelihood example
e For a fixed set of data, the likelihood depends on the model we choose.
e Our coin example, where § = (0, 01). Suppose we saw d = HTTTHTHTTT.

o Model 1: Assume coin is fair, so 6 = (0.5,0.5).

— Likelihood of this model: (0.5) - (0.5)7 = 0.00097
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Likelihood example
e For a fixed set of data, the likelihood depends on the model we choose.
e Our coin example, where § = (0y, 01). Suppose we saw d = HTTTHTHTTT.

o Model 1: Assume coin is fair, so 0 = (0.5, 0.5).

— Likelihood of this model: (0.5) - (0.5)7 = 0.00097

e Model 2: Use ML estimation, so 0 = (0.3,0.7).
— Likelihood of this model: (0.3)% - (0.7)7 = 0.00222

o Maximum-likelihood estimate does have higher likelihood!

Summary
e "“Probability of a sentence”: how likely is it to occur in natural language?
o Useful in natural language applications AND linguistics
e Can never know the true probability, but we may be able to estimate it.

e Probability estimates depend on

— The data we have observed
— The model (structure and parameters) we choose

e One way to estimate probabilities: maximum-likelihood estimation
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Where to go from here?

Next time, we'll start to discuss

o Different generative models for sentences (model structure), and the questions
they can address

e Weaknesses of MLE and ways to address them (parameter estimation methods)
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Introduction to Computational Linguistics:
Entropy

Sharon Goldwater

6 July 2015
First: one more piece of technical background.
® School of _
informatics
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Entropy Entropy Example
o Definition of entropy: One event (outcome)
H(X) =32, —p(x) log,p(z)
pla) =1 H(X)= —1log,1
e Intuitively: a measure of uncertainty/disorder -0
o If we build a probabilistic model, we want that model to have low entropy (low
uncertainty) //"7"\\
( W
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Entropy Example

2 equally likely events:

H(X)= —0.51l0g,0.5 —0.510g, 0.5
= —log, 0.5

Entropy Example

4 equally likely events:

H(X)= —0.25log,0.25 — 0.25log, 0.25
=0.25 —0.251og, 0.25 — 0.251og, 0.25
—log,0.25

=2
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Entropy Example

3 equally likely events and one more
likely than the others:

pla) = 0.7

p(b) =0.1

p(e) = 0.1 _

p(d) = 0.1 H(X)= —0.710g,0.7 — 0.11log, 0.1

—0.11og, 0.1 — 0.110g, 0.1
= —0.7log, 0.7 — 0.31og, 0.1
= —0.7x —0.5146 — 0.3 x —3.3219
= 0.36020 + 0.99658

—
\,// = 1.35678

i
>f

Entropy Example

3 equally likely events and one much
more likely than the others:

p(a) =0.97
p(b) = 0.01
p(c) = 0.01 H(X) = —0.9710g,0.97 — 0.011og, 0.01
p(d) = 0.01

—0.011og, 0.01 — 0.01 log, 0.01
— 0.97log, 0.97 — 0.03 log, 0.01
/S = —0.97 x —0.04394 — 0.03 x —6.6439
\ /, — 0.04262 + 0.19932
— —0.24194

N
>
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‘-’/f_n‘\“.
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Entropy as y/n questions

How many yes-no questions (bits) do we need to find out the outcome?

o Uniform distribution with 2" outcomes: n g's.

e Other cases: entropy is the average number of questions per outcome in a
(very) long sequence, where questions can consider multiple outcomes at once.
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Entropy as encoding sequences
e Assume that we want to encode a sequence of events X
e Each event is encoded by a sequence of bits

e For example
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The Entropy of English

e Given a number of words in a text, can we guess the next word
p(wp|wi, ooy wp—1)?

e Assuming a model with a limited window size (N = # words of history)

Model Entropy
— Coin flip: heads = 0, tails = 1 N=0 4.76
— 4 equally likely events: a =00, b =01, c=10,d =11 N=1 4.03
— 3 events, one more likely than others: a =0, b =10,c =11 N=2 2.8
— Morse code: e has shorter code than g human, unlimited 1.3
e Average number of bits needed to encode X > entropy of X
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Mutual Information

e A measure of independence between variables

— How much (on average) does knowing Y reduce H(X)?

I(X;Y)=H(X) - HX|Y)

H(X) H(Y)

I(X;Y)

— Ex: on avg, how much more certain will | be about w; if you tell me w;_17?

Pointwise Mutual Information
e Ml for two particular outcomes (no average)

o Definition: (1)
—1o P,y
T:0) =108 )

e Ex. Consider I(San, Francisco) vs. I(and, a)

e Will discuss more later in course
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