Introduction to Computational Linguistics: Introductory information

Sharon Goldwater

6 July 2015

What is Computational Linguistics?

• Using computers to address linguistic questions by analyzing linguistic data

Introduction

Comp Ling vs. Natural Language Processing

- Collecting attested forms of a construction from a corpus
- Extracting phonetic measures from speech data
- Performing complex statistical analyses
- Maybe...

Sharon Goldwater

6 July 2015

informatics

Sharon Goldwater

Introduction

What is Computational Linguistics?

- Implementing computational theories of language acquisition/processing/change
 - Simulating the spread of a linguistic change through a population
 - Predicting garden-path effects in sentence processing
 - Testing whether certain prosodic cues can help identify word boundaries
- Sure...

Scientific goals

- Data collection and analysis
- Making predictions and testing theories (modelling!)
- Engineering goals

Sharon Goldwater

- Building practical systems
- Improving application-oriented performance measures

Sharon Goldwater

Core methods in CL and NLP

- Mathematical:
 - Probabilistic inference
 - Information theory/entropy
 - Networks/graphs
- Computational:
 - Probabilistic inference
 - Grammars and parsing algorithms
- Finite-state machines

This course

- Provide grounding in many of these core methods
 - Mathematical and algorithmic issues
 - Example probabilistic models: n-gram models, HMMs, PCFGs
 - Example linguistic applications: phonology through semantics

Sharon Goldwater

Introduction Course structure

- $\bullet\,$ Mondays: 2 hours lecture with break; Thursdays: 1 hour lecture, 1 hour lab
- labs posted online, can start ahead/work with others
- One assignment, due Thu 23 July
- $\bullet\,$ grades: 20% lecture attendance, 30% lab participation, 50% assignment
- Schedule on web page: http://homepages.inf.ed.ac.uk/sgwater/teaching/lsa2015/

Sharon Goldwate

Introduction

Prerequisites and preparation

- Must have previous experience in Python and basics of probability theory
- \bullet Please check 'software' section of web page and install appropriate Python/modules
- Textbook: Speech and language processing, 2nd ed., by Jurafsky and Martin
- See web page: http://homepages.inf.ed.ac.uk/sgwater/teaching/lsa2015/

Sharon Goldwater

Auditing

- Will take auditors, subject to room capacity
- Those on waitlist have priority; email me if you are not yet on waitlist
- · Auditors can access all course materials (inc labs) but shouldn't expect help during lab sessions
- · See web page: http://homepages.inf.ed.ac.uk/sgwater/teaching/lsa2015/

Introduction to Computational Linguistics: Probability estimation

Sharon Goldwater

6 July 2015

6 July 2015

A famous quote

Introduction

It must be recognized that the notion "probability of a sentence" is an entirely useless one, under any known interpretation of this term. Noam Chomsky, 1969

Probability estimation A famous quote

It must be recognized that the notion "probability of a sentence" is an entirely useless one, under any known interpretation of this term. Noam Chomsky, 1969

- "useless": To everyone? To linguists?
- "known interpretation": What are possible interpretations?

Sharon Goldwater

Sharon Goldwater

Probability estimation Intuitive interpretation

- "Probability of a sentence" = how likely is it to occur in natural language
- Consider only a specific language (English)
- Not including meta-language (e.g. linguistic discussion)

P(She studies morphosyntax) > P(She studies more faux syntax)

Probability estimation Automatic speech recognition

Sentence probabilities (language model) help decide between similar-sounding options.

speech input

Sharon Goldwater

Sharon Goldwater

\downarrow	(Acoustic model)	
possible outputs		She studies morphosyntax She studies more faux syntax She's studies morph or syntax
Ļ	(Language model)	
best-guess output		She studies morphosyntax

Probability estimation

Machine translation

Sentence probabilities help decide word choice and word order.

non-English input

Sharon Goldwater

 \downarrow (Translation model) She is going home possible outputs She is going house She is traveling to home To home she is going (Language model) \downarrow best-guess output She is going home

Sharon Goldwater

Sharon Goldwater

Probability estimation

So, not "entirely useless", but...

- Sentence probabilities are clearly useful for language engineering.
- But what about linguistics?

Probability estimation

Human sentence processing

Low probability sentences \Rightarrow processing difficulty

- \bullet As measured by reading speed, regressive eye movements, etc
- NB probabilities usually computed incrementally (word-by-word)
- Probabilistic models now commonplace in psycholinguistics

But, what about zero probability sentences?

the Archae opteryx winged jaggedly amidst foliage $$\mathsf{vs}$$ jaggedly trees the on flew

- Neither has ever occurred before.
 ⇒ both have zero probability.
- But one is grammatical (and meaningful), the other not.
 ⇒ "Sentence probability" is useless to linguists interested in grammaticality (competence).

Sharon Goldwater

Probability estimation

The logical flaw

- "Probability of a sentence" = how likely is it to occur in natural language.
- Sentence has never occurred before \Rightarrow sentence has zero probability ??
- More generally, is the following statement true?

Event has never occurred \Rightarrow event has zero probability

Sharon Goldwater

Probability estimation

Events that have never occurred

• Each of these events has never occurred:

My hair turns blue I injure myself in a skiing accident I travel to Finland

• Yet, they clearly have differing (and non-zero!) probabilities.

Sharon Goldwater

Probability estimation Events that have never occurred

• Each of these events has never occurred:

My hair turns blue I injure myself in a skiing accident I travel to Finland

- Yet, they clearly have differing (and non-zero!) probabilities.
- Most sentences (and events) have never occurred.
 - This doesn't make their probabilities zero (or meaningless), but
 - it does make estimating their probabilities trickier.

Sharon Goldwater

Probability estimation

Example: weather forecasting

What is the probability that it will rain tomorrow?

- To answer this question, we need
 - data: measurements of relevant info (e.g., humidity, wind speed/direction, temperature).
 - model: equations/procedures to estimate the probability using the data.
- In fact, to build the model, we will need data (including *outcomes*) from previous situations as well.
- Note that we will never know the "true" probability of rain $P({\rm rain})$, only our estimated probability $\hat{P}({\rm rain}).$

Probability estimation Example: weather forecasting

What is the probability that it will rain tomorrow?

- To answer this question, we need
 - data: measurements of relevant info (e.g., humidity, wind speed/direction, temperature).
 - model: equations/procedures to estimate the probability using the data.
- In fact, to build the model, we will need data (including *outcomes*) from previous situations as well.

Sharon Goldwater

Sharon Goldwater

11

Sharon Goldwater

Probability estimation

12

10

Example: language model

What is the probability of sentence $\vec{w} = w_1 \dots w_n$?

- To answer this question, we need
 - data: words $w_1 \dots w_n$, plus a large corpus of sentences ("previous situations", or training data).
 - model: equations to estimate the probability using the data.
- Different models will yield different estimates, even with same data.
- Deep question: what model/estimation method do humans use?

er

How to get better probability estimates

Better estimates definitely help in language technology. How to improve them?

- More training data. Limited by time, money. (Varies a lot!)
- Better model. Limited by scientific and mathematical knowledge, computational resources
- Better estimation method. Limited by mathematical knowledge, computational resources

We will return to the question of how to know if estimates are "better".

Notation

- When the distinction is important, will use
 - $P(\vec{w})$ for *true* probabilities
 - $\hat{P}(\vec{w})$ for *estimated* probabilities
 - $P_{\rm E}(\vec{w})$ for estimated probabilities using a particular estimation method E.
- But since we almost always mean estimated probabilities, may get lazy later and use $P(\vec{w})$ for those too.

Sharon	Goldwater	

Probability estimation

Example: estimation for coins

I flip a coin 10 times, getting 7T, 3H. What is $\hat{P}(T)$?

Sharon Goldwater

Sharon Goldwater

15

Probability estimation

16

Example: estimation for coins

I flip a coin 10 times, getting 7T, 3H. What is $\hat{P}(T)$?

• Model 1: Coin is fair. Then, $\hat{P}(T) = 0.5$

Sharon Goldwater

Probability estimation Example: estimation for coins

I flip a coin 10 times, getting 7T, 3H. What is $\hat{P}(T)$?

- Model 1: Coin is fair. Then, $\hat{P}(T) = 0.5$
- Model 2: Coin is not fair. Then, $\hat{P}(T) = 0.7$ (why?)

Example: estimation for coins

I flip a coin 10 times, getting 7T, 3H. What is $\hat{P}(T)$?

- Model 1: Coin is fair. Then, $\hat{P}(T) = 0.5$
- Model 2: Coin is not fair. Then, $\hat{P}(T) = 0.7$ (why?)
- Model 3: Two coins, one fair and one not; choose one at random to flip 10 times. Then, $0.5<\hat{P}(T)<0.7.$

Probability estimation

Sharon Goldwater

Probability estimation

Example: estimation for coins

I flip a coin 10 times, getting 7T, 3H. What is $\hat{P}(T)$?

- Model 1: Coin is fair. Then, $\hat{P}(T) = 0.5$
- Model 2: Coin is not fair. Then, $\hat{P}(T) = 0.7$ (why?)
- Model 3: Two coins, one fair and one not; choose one at random to flip 10 times. Then, $0.5 < \hat{P}(T) < 0.7$.

Each is a **generative model**: a probabilistic process that describes how the data were generated.

Sharon Goldwate

10

Probability estimation

20

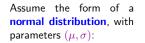
Defining a model

Usually, two choices in defining a model:

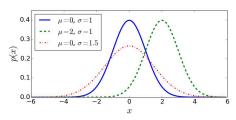
- **Structure** (or **form**) of the model: the form of the equations, usually determined by knowledge about the problem.
- **Parameters** of the model: specific values in the equations that are usually determined using the training data.

Sharon Goldwater

Example: height of 30-yr-old females



 $p(x|\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right)$



Sharon Goldwater

Probability estimation

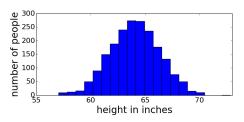
Example: M&M colors

What is the proportion of each color of M&M?

- Assume a **discrete distribution** with parameters θ .
 - θ is a vector! That is, $\theta = (\theta_{\rm R}, \theta_{\rm O}, \theta_{\rm Y}, \theta_{\rm G}, \theta_{\rm BL}, \theta_{\rm BR})$.
 - For discrete distribution, params ARE the probabilities, e.g., $P(red) = \theta_R$.

Example: height of 30-yr-old females

Collect data to determine values of μ, σ that fit this particular dataset.



Sharon Goldwater

23

25

Probability estimation

24

Example: M&M colors

What is the proportion of each color of M&M?

- Assume a **discrete distribution** with parameters θ .
 - θ is a vector! That is, $\theta = (\theta_{\rm R}, \theta_{\rm O}, \theta_{\rm Y}, \theta_{\rm G}, \theta_{\rm BL}, \theta_{\rm BR}).$
 - For discrete distribution, params ARE the probabilities, e.g., $P(\text{red}) = \theta_{\text{R}}$.
- In 48 packages, I find¹ 2620 M&Ms, as follows:

Red Orange Yellow Green Blue Brown 372 544 369 483 481 371

• What is the best choice of θ given the data d that we saw?

• Formalize using Bayes' Rule, try to maximize $P(\theta|d)$.

• How to estimate θ from this data?

¹Actually I got the data from: https://joshmadison.com/2007/12/02/mms-color-distribution-analysis/

Probability estimation

Formalizing the estimation problem

 $P(\theta|d) = \frac{P(d|\theta)P(\theta)}{P(d)}$

Sharon Goldwater

Probability estimation

Relative frequency estimation

• Intuitive way to estimate discrete probabilities: relative frequency estimation.

$$P_{\rm RF}(x) = \frac{C(x)}{N}$$

where C(x) is the count of x in a large dataset, and $N = \sum_{x'} C(x')$ is the total number of items in the dataset.

- M&M example: $P_{\rm RF}(\text{red}) = \hat{\theta}_{\rm R} = \frac{372}{2620} = .142$
- Or, could estimate probability of word w from a large corpus.
- Can we justify this mathematically?

Sharon Goldwater

Probability estimation

Maximum-likelihood estimation

• Not obvious what prior should be: maybe just uniform?

$$\operatorname{argmax} P(d|\theta)P(\theta) = \operatorname{argmax} P(d|\theta)$$

• Choose θ to maximize the likelihood.

- the parameters that make the observed data most probable

• This turns out to be just the relative frequency estimator, i.e.,

$$P_{\rm ML}(x) = P_{\rm RF}(x) = \frac{C(x)}{N}$$

Sharon Goldwate

Sharon Goldwater

Likelihood example

- For a fixed set of data, the likelihood depends on the model we choose.
- Our coin example, where $\theta = (\theta_{\rm H}, \theta_{\rm T})$. Suppose we saw $d = \mathsf{HTTTHTHTTT}$.
- Model 1: Assume coin is fair, so $\hat{\theta} = (0.5, 0.5)$.
 - Likelihood of this model: $(0.5)^3 \cdot (0.5)^7 = 0.00097$

Sharon Goldwater

- $P(\theta)$: prior probability of θ – $P(d|\theta)$: likelihood

- $P(\theta|d)$: **posterior** probability of θ given d

27

Probability estimation

Likelihood example

- For a fixed set of data, the likelihood depends on the model we choose.
- Our coin example, where $\theta = (\theta_H, \theta_T)$. Suppose we saw d = HTTTHTHTTT.
- Model 1: Assume coin is fair, so $\hat{\theta} = (0.5, 0.5)$.
 - Likelihood of this model: $(0.5)^3 \cdot (0.5)^7 = 0.00097$
- Model 2: Use ML estimation, so $\hat{\theta} = (0.3, 0.7)$.
 - Likelihood of this model: $(0.3)^3 \cdot (0.7)^7 = 0.00222$
- Maximum-likelihood estimate does have higher likelihood!

Summary

- "Probability of a sentence": how likely is it to occur in natural language?
- Useful in natural language applications AND linguistics
- Can never know the true probability, but we may be able to estimate it.
- Probability estimates depend on
 - The data we have observed
 - The model (structure and parameters) we choose
- One way to estimate probabilities: maximum-likelihood estimation

Sharon Goldwater

31

Probability estimation

32

Where to go from here?

Next time, we'll start to discuss

Sharon Goldwater

• Different generative models for sentences (model structure), and the questions they can address

Probability estimation

• Weaknesses of MLE and ways to address them (parameter estimation methods)

First: one more piece of technical background.

Introduction to Computational Linguistics: Entropy

Sharon Goldwater

6 July 2015

informatics

Probability estimation Sharon Goldwater 6 July 2015 Sharon Goldwater 33 Entrop **Entropy Example** Entropy One event (outcome) • Definition of entropy: $H(X) = \sum_x -p(x) \ \log_2 p(x)$ p(a) = 1 $H(X) = -1\log_2 1$ • Intuitively: a measure of uncertainty/disorder = 0• If we build a probabilistic model, we want that model to have low entropy (low uncertainty)

Sharon Goldwater	Entropy	1 Sharon Goldwater	Entropy
Entropy Example			Entropy Example
	2 equally likely events:		4 equally likely events:
p(a) = 0.5 p(b) = 0.5	$H(X) = -0.5 \log_2 0.5 - 0.5 \log_2 0.5$ = - \log_2 0.5 = 1	p(a) = 0.25 p(b) = 0.25 p(c) = 0.25 p(d) = 0.25	$H(X) = -0.25 \log_2 0.25 - 0.25 \log_2 0.25$ $-0.25 \log_2 0.25 - 0.25 \log_2 0.25$ $= -\log_2 0.25$ $= 2$

Entropy

Sharon Goldwater

2

Entropy Example			
p(a) = 0.7 $p(b) = 0.1$	3 equally likely ev likely than the othe	vents and one more ers:	
p(b) = 0.1 p(c) = 0.1 p(d) = 0.1	$H(X) = -0.7 \log_2 0.7 - 0.1 \log_2 0.1$ - 0.1 log ₂ 0.1 - 0.1 log ₂ 0.1 = -0.7 log ₂ 0.7 - 0.3 log ₂ 0.1 = -0.7 × -0.5146 - 0.3 × -3.3219 = 0.36020 + 0.99658 = 1.35678		
Sharon Goldwater	Entropy	5	
H(X) = 0	H(X) = 1	H(X) = 2	
H(X) = 3	H(X) = 1.35678	H(X) = 0.24194	

Entropy Example

3 equally likely events and one much more likely than the others:

p(b) = 0.01p(c) = 0.01p(d) = 0.01

p(a) = 0.97

$H(X) = -0.97 \log_2 0.97 - 0.01 \log_2 0.01$ $-0.01 \log_2 0.01 - 0.01 \log_2 0.01$ $= -0.97 \log_2 0.97 - 0.03 \log_2 0.01$ $= -0.97 \times -0.04394 - 0.03 \times -6.6439$ = 0.04262 + 0.19932= 0.24194

Sharon Goldwater

Sharon Goldwater

Entropy Entropy as y/n questions

How many yes-no questions (bits) do we need to find out the outcome?

- Uniform distribution with 2^n outcomes: n q's.
- Other cases: entropy is the average number of questions per outcome in a (very) long sequence, where questions can consider multiple outcomes at once.

Sharon Goldwater

Entropy as encoding sequences

Entropy

- Assume that we want to encode a sequence of events X
- Each event is encoded by a sequence of bits
- For example
 - Coin flip: heads = 0, tails = 1
 - 4 equally likely events: a = 00, b = 01, c = 10, d = 11
- 3 events, one more likely than others: a = 0, b = 10, c = 11
- Morse code: e has shorter code than q
- Average number of bits needed to encode $X \ge$ entropy of X

Entropy The Entropy of English

- Given a number of words in a text, can we guess the next word $p(w_n|w_1,...,w_{n-1})?$
- Assuming a model with a limited window size (N = # words of history)

Model	Entropy
N=0	4.76
N=1	4.03
N=2	2.8
human, unlimited	1.3

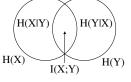
Sharon Goldwate

Entropy

Mutual Information

- A measure of independence between variables
 - How much (on average) does knowing Y reduce H(X)?

$$I(X;Y) = H(X) - H(X|Y)$$



- Ex: on avg, how much more certain will I be about w_i if you tell me w_{i-1} ?

Sharon Goldwater

Entropy

Pointwise Mutual Information

- MI for two particular outcomes (no average)
- Definition:

$$I(x,y) = \log \frac{p(x,y)}{p(x)p(y)}$$

- Ex. Consider I(San, Francisco) vs. I(and, a)
- Will discuss more later in course

10