Introduction to Computational Linguistics: N-gram language models

Sharon Goldwater (with some slides from Philipp Koehn)

9 July 2015

School of

Sharon Goldwater

n-gram models

Estimating a language model

- We want to know $P(\vec{w}) = P(w_1 \dots w_n)$ for big n (e.g., sentence).
- What will not work: try to directly estimate probability of each full sentence (e.g., using MLE).
 - Sparse data: lots of sentences will never have been seen before (MLE=0).
 - Storage: cannot store probabilities for all possible sentences.

Language models

• Language models tell us $P(\vec{w}) = P(w_1 \dots w_n)$: How likely to occur is this string of words?

Roughly: Is this string of words a "good" one in my language?

- Sentence processing:
 - Can we define a model that predicts human grammaticality judgments? or processing times? or errors?
- Phonology:

Sharon Goldwater

Sharon Goldwater

9 July 2015

- Model words w consisting of phonemes c_i , so $P(w) = P(c_1 \dots c_n)$.
- Can we define a model that predicts "goodness" of non-words (e.g., plick vs psick vs pnick)?

n-gram models A first attempt to solve the problem

Perhaps the simplest way to model sentence probabilities: a unigram model.

- Generative process: choose each word in the sentence independently.
- $\hat{P}(\vec{w}) = \prod_{i=1}^{n} P(w_i)$ • Resulting model:
- Not a good model, but still a model.
- Of course, $P(w_i)$ also needs to be estimated!

Sharon Goldwater

n-gram models

MLE for unigrams

- How to estimate P(w), e.g., P(the)?
- Remember that MLE is just relative frequencies:

$$P_{\rm ML}(w) = \frac{C(w)}{N}$$

- -C(w) is the token count of w in a large corpus
- $N = \sum_{x'} C(x')$ is the total number of word tokens in the corpus.

n-gram models Unigram models in practice

- Seems like a pretty bad model of language: probability of word obviously does depend on context.
- Yet unigram (or bag-of-words) models are surprisingly useful for some applications.
 - Can model "aboutness": topic of a document, semantic usage of a word
 - Applications: lexical semantics (disambiguation), information retrieval, text classification. (See, e.g., J&M 20.2, 23.1)
 - But, we will focus on models that capture at least some syntactic information.

Sharon Goldwate

n-gram models

General n-gram language models

$$P(\vec{w}) = P(w_1 \dots w_n) \tag{1}$$

$$= P(w_n|w_{n-1}, w_{n-2}, \dots, w_1)P(w_{n-1}|w_{n-2}, \dots, w_1)\dots P(w_1)$$
(2)

$$\approx P(w_n|w_{n-1}, w_{n-2})P(w_{n-1}|w_{n-2}, w_{n-3})\dots P(w_1)$$
(3)

- (1) By definition
- (2) Using chain rule
- (3) Makes a conditional independence assumption
 - Markov assumption: only a finite history matters (w_i is cond. indep. of $w_1 \dots w_{i-3}$ given w_{i-1}, w_{i-2}). Here, two word history = trigram model.

Sharon Goldwater

n-gram models

Estimating N-Gram Probabilities

• Maximum likelihood (relative frequency) estimation for bigrams:

$$P_{\rm ML}(w_2|w_1) = \frac{C(w_1, w_2)}{C(w_1)}$$

• Or trigrams:

$$P_{\rm ML}(w_3|w_1, w_2) = \frac{C(w_1, w_2, w_3)}{C(w_1, w_2)}$$

- Collect counts over a large text corpus
 - Millions to billions of words are easy to get

F

- (trillions of English words available on the web)

Derivation of MLE formulas

- Defn of conditional probability: $P(B|A) = \frac{P(A,B)}{P(A)}$
- Let $A = "w_1$ is first item in bigram", $B = "w_2$ is second item in bigram".

$$P_{\rm ML}(w_2|w_1) = \frac{P_{\rm ML}(w_1, w_2)}{P_{\rm ML}(w_1, \cdot)}$$
$$= \frac{C(w_1, w_2)/(N-1)}{C(w_1, \cdot)/(N-1)}$$
$$= \frac{C(w_1, w_2)}{C(w_1, \cdot)}$$

• Note subtlety in edge case.

Sharon Goldwater

n-gram models

How good is the LM?

- A good model M assigns a text of real English \vec{w} a high probability.
- Can be measured with cross entropy:

$$H_M(w_1 \dots w_n) = -\frac{1}{n} \log P_M(w_1 \dots w_n)$$

- Avg neg log probability our model assigns to each word we saw
- Or, perplexity:

$$\mathsf{PP}_M(\vec{w}) = 2^{H_M(\vec{w})}$$

Sharon Goldwater

n-gram models

Comparison 1–4-Gram					
word	unigram	bigram	trigram	4-gram	
i	6.684	3.197	3.197	3.197	
would	8.342	2.884	2.791	2.791	
like	9.129	2.026	1.031	1.290	
to	5.081	0.402	0.144	0.113	
commend	15.487	12.335	8.794	8.633	
the	3.885	1.402	1.084	0.880	
rapporteur	10.840	7.319	2.763	2.350	
on	6.765	4.140	4.150	1.862	
his	10.678	7.316	2.367	1.978	
work	9.993	4.816	3.498	2.394	
	4.896	3.020	1.785	1.510	
	4.828	0.005	0.000	0.000	
average	8.051	4.072	2.634	2.251	
perplexity	265.136	16.817	6.206	4.758	

Sharon Goldwater

n-gram models Unseen N-Grams

- What happens when I try to compute P(consuming|shall commence)?
 - Assume we have seen shall commence in our corpus
- But we have never seen shall commence consuming in our corpus
- $\rightarrow P(\text{consuming}|\text{shall commence}) = 0$
- Any sentence with shall commence consuming will be assigned probability 0

The guests shall commence consuming supper Green inked shall commence consuming garden the

Example: 3-Gram

• Counts for trigrams in Europarl corpus, and estimated word probabilities

the gre	en (to	tal: 1748)	the ree	the red (total: 225)			the blue (total: 54)			
word	с.	prob.	word	с.	prob.	word	с.	prob.		
paper	801	0.458	cross	123	0.547	box	16	0.296		
group	640	0.367	tape	31	0.138		6	0.111		
light	110	0.063	army	9	0.040	flag	6	0.111		
party	27	0.015	card	7	0.031	,	3	0.056		
ecu	21	0.012	,	5	0.022	angel	3	0.056		

– 225 trigrams in the Europarl corpus start with the red

- 123 of them end with cross

Sharon Goldwater

 \rightarrow maximum likelihood probability is $\frac{123}{225} = 0.547$.

Example: 3-Gram					
prediction	$P_{ m ML}$	$\operatorname{-log}_2 P_{\mathrm{ML}}$			
$P_{\rm ML}(i)$	0.109	3.197			
$P_{\rm ML}({\rm would} {<}{\rm s}{>}{\rm i})$	0.144	2.791			
$P_{ m ML}(m like m i would)$	0.489	1.031			
$P_{\rm ML}$ (to would like)	0.905	0.144			
$P_{\rm ML}({\rm commend} { m like to})$	0.002	8.794			
$P_{ m ML}(m the m to \ commend)$	0.472	1.084			
$P_{\rm ML}$ (rapporteur commend the)	0.147	2.763			
$P_{\rm ML}$ (on the rapporteur)	0.056	4.150			
$P_{\rm ML}$ (his rapporteur on)	0.194	2.367			
$P_{\rm ML}({\rm work} {\rm on \ his})$	0.089	3.498			
$P_{\rm ML}(. { m his work})$	0.290	1.785			
$P_{\rm ML}(\rm work.)$	0.99999	0.000014			
	average	2.634			

n-gram models

Sharon Goldwater

10

12

n-gram models

11

Unseen N-Grams

- What happens when I try to compute P(consuming|shall commence)?
 - Assume we have seen shall commence in our corpus
 - But we have never seen shall commence consuming in our corpus

Sharon Goldwater

Sharon Goldwater

n-gram models

13

15

The problem with MLE

- $\bullet\,$ MLE estimates probabilities that make the observed data maximally probable
- by assuming anything unseen cannot happen
- It over-fits the training data
- Smoothing methods reassign some probability mass from observed to unobserved events

Add-One Smoothing

• For all possible bigrams, add one more count.

 \Rightarrow

$$P_{\mathrm{ML}}(w_i|w_{i-1}) = \frac{C(w_{i-1}, w_i)}{C(w_{i-1})}$$
$$P_{+1}(w_i|w_{i-1}) = \frac{C(w_{i-1}, w_i) + 1}{C(w_{i-1})}$$

?

Add-One Smoothing

• For all possible bigrams, add one more count.

 \Rightarrow

$$P_{\mathrm{ML}}(w_i|w_{i-1}) = \frac{C(w_{i-1}, w_i)}{C(w_{i-1})}$$

$$P_{+1}(w_i|w_{i-1}) = \frac{C(w_{i-1}, w_i) + 1}{C(w_{i-1})}$$

• NO! Summing over possible values of w_i (for vocabulary V) must equal 1:

 $\sum_{w_i \in V} P(w_i | w_{i-1}) = 1$

• True for $P_{\rm ML}$ but we increased the numerator; must change denominator too.

- Large vobulary size means v is often much larger than $C(w_{i-1})$, overpowers actual counts.
- Ex: in Europarl, v = 86,700 word types (30m tokens, max $C(w_{i-1}) = 2m$).
- Compute some example probabilities:

$C(w_{i-1})$) = 10,00	00		$C(w_i)$	$_{-1}) = 100$	
$C(w_{i-1}, w_i)$	$P_{\rm ML} =$	$P_{+1} \approx$	C((w_{i-1}, w_i)	$P_{\rm ML} =$	$P_{+1} \approx$
100	1/100	1/970	10	0	1	1/870
10	1/1k	1/10k	10		1/10	1/9k
1	1/10k	1/48k	1		1/100	1/43k
0	0	1/97k	0		0	1/87k

Sharon Goldwater

18

20

16

19

n-gram models Add- α Smoothing

• Add $\alpha < 1$ to each count

 $P_{+\alpha}(w_i|w_{i-1}) = \frac{C(w_{i-1}, w_i) + \alpha}{C(w_{i-1}) + \alpha v}$

• Simplifying notation: c is n-gram count, n is history count

$$P_{+\alpha} = \frac{c+\alpha}{n+\alpha v}$$

What is a good value for α?

Sharon Goldwater

n-gram models

21

A general methodology

- Training/dev/test split is used across machine learning/NLP, and often also appropriate for CL (esp cognitive modeling).
- Development set used for evaluating different models, debugging. optimizing/fitting parameters (like α)
- Test set performance measures how well model generalizes once final model and parameters are chosen. (Ideally: once per paper)
- · Avoids overfitting to the training set and even to the test set

change these much.

• Add-one smoothing steals way too much

n-gram models

Optimizing α

- Divide corpus into training set (80-90%), held-out (or development) set (5-10%), and **test** set (5-10%)
- Train model (estimate probabilities) on training set with different values of α
- Choose the value of α that minimizes perplexity on development set
- Report final results on test set

Sharon Goldwater

n-gram models

Sharon Goldwater n-gram models

n-gram models

Add-One Smoothing: normalization

• We want:

• Solve for *x*:

Sharon Goldwater

Sharon Goldwate

Sharon Goldwater

 $\sum_{w:\in V} \frac{C(w_{i-1}, w_i) + 1}{C(w_{i-1}) + x} = 1$

 $\sum_{w_i \in V} (C(w_{i-1}, w_i) + 1) = C(w_{i-1}) + x$

 $C(w_{i-1}) + v = C(w_{i-1}) + x$

 $\sum_{w_i \in V} C(w_{i-1}, w_i) + \sum_{w_i \in V} 1 = C(w_{i-1}) + x$

n-gram models

The problem with Add-One smoothing

• ML estimates for frequent events are quite accurate, don't want smoothing to

• So, $P_{+1}(w_i|w_{i-1}) = \frac{C(w_{i-1},w_i)+1}{C(w_{i-1})+v}$ where v = vocabulary size.

• All smoothing methods "steal from the rich to give to the poor"

Adjusted Counts

• Previously, we estimated probabilities based on actual counts

 $P_{\rm ML} = \frac{c}{n}$

• Then, we changed the formula to estimate smoothed probabilities

 $P_{+\alpha} = \frac{c+\alpha}{n+\alpha v}$

• Another view: we adjusted the counts c

$$P_{+\alpha} = \frac{c^*}{n} \quad \Rightarrow \quad c^* = n \ P_{+\alpha} = (c+\alpha) \ \frac{n}{n+\alpha \alpha}$$

Sharon Goldwater

n-gram models

Good-Turing for 2-Grams in Europarl

Count	Count of counts	Adjusted count	Test count
c	N_c	c^*	t_c
0	7,514,941,065	0.00015	0.00016
1	1,132,844	0.46539	0.46235
2	263,611	1.40679	1.39946
3	123,615	2.38767	2.34307
4	73,788	3.33753	3.35202
5	49,254	4.36967	4.35234
6	35,869	5.32928	5.33762
8	21,693	7.43798	7.15074
10	14,880	9.31304	9.11927
20	4,546	19.54487	18.95948

 t_c are average counts of n-grams in test set that occurred c times in corpus

Sharon Goldwater

n-gram models

Good-Turing justification: 1-count items

• Estimate the probability that the next observation was seen once before (i.e., will have count 2 once we see it)

$$P(\text{once before}) = \frac{2N_2}{n}$$

• Divide that probability equally amongst all 1-count events

$$P_{\rm GT} = \frac{1}{N_1} \frac{2N_2}{n} \quad \Rightarrow \quad c^* = \frac{2N_2}{N_1}$$

• Same thing for higher count items

Sharon Goldwater

n-gram models

Good-Turing Smoothing

 $\bullet\,$ Adjust actual counts c to expected counts c^* with formula

$$c^* = (c+1)\frac{N_{c+1}}{N_c}$$

- N_c number of n-grams that occur exactly c times in corpus
- N_0 total number of unseen n-grams

Sharon Goldwater

24

26

28

n-gram models

25

Good-Turing justification: 0-count items

• Estimate the probability that the next observation is previously unseen (i.e., will have count 1 once we see it)

$$P(\mathsf{unseen}) = \frac{N_1}{n}$$

This part uses MLE!

• Divide that probability equally amongst all unseen events

$$P_{\rm GT} = \frac{1}{N_0} \frac{N_1}{n} \quad \Rightarrow \quad c^* = \frac{N_1}{N_0}$$

Sharon Goldwater

27

n-gram models Problems with Good-Turing

- Assumes we know the vocabulary size (no unseen words) [but see J&M 4.3.2]
- Doesn't allow "holes" in the counts (if $N_i > 0$, $N_{i-1} > 0$) [but see J&M 4.5.3]
- Applies discounts even to high-frequency items [but see J&M 4.5.3]
- Divides shifted probability mass evenly between all items of same frequency.

Sharon Goldwater

n-gram models