
Introduction to Computational Linguistics:
N-gram language models

Sharon Goldwater
(with some slides from Philipp Koehn)

9 July 2015

Sharon Goldwater n-gram models 9 July 2015

Language models

• Language models tell us P (~w) = P (w1 . . . wn): How likely to occur is this
string of words?

Roughly: Is this string of words a “good” one in my language?

• Sentence processing:

– Can we define a model that predicts human grammaticality judgments? or
processing times? or errors?

• Phonology:

– Model words w consisting of phonemes ci, so P (w) = P (c1 . . . cn).
– Can we define a model that predicts “goodness” of non-words

(e.g., plick vs psick vs pnick)?

Sharon Goldwater n-gram models 1

Estimating a language model

• We want to know P (~w) = P (w1 . . . wn) for big n (e.g., sentence).

• What will not work: try to directly estimate probability of each full sentence
(e.g., using MLE).

– Sparse data: lots of sentences will never have been seen before (MLE=0).
– Storage: cannot store probabilities for all possible sentences.

Sharon Goldwater n-gram models 2

A first attempt to solve the problem

Perhaps the simplest way to model sentence probabilities: a unigram model.

• Generative process: choose each word in the sentence independently.

• Resulting model: P̂ (~w) =
n∏

i=1

P (wi)

• Not a good model, but still a model.

• Of course, P (wi) also needs to be estimated!

Sharon Goldwater n-gram models 3

MLE for unigrams

• How to estimate P (w), e.g., P (the)?

• Remember that MLE is just relative frequencies:

PML(w) =
C(w)

N

– C(w) is the token count of w in a large corpus
– N =

∑
x′ C(x′) is the total number of word tokens in the corpus.

Sharon Goldwater n-gram models 4

Unigram models in practice

• Seems like a pretty bad model of language: probability of word obviously does
depend on context.

• Yet unigram (or bag-of-words) models are surprisingly useful for some
applications.

– Can model “aboutness”: topic of a document, semantic usage of a word

– Applications: lexical semantics (disambiguation), information retrieval, text
classification. (See, e.g., J&M 20.2, 23.1)

– But, we will focus on models that capture at least some syntactic
information.

Sharon Goldwater n-gram models 5

General n-gram language models

P (~w) = P (w1 . . . wn) (1)

= P (wn|wn−1, wn−2, . . . w1)P (wn−1|wn−2, . . . w1) . . . P (w1) (2)

≈ P (wn|wn−1, wn−2)P (wn−1|wn−2, wn−3) . . . P (w1) (3)

• (1) By definition

• (2) Using chain rule

• (3) Makes a conditional independence assumption

– Markov assumption: only a finite history matters (wi is cond. indep. of
w1 . . . wi−3 given wi−1, wi−2). Here, two word history = trigram model.

Sharon Goldwater n-gram models 6

Estimating N-Gram Probabilities

• Maximum likelihood (relative frequency) estimation for bigrams:

PML(w2|w1) =
C(w1, w2)

C(w1)

• Or trigrams:

PML(w3|w1, w2) =
C(w1, w2, w3)

C(w1, w2)

• Collect counts over a large text corpus

– Millions to billions of words are easy to get
– (trillions of English words available on the web)

Sharon Goldwater n-gram models 7



Derivation of MLE formulas

• Defn of conditional probability: P (B|A) = P (A,B)
P (A)

• Let A = “w1 is first item in bigram”, B = “w2 is second item in bigram”.

PML(w2|w1) =
PML(w1, w2)

PML(w1, ·)

=
C(w1, w2)/(N − 1)

C(w1, ·)/(N − 1)

=
C(w1, w2)

C(w1, ·)

• Note subtlety in edge case.

Sharon Goldwater n-gram models 8

Example: 3-Gram

• Counts for trigrams in Europarl corpus, and estimated word probabilities

the green (total: 1748)

word c. prob.

paper 801 0.458
group 640 0.367
light 110 0.063
party 27 0.015
ecu 21 0.012

the red (total: 225)

word c. prob.

cross 123 0.547
tape 31 0.138
army 9 0.040
card 7 0.031

, 5 0.022

the blue (total: 54)

word c. prob.

box 16 0.296
. 6 0.111

flag 6 0.111
, 3 0.056

angel 3 0.056

– 225 trigrams in the Europarl corpus start with the red
– 123 of them end with cross
→ maximum likelihood probability is 123

225 = 0.547.

Sharon Goldwater n-gram models 9

How good is the LM?

• A good model M assigns a text of real English ~w a high probability.

• Can be measured with cross entropy:

HM(w1 . . . wn) = −1

n
logPM(w1 . . . wn)

– Avg neg log probability our model assigns to each word we saw

• Or, perplexity:
PPM(~w) = 2HM(~w)

Sharon Goldwater n-gram models 10

Example: 3-Gram
prediction PML -log2 PML

PML(i|</s><s>) 0.109 3.197

PML(would|<s>i) 0.144 2.791

PML(like|i would) 0.489 1.031

PML(to|would like) 0.905 0.144

PML(commend|like to) 0.002 8.794

PML(the|to commend) 0.472 1.084

PML(rapporteur|commend the) 0.147 2.763

PML(on|the rapporteur) 0.056 4.150

PML(his|rapporteur on) 0.194 2.367

PML(work|on his) 0.089 3.498

PML(.|his work) 0.290 1.785

PML(</s>|work .) 0.99999 0.000014

average 2.634

Sharon Goldwater n-gram models 11

Comparison 1–4-Gram
word unigram bigram trigram 4-gram

i 6.684 3.197 3.197 3.197

would 8.342 2.884 2.791 2.791

like 9.129 2.026 1.031 1.290

to 5.081 0.402 0.144 0.113

commend 15.487 12.335 8.794 8.633

the 3.885 1.402 1.084 0.880

rapporteur 10.840 7.319 2.763 2.350

on 6.765 4.140 4.150 1.862

his 10.678 7.316 2.367 1.978

work 9.993 4.816 3.498 2.394

. 4.896 3.020 1.785 1.510

</s> 4.828 0.005 0.000 0.000

average 8.051 4.072 2.634 2.251

perplexity 265.136 16.817 6.206 4.758

Sharon Goldwater n-gram models 12

Unseen N-Grams

• What happens when I try to compute P (consuming|shall commence)?

– Assume we have seen shall commence in our corpus
– But we have never seen shall commence consuming in our corpus

Sharon Goldwater n-gram models 13

Unseen N-Grams

• What happens when I try to compute P (consuming|shall commence)?

– Assume we have seen shall commence in our corpus
– But we have never seen shall commence consuming in our corpus
→ P (consuming|shall commence) = 0

• Any sentence with shall commence consuming will be assigned probability 0

The guests shall commence consuming supper
Green inked shall commence consuming garden the

Sharon Goldwater n-gram models 14

The problem with MLE

• MLE estimates probabilities that make the observed data maximally probable

• by assuming anything unseen cannot happen

• It over-fits the training data

• Smoothing methods reassign some probability mass from observed to
unobserved events

Sharon Goldwater n-gram models 15



Add-One Smoothing

• For all possible bigrams, add one more count.

PML(wi|wi−1) =
C(wi−1, wi)
C(wi−1)

⇒ P+1(wi|wi−1) =
C(wi−1, wi) + 1

C(wi−1)
?

Sharon Goldwater n-gram models 16

Add-One Smoothing

• For all possible bigrams, add one more count.

PML(wi|wi−1) =
C(wi−1, wi)
C(wi−1)

⇒ P+1(wi|wi−1) =
C(wi−1, wi) + 1

C(wi−1)
?

• NO! Summing over possible values of wi (for vocabulary V ) must equal 1:

∑

wi∈V
P (wi|wi−1) = 1

• True for PML but we increased the numerator; must change denominator too.

Sharon Goldwater n-gram models 17

Add-One Smoothing: normalization

• We want: ∑

wi∈V

C(wi−1, wi) + 1

C(wi−1) + x
= 1

• Solve for x: ∑

wi∈V
(C(wi−1, wi) + 1) = C(wi−1) + x

∑

wi∈V
C(wi−1, wi) +

∑

wi∈V
1 = C(wi−1) + x

C(wi−1) + v = C(wi−1) + x

• So, P+1(wi|wi−1) =
C(wi−1,wi)+1
C(wi−1)+v

where v = vocabulary size.

Sharon Goldwater n-gram models 18

Add-One Smoothing: effects

• Large vobulary size means v is often much larger than C(wi−1), overpowers
actual counts.

• Ex: in Europarl, v = 86, 700 word types (30m tokens, max C(wi−1) = 2m).

• Compute some example probabilities:

C(wi−1) = 10, 000
C(wi−1, wi) PML = P+1 ≈
100 1/100 1/970
10 1/1k 1/10k
1 1/10k 1/48k
0 0 1/97k

C(wi−1) = 100
C(wi−1, wi) PML = P+1 ≈
100 1 1/870
10 1/10 1/9k
1 1/100 1/43k
0 0 1/87k

Sharon Goldwater n-gram models 19

The problem with Add-One smoothing

• All smoothing methods “steal from the rich to give to the poor”

• Add-one smoothing steals way too much

• ML estimates for frequent events are quite accurate, don’t want smoothing to
change these much.

Sharon Goldwater n-gram models 20

Add-α Smoothing

• Add α < 1 to each count

P+α(wi|wi−1) =
C(wi−1, wi) + α

C(wi−1) + αv

• Simplifying notation: c is n-gram count, n is history count

P+α =
c+ α

n+ αv

• What is a good value for α?

Sharon Goldwater n-gram models 21

Optimizing α

• Divide corpus into training set (80-90%), held-out (or development) set
(5-10%), and test set (5-10%)

• Train model (estimate probabilities) on training set with different values of α

• Choose the value of α that minimizes perplexity on development set

• Report final results on test set

Sharon Goldwater n-gram models 22

A general methodology

• Training/dev/test split is used across machine learning/NLP, and often also
appropriate for CL (esp cognitive modeling).

• Development set used for evaluating different models, debugging,
optimizing/fitting parameters (like α)

• Test set performance measures how well model generalizes once final model
and parameters are chosen. (Ideally: once per paper)

• Avoids overfitting to the training set and even to the test set

Sharon Goldwater n-gram models 23



Adjusted Counts

• Previously, we estimated probabilities based on actual counts

PML =
c

n

• Then, we changed the formula to estimate smoothed probabilities

P+α =
c+ α

n+ αv

• Another view: we adjusted the counts c

P+α =
c∗

n
⇒ c∗ = n P+α = (c+ α)

n

n+ αv

Sharon Goldwater n-gram models 24

Good-Turing Smoothing

• Adjust actual counts c to expected counts c∗ with formula

c∗ = (c+ 1)
Nc+1

Nc

– Nc number of n-grams that occur exactly c times in corpus

– N0 total number of unseen n-grams

Sharon Goldwater n-gram models 25

Good-Turing for 2-Grams in Europarl

Count Count of counts Adjusted count Test count

c Nc c∗ tc
0 7,514,941,065 0.00015 0.00016

1 1,132,844 0.46539 0.46235

2 263,611 1.40679 1.39946

3 123,615 2.38767 2.34307

4 73,788 3.33753 3.35202

5 49,254 4.36967 4.35234

6 35,869 5.32928 5.33762

8 21,693 7.43798 7.15074

10 14,880 9.31304 9.11927

20 4,546 19.54487 18.95948

tc are average counts of n-grams in test set that occurred c times in corpus

Sharon Goldwater n-gram models 26

Good-Turing justification: 0-count items

• Estimate the probability that the next observation is previously unseen (i.e.,
will have count 1 once we see it)

P (unseen) =
N1

n

This part uses MLE!

• Divide that probability equally amongst all unseen events

PGT =
1

N0

N1

n
⇒ c∗ =

N1

N0

Sharon Goldwater n-gram models 27

Good-Turing justification: 1-count items

• Estimate the probability that the next observation was seen once before (i.e.,
will have count 2 once we see it)

P (once before) =
2N2

n

• Divide that probability equally amongst all 1-count events

PGT =
1

N1

2N2

n
⇒ c∗ =

2N2

N1

• Same thing for higher count items

Sharon Goldwater n-gram models 28

Problems with Good-Turing

• Assumes we know the vocabulary size (no unseen words) [but see J&M 4.3.2]

• Doesn’t allow “holes” in the counts (if Ni > 0, Ni−1 > 0) [but see J&M 4.5.3]

• Applies discounts even to high-frequency items [but see J&M 4.5.3]

• Divides shifted probability mass evenly between all items of same frequency.

Sharon Goldwater n-gram models 29


