Introduction to Computational Linguistics:
N-gram language models
Sharon Goldwater

(with some slides from Philipp Koehn)
9 July 2015

[] School of _ e
informatics

Language models
e Language models tell us P(w) = P(w; ... w,): How likely to occur is this
string of words?

Roughly: Is this string of words a “good” one in my language?

e Sentence processing:
— Can we define a model that predicts human grammaticality judgments? or
processing times? or errors?
e Phonology:

— Model words w consisting of phonemes ¢;, so P(w) = P(cy...cy).
— Can we define a model that predicts “goodness” of non-words
(e.g., plick vs psick vs pnick)?

Sharon Goldwater n-gram models 9 July 2015

Estimating a language model
e We want to know P(w) = P(w ...w,) for big n (e.g., sentence).

e What will not work: try to directly estimate probability of each full sentence
(e.g., using MLE).

— Sparse data: lots of sentences will never have been seen before (MLE=0).
— Storage: cannot store probabilities for all possible sentences.

Sharon Goldwater n-gram models 1

A first attempt to solve the problem
Perhaps the simplest way to model sentence probabilities: a unigram model.
e Generative process: choose each word in the sentence independently.

e Resulting model:

P(w) = H P(w;)

e Not a good model, but still a model.

e Of course, P(w;) also needs to be estimated!

Sharon Goldwater n-gram models 2

MLE for unigrams
e How to estimate P(w), e.g., P(the)?

e Remember that MLE is just relative frequencies:

C(w)

Py (w) = —5

— C(w) is the token count of w in a large corpus
- N =3, C(a2) is the total number of word tokens in the corpus.

Sharon Goldwater n-gram models 3

Unigram models in practice

e Seems like a pretty bad model of language: probability of word obviously does
depend on context.

e Yet unigram (or bag-of-words) models are surprisingly useful for some
applications.

— Can model “aboutness”: topic of a document, semantic usage of a word

— Applications: lexical semantics (disambiguation), information retrieval, text
classification. (See, e.g., J&M 20.2, 23.1)

— But, we will focus on models that capture at least some syntactic
information.

Sharon Goldwater n-gram models 4

General n-gram language models

P(@) = Plwi...w,) (1)

P(wp|wp—1,Wn—2, ... w1) P(wp_1|wp_2,...w1)... P(w1) (2)

~ P('wnlwn—lv wn—Q)P(wn—l‘wn—Zv wn—3) ce. P(wl) (3)
e (1) By definition
e (2) Using chain rule

e (3) Makes a conditional independence assumption

— Markov assumption: only a finite history matters (w; is cond. indep. of
wy ... w;_3 given w;_1,w;_o). Here, two word history = trigram model.

Sharon Goldwater n-gram models 5

Estimating N-Gram Probabilities

e Maximum likelihood (relative frequency) estimation for bigrams:

C'(wy, w:
1
e Or trigrams:
C(wy, wa, w:
Puan (w3, ws) = S0 2 3)

C(wy, w2)

e Collect counts over a large text corpus

— Millions to billions of words are easy to get
— (trillions of English words available on the web)

Sharon Goldwater n-gram models 6

Sharon Goldwater n-gram models 7

Derivation of MLE formulas

o Defn of conditional probability: P(BJA) = %

e Let A= "wy is first item in bigram”, B = “ws is second item in bigram”.

Example: 3-Gram

e Counts for trigrams in Europarl corpus, and estimated word probabilities

the green (total: 1748)

the red (total: 225)

the blue (total: 54)

word . prob. word | c. prob. word | c. | prob.
Py (wy, wa) paper | 801 0.458 cross | 123 | 0.547 box | 16 | 0.296
PML(’wz LU1) o N -
Py (wy,+) group | 640 0.367 tape | 31 | 0.138 . 6 | 0.111
C(wy,wa)/(N — 1) light | 110 | 0.063 army | 9 | 0.040 flag | 6 | 0.111
C(Zl,‘l .)/(A\Y _ 1) party 27 0.015 card 7 0.031 5 3 0.056
ecu 21 0.012 , 5 | 0.022 angel | 3 | 0.056
_ C(U)h u,'g)
C(w,) — 225 trigrams in the Europarl corpus start with the red
Note subtlet in ed — 123 of them end with cross
¢ Tote subtiety In edge case. — maximum likelihood probability is 122 = 0.547.
Sharon Goldwater n-gram models 8 Sharon Goldwater n-gram models 9

How good is the LM?

Example: 3-Gram

prediction P, -log, Py,
PyL(i]</s><s>) 0.109 3.197
o A good model M assigns a text of real English @ a high probability. Py, (would|<s>i) 0.144 2.791
Py, (like|i would) 0.489 1.031
e Can be measured with cross entropy: Py, (to|would like) 0.905 0.144
Pyi1,(commend|like to) 0.002 8.794
1 Py, (the|to commend) 0.472 1.084
Hy(wy ... wn) = n log Py (wy wn) Py, (rapporteur|commend the) 0.147 2.763
Py, (on|the rapporteur) 0.056 4.150
Py, (his|rapporteur on) 0.194 2.367
— Avg neg log probability our model assigns to each word we saw Py (work|on his) 0.089 3.498
Py, (. |his work) 0.290 1.785
e Or, perplexity: P (</5>[work) 0.99999 | 0.000014
PP (@) = oHr (@) average 2.634
Sharon Goldwater n-gram models 10 Sharon Goldwater n-gram models 11
Comparison 1-4-Gram Unseen N-Grams
word unigram | bigram | trigram | 4-gram
i 6684 | 3197 | 3197 | 3.197 e What happens when | try to compute P(consuming|shall commence)?
would 8.342 2.884 2.791 2.791
like 0.129 2.026 1.031 1.290 — Assume we have seen shall commence in our corpus
to 5.081 | 0.402 0.144 | 0.113 — But we have never seen shall commence consuming in our corpus
commend 15.487 | 12.335 8.794 8.633
the 3.885 1.402 1.084 0.880
rapporteur 10.840 7.319 2.763 2.350
on 6.765 4.140 4.150 1.862
his 10.678 7.316 2.367 1.978
work 9.993 4.816 3.498 2.394
. 4.896 3.020 1.785 1.510
</[s> 4.828 0.005 0.000 0.000
average 8.051 4.072 2.634 2.251
perplexity 265.136 | 16.817 6.206 4.758
Sharon Goldwater n-gram models 12 Sharon Goldwater n-gram models 13

Unseen N-Grams

e What happens when | try to compute P(consuming|shall commence)?

— Assume we have seen shall commence in our corpus
— But we have never seen shall commence consuming in our corpus
— P(consuming|shall commence) = 0

e Any sentence with shall commence consuming will be assigned probability 0

The guests shall commence consuming supper
Green inked shall commence consuming garden the

The problem with MLE

e MLE estimates probabilities that make the observed data maximally probable

e by assuming anything unseen cannot happen

e |t over-fits the training data

e Smoothing methods reassign some probability mass from observed to
unobserved events

Sharon Goldwater n-gram models 14

Sharon Goldwater

n-gram models

15

Add-One Smoothing

e For all possible bigrams, add one more count.

Add-One Smoothing

e For all possible bigrams, add one more count.

C(wi—1,w;) Clwi—1,w;)
P (wilwi_q) = ——=L 74 Py (wilw; 1) = ———=>
i (wilwi-1) Clan) (wi|wi—1) Clo D)
Clwi_1,w;) + 1 Clwi—y,wy) +1 0
N P (il 1) = CWi=1: 9 = Py (wilw;_y) = =W T2 :
a(wihwi-a) C(w;—1) o Clwi-1)
e NO! Summing over possible values of w; (for vocabulary V') must equal 1:
Z P(wi|w;—1) =1
w; €V
e True for Py, but we increased the numerator; must change denominator too.
Sharon Goldwater n-gram models 16 Sharon Goldwater

Add-One Smoothing: normalization

o We want: Z Clwi—1,wi)) +1 1
w; eV C(wi71> T

e Solve for z:

Z (Clwi—1,w) +1) = Clwi—1) +x

n-gram models 17

Add-One Smoothing: effects
e Large vobulary size means v is often much larger than C(w;_;), overpowers
actual counts.
e Ex: in Europarl, v = 86,700 word types (30m tokens, max C(w;_1) = 2m).

e Compute some example probabilities:

C(w;—1) = 10,000

i C(w;—1) = 100

Clwi—y,w;) | PuL= P~ Clwi—1,w;) | PuL= Py =

. Clwipw)+ Y 1 = Clwim) +a 100 1/100 1/970 100 1 1/870

wi€V wi€V 10 1/1k 1/10k 10 1/10 1/9k

Cwi—1)+v = Clwi—1)+x 1 1/10k 1/48k 1 1/100 1/43k

0 0 1/97k 0 0 1/87k

e So, Pyi(wi|lwi—1) = W where v = vocabulary size.

Sharon Goldwater n-gram models 18 Sharon Goldwater n-gram models 19

The problem with Add-One smoothing
e All smoothing methods “steal from the rich to give to the poor”
e Add-one smoothing steals way too much

e ML estimates for frequent events are quite accurate, don't want smoothing to
change these much.

Add-a Smoothing

e Add a < 1 to each count

Clwi—1,w;) + «

Pra(wilwi-1) = C(wi—1) + av

e Simplifying notation: ¢ is n-gram count, n is history count

c+«
o =
“ n4av
e What is a good value for a?
Sharon Goldwater n-gram models 20 Sharon Goldwater n-gram models 21

Optimizing «

e Divide corpus into training set (80-90%), held-out (or development) set
(5-10%), and test set (5-10%)

e Train model (estimate probabilities) on training set with different values of «
e Choose the value of a that minimizes perplexity on development set

e Report final results on test set

A general methodology

e Training/dev/test split is used across machine learning/NLP, and often also
appropriate for CL (esp cognitive modeling).

e Development set used for evaluating different models,
optimizing/fitting parameters (like)

debugging,

o Test set performance measures how well model generalizes once final model
and parameters are chosen. (ldeally: once per paper)

e Avoids overfitting to the training set and even to the test set

Sharon Goldwater n-gram models 22

Sharon Goldwater n-gram models 23

Adjusted Counts

e Previously, we estimated probabilities based on actual counts

e Then, we changed the formula to estimate smoothed probabilities

PML = -
n

Good-Turing Smoothing

e Adjust actual counts ¢ to expected counts ¢* with formula

c =

c+«
P} a —
n+ av
— N, number of n-grams that occur exactly ¢ times in corpus
e Another view: we adjusted the counts ¢ .
— Ny total number of unseen n-grams
*
c n
Po=— = ¢ =nP,=(c+a)
n n+av
Sharon Goldwater n-gram models 24 Sharon Goldwater n-gram models 25

Good-Turing for 2-Grams in Europarl

Count | Count of counts | Adjusted count | Test count
c N. c* te
7,514,941,065 0.00015 0.00016
1 1,132,844 0.46539 0.46235
2 263,611 1.40679 1.39946
3 123,615 2.38767 2.34307
4 73,788 3.33753 3.35202
5 49,254 4.36967 4.35234
6 35,869 5.32928 5.33762
8 21,693 7.43798 7.15074
10 14,880 9.31304 9.11927
20 4,546 19.54487 18.95948

t. are average counts of n-grams in test set that occurred ¢ times in corpus

Good-Turing justification: 0-count items

e Estimate the probability that the next observation is previously unseen (i.e.,
will have count 1 once we see it)

]\f
P(unseen) = —*
n

This part uses MLE!

e Divide that probability equally amongst all unseen events

)\rl
Por=—— = * ==
oT No n ‘ Ny

Sharon Goldwater n-g

Good-Turing justification: 1-count items

ram models

26

e Estimate the probability that the next observation was seen once before (i.e.,

will have count 2 once we see it)

2N:
P(once before) = =2

n

e Divide that probability equally amongst all 1-count events

e Same thing for higher count items

2N,
=N

Sharon Goldwater

n-gram models

Problems with Good-Turing

27

o Assumes we know the vocabulary size (no unseen words) [but see J&M 4.3.2]

e Doesn't allow “holes” in the counts (if N; > 0, N;_1 > 0) [but see J&M 4.5.3]

e Applies discounts even to high-frequency items [but see J&M 4.5.3]

e Divides shifted probability mass evenly between all items of same frequency.

Sharon Goldwater n-gram models

28

Sharon Goldwater

n-gram models

29

