Introduction to Computational Linguistics: Smoothing

Sharon Goldwater (with some slides from Philipp Koehn)

13 July 2015

School of ormatics

Sharon Goldwater

Recap: smoothing methods

- Two simple smoothing methods:
 - Add-one: simplest choice, but steals way too much mass from seen items. - Add- α : somewhat better; optimize α on held-out data.
- These may actually be good enough when not many distinct items in "vocabulary", e.g. *n*-gram models over
- characters or phonemes (to model phonotactics)
- parts of speech (syntactic categories): coming up
- But not good for word n-grams.
- This lecture: a taster of other methods for smoothing word probabilities.

Sharon Goldwater

Sharon Goldwate

Good-Turing Smoothing

Adjust actual counts c to expected counts c* with formula

$$c^* = (c+1)\frac{N_{c+1}}{N_c}$$

smoothing

Good-Turing justification: 0-count items

• Estimate the probability that the next observation is previously unseen (i.e.,

 $P(\text{unseen}) = \frac{N_1}{m}$

• Divide that probability equally amongst all unseen events

- $-N_c$ number of n-grams that occur exactly c times in corpus
- $-N_0$ total number of unseen n-grams

will have count 1 once we see it)

This part uses MLE!

Recap: ngrams and smoothing

- One way to estimate $P(\vec{w})$: assume words only depend on fixed context
 - n-gram model: sentence prob is product of each word's prob conditioned on n-1 previous words.

- i.e., $P(\vec{w}) = \prod P(w_i | w_{i-n+1} \dots w_{i-1}).$

- But even for smallish n, we might not see all possible n-grams in our corpus, or see very few occurrences.
- Smoothing methods try to better estimate probabilities for infrequent events: move probability mass from seen to unseen.
- Sharon Goldwater

13 July 2015

smoothing First, notation: adjusted counts

· Previously, we estimated probabilities based on actual counts

$$P_{\rm ML} = \frac{c}{n}$$

• Then, we changed the formula to estimate smoothed probabilities

$$P_{+\alpha} = \frac{c+\alpha}{n+\alpha v}$$

• Another view: we adjusted the counts c

 $P_{+\alpha} = \frac{c^*}{n} \quad \Rightarrow \quad c^* = n \ P_{+\alpha} = (c+\alpha) \ \frac{n}{n+\alpha v}$

Sharon Goldwater

smoothing Good-Turing for 2-Grams in Europarl

Count	Count of counts	Adjusted count	Test count
c	N_c	c^*	t_c
0	7,514,941,065	0.00015	0.00016
1	1,132,844	0.46539	0.46235
2	263,611	1.40679	1.39946
3	123,615	2.38767	2.34307
4	73,788	3.33753	3.35202
5	49,254	4.36967	4.35234
6	35,869	5.32928	5.33762
8	21,693	7.43798	7.15074
10	14,880	9.31304	9.11927
20	4,546	19.54487	18.95948

 t_c are average counts of n-grams in test set that occurred c times in corpus

smoothing

Sharon Goldwater

Good-Turing justification: 1-count items

• Estimate the probability that the next observation was seen once before (i.e., will have count 2 once we see it)

$$P(\text{once before}) = \frac{2N_2}{n}$$

• Divide that probability equally amongst all 1-count events

$$P_{\rm GT} = \frac{1}{N_1} \frac{2N_2}{n} \quad \Rightarrow \quad c^* = \frac{2N_2}{N_1}$$

• Same thing for higher count items

Sharon Goldwater

smoothing

 $P_{\rm GT} = \frac{1}{N_0} \frac{N_1}{n} \quad \Rightarrow \quad c^* = \frac{N_1}{N_0}$

Sharon Goldwater

smoothing

Problems with Good-Turing

- Assumes we know the vocabulary size (no unseen words) [but see J&M 4.3.2]
- Doesn't allow "holes" in the counts (if $N_i > 0$, $N_{i-1} > 0$) [but see J&M 4.5.3]
- Applies discounts even to high-frequency items [but see J&M 4.5.3]
- Divides shifted probability mass evenly between all items of same frequency.

Remaining problem

- In given corpus, suppose we never observe
 - Scottish beer drinkers
 - Scottish beer eaters
- If we build a trigram model smoothed with Add- α or G-T, which example has higher probability?

Sharon Goldwater

smoothing Remaining problem

- Previous smoothing methods assign equal probability to all unseen events.
- Better: use information from lower order *n*-grams (shorter histories).
 - beer drinkers
- beer eaters
- Two ways: interpolation (discussed here) and backoff (see J&M).

Sharon Goldwater

Sharon Goldwater

10

12

14

smoothing Interpolation

- Higher and lower order n-gram models have different strengths and weaknesses
- high-order n-grams are sensitive to more context, but have sparse counts
- $-\,$ low-order n-grams consider only very limited context, but have robust counts
- So, combine them: $P_I(w_3|w_1,w_2)=-\lambda_1\;P_1(w_3)$

+ $\lambda_2 P_2(w_3|w_2)$ + $\lambda_3 P_3(w_3|w_1, w_2)$

– Note that $\sum_i \lambda_i = 1.$ These interpolation parameters can be optimized on held-out data.

Sharon Goldwater

Do our smoothing methods work here?

smoothing

Example from MacKay and Bauman Peto (1994):

Imagine, you see, that the language, you see, has, you see, a frequently occurring couplet, 'you see', you see, in which the second word of the couplet, see, follows the first word, you, with very high probability, you see. Then the marginal statistics, you see, are going to become hugely dominated, you see, by the words you and see, with equal frequency, you see.

- P(see) and P(you) are both high, but see nearly always follows you.
- So P(see|novel) should be much lower than P(you|novel).

Sharon Goldwater

Kneser-Ney Smoothing

- Kneser-Ney smoothing takes diversity of histories into account
- Count of distinct histories for a word

$$N_{1+}(\bullet w_i) = |\{w_{i-1} : c(w_{i-1}, w_i) > 0\}|$$

• Recall: maximum likelihood estimation of unigram language model

$$P_{ML}(w) = \frac{c(w_i)}{\sum_{w_i} c(w_i)}$$

• In Kneser-Ney smoothing, replace raw counts with count of histories

$$P_{KN}(w_i) = \frac{N_{1+}(\bullet w)}{\sum_{w_i} N_{1+}(\bullet w_i)}$$

smoothing

15

11

- **Diversity of histories matters!**
- A real example: the word York
 - fairly frequent word in Europarl corpus, occurs 477 times
 - as frequent as foods, indicates and providers
- ightarrow in unigram language model: a respectable probability
- However, it almost always directly follows New (473 times)
- So, in unseen bigram contexts, York should have low probability
 - lower than predicted by unigram model used in interpolation/backoff.

Sharon Goldwate

Sharon Goldwater

Kneser-Ney in practice

- Original version used backoff, later "modified Kneser-Ney" introduced using interpolation (Chen and Goodman, 1998).
- Fairly complex equations, but until recently the best smoothing method for word *n*-grams.
- See Chen and Goodman for extensive comparisons of KN and other smoothing methods.
- KN (and other methods) implemented in language modeling toolkits like SRILM (classic), KenLM (good for really big models), OpenGrm Ngram library (uses finite state transducers), etc.

smoothing

smoothing

Bayesian interpretations of smoothing

• We started off by asking: What is the best choice of θ given the data d that we saw?

 $P(\theta|d) \propto P(d|\theta)P(\theta)$

- MLE ignored $P(\theta)$, and we had to introduce smoothing.
- It turns out that many smoothing methods are mathematically equivalent to forms of Bayesian estimation, i.e., the use of non-uniform priors!
- Add- α smoothing: Dirichlet prior
- Kneser-Ney smoothing: Pitman-Yor prior

See MacKay and Bauman Peto (1994); (Goldwater, 2006, pp. 13-17); Goldwater et al. (2006); Teh (2006).

Sharon Goldwater

smoothing Word similarity

- Two words with $C(w_1) \gg C(w_2)$
 - salmon
 - swordfish
- Can P(salmon|caught two) tell us something about P(swordfish|caught two)?
- n-gram models: no.

Are we done with smoothing yet?

We've considered methods that predict rare/unseen words using

- Uniform probabilities (add- α , Good-Turing)
- Probabilities from lower-order n-grams (interpolation, backoff)
- Probability of appearing in new contexts (Kneser-Ney)

What's left?

Sharon Goldwater

16

19

21

smoothing Word similarity in language modeling

- Early version: class-based language models (J&M 4.9.2)
 - Define classes c of words, by hand or automatically
 - $P_{CL}(w_i|w_{i-1}) = P(c_i|c_{i-1})P(w_i|c_i)$ (an HMM)
- Recent version: distributed language models
 - Current models have better perplexity than MKN.
 - Ongoing research to make them more efficient.
 - Examples: Recursive Neural Network LM (Mikolov et al., 2010), Log Bilinear LM (Mnih and Hinton, 2007) and extensions.

smoothing

Sharon Goldwater

smoothing **Distributed word representations**

• Each word represented as high-dimensional vector (50-500 dims)

E.g., salmon is $[0.1, 2.3, 0.6, -4.7, \ldots]$

• Similar words represented by similar vectors

E.g., swordfish is [0.3, 2.2, 1.2, -3.6, ...]

Distributed word representations

Each word represented as high-dimensional vector (50-500 dims)

E.g., salmon is $[0.1, 2.3, 0.6, -4.7, \ldots]$

• Similar words represented by similar vectors

E.g., swordfish is $[0.3, 2.2, 1.2, -3.6, \ldots]$

- Representations can be thought of as feature vectors.
 - A bit like representing phonemes as vectors of their distinctive features, or vowel sounds as vectors of formant values.
 - But unlike phoneme/acoustic feature vectors, the dimensions/values are determined automatically, may not be easily interpretable.

Sharon Goldwate

smoothing Learning the representations

- Goal: learn word representations (embeddings) such that words that behave similarly end up near each other in high-dimensional space.
- 2-dimensional example:

swordfish computer Sharon Goldwater

Sharon Goldwater

Learning the representations

smoothing

- Goal: learn word representations (embeddings) such that words that behave similarly end up near each other in high-dimensional space.
- 2-dimensional example:

puter

- Machine learning methods (e.g. neural networks) are used to learn embeddings.
- · Embeddings seem to encode both semantic and syntactic similarity (using different dimensions) (Mikolov et al., 2013).

smoothing

smoothing

20

Sharon Goldwater

Other Topics in Language Modeling

Many active research areas, some more linguistically interesting than others.

- Modeling issues:
 - Morpheme-based language models
 - Syntactic language models
 - Domain adaptation: when only a small domain-specific corpus is available
- Implementation issues:
 - Speed: both to train, and to use in real-time applications like translation and speech recognition.
 - Disk space and memory: espcially important for mobile devices

Summary

- We can estimate sentence probabilities by breaking down the problem, e.g. by instead estimating *n*-gram probabilities.
- Longer *n*-grams capture more linguistic information, but are sparser.
- · Different smoothing methods capture different intuitions about how to estimate probabilities for rare/unseen events.
- still lots of work on how to improve these models.

References

Sharon Goldwater

Chen, S. F. and Goodman, J. (1998). An empirical study of smoothing techniques for language modeling. Technical Report TR-10-98, Center for Research in Computing Technology, Harvard University

smoothing

- Goldwater, S. (2006). Nonparametric Bayesian Models of Lexical Acquisition. PhD thesis, Brown University.
- Goldwater, S., Griffiths, T. L., and Johnson, M. (2006). Interpolating between types and tokens by estimating power-law generators. In Advances in Neural Information Processing Systems 18, pages 459-466, Cambridge, MA. MIT Press.
- MacKay, D. and Bauman Peto, L. (1994). A hierarchical Dirichlet language model. Natural Language Engineering, 1(1).

smoothing

Sharon Goldwater

Introduction to Computational Linguistics: Part-of-speech tagging

Sharon Goldwater (based on slides from Philipp Koehn)

13 July 2015

School of

Sharon Goldwate

POS tagging

13 July 2015

Other tagging tasks in NLP

A number of problems can be framed as tagging (sequence labelling) problems:

- Named entity recognition: it may also be useful to find names of persons, organizations, etc. in the text, e.g. Barack Obama
- Information field segmentation: Given specific type of text (classified advert, bibiography entry), identify which words belong to which "fields" (price/size/#bedrooms, author/title/year)
- Prosodic marking: In speech synthesis, decide which words/syllables have stress or intonational changes, e.g. You're going. vs You're going?

- smoothing Mikolov, T., Karafiát, M., Burget, L., Cernockỳ, J., and Khudanpur, S. (2010). Recurrent neural network based language model. In INTERSPEECH, pages 1045-1048.
- Mikolov, T., Yih, W.-t., and Zweig, G. (2013). Linguistic regularities in continuous space word representations. In HLT-NAACL, pages 746-751.
- Mnih, A. and Hinton, G. (2007). Three new graphical models for statistical language modelling. In Proceedings of the 24th international conference on Machine learning, pages 641–648. ACM.
- Teh, Y. W. (2006). A hierarchical Bayesian language model based on Pitman-Yor processes. In Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics, pages 985–992, Syndney, Australia.

Sharon Goldwater

Sharon Goldwater

24

26

27

smoothing What is part of speech tagging?

Given a string, identify parts of speech (syntactic categories):

This is a simple sentence JL

This/DET is/VB a/DET simple/ADJ sentence/NOUN

- First step towards syntactic analysis
- Taggers can help linguists analyze phenomena of interest
- Hidden Markov models for tagging illustrate important mathematical/computation concepts

Sharon Goldwate

Sharon Goldwater

POS tagging

Parts of Speech

- Open class words (or content words)
 - nouns, verbs, adjectives, adverbs
 - mostly content-bearing: they refer to objects, actions, and features in the world
 - open class, since there is no limit to what these words are, new ones are added all the time (email, website).
- Closed class words (or function words)
 - pronouns, determiners, prepositions, connectives, ...
 - there is a limited number of these
 - mostly functional: to tie the concepts of a sentence together

POS tagging

How many parts of speech?

- Both linguistic and practical considerations
- Corpus annotators decide. Distinguish between
- proper nouns (names) and common nouns?
- singular and plural nouns?
- past and present tense verbs?
- auxiliary and main verbs?
- etc

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	+,%, &
CD	cardinal number	one, two	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb base form	eat
FW	foreign word	mea culpa	VBD	verb past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb gerund	eating
IJ	adjective	yellow	VBN	verb past participle	eaten
JJR	adj., comparative	bigger	VBP	verb non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb 3sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, sing.	IBM	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	#	pound sign	#
PDT	predeterminer	all, both	••	left quote	' or ''
POS	possessive ending	's	"	right quote	' or "
PRP	personal pronoun	I, you, he	(left parenthesis	[, <mark>(</mark> , {, <
PRP\$	possessive pronoun	your, one's)	right parenthesis	$],), \}, >$
RB	adverb	quickly, never	,	comma	,
RBR	adverb, comparative	faster		sentence-final punc	.!?
RBS	adverb, superlative	fastest	:	mid-sentence punc	:;
RP .	particle	up-off.			0011

J&M Fig 5.6: Penn Treebank POS tags

- A move in the other direction
- Simplify the set of tags to lowest common denominator across languages
- Map existing annotations onto universal tags {VB, VBD, VBG, VBN, VBP, VBZ, MD} ⇒ VERB
- Allows interoperability of systems across languages
- Promoted by Google and others

English POS tag sets

- Usually 40-100 tags
- Brown corpus (87 tags)
- One of the earliest large corpora collected for computational linguistics (1960s)
- A balanced corpus: different genres (fiction, news, academic, editorial, etc)
- Penn Treebank corpus (45 tags)
 - First large corpus **annotated** (tagged by hand) with POS and full syntactic trees (1992)
 - Possibly the most-used corpus in NLP
 - Contains only text from the Wall Street Journal (WSJ)

Sharon Goldwater

POS tagging

POS tags in other languages

• Morphologically rich languages often have compound morphosyntactic tags

Noun+A3sg+P2sg+Nom (J&M, p.196)

- Hundreds or thousands of possible combinations
- · Predicting these requires more complex methods than what we will discuss

Sharon Goldwater

POS tagging

Universal POS tags (Petrov et al., 2011)

NOUN (nouns) VERB (verbs) ADJ (adjectives) ADV (adverbs) PRON (pronouns) DET (determiners and articles) ADP (prepositions and postpositions) NUM (numerals) CONJ (conjunctions) PRT (particles) '.' (punctuation marks) X (a catch-all for other categories such as abbreviations or foreign words)

Sharon Goldwater

POS tagging

Why is automatic POS tagging hard?

- The usual reasons!
- Ambiguity:

glass of water/NOUN	VS.	wate
lie/VERB down	VS.	tell a
wind/VERB down	VS.	a mi

water/VERB the plants tell a lie/NOUN a mighty wind/NOUN

How about time flies like an arrow?

- Sparse data:
 - Words we haven't seen before (at all, or in this context)
 - Word-Tag pairs we haven't seen before

POS tagging

10

POS tagging

Relevant knowledge for POS tagging

• The word itself

Sharon Goldwater

- Some words may only be nouns, e.g. arrow
- Some words are ambiguous, e.g. like, flies
- Probabilities may help, if one tag is more likely than another

(homographs) • Local context

- two determiners rarely follow each other
- two base form verbs rarely follow each other
- determiner is almost always followed by adjective or noun

A probabilistic model for tagging

Let's define a new generative process for sentences.

• To generate sentence of length n:

```
Let t_0 = <s >
For i = 1 to n
Choose a tag conditioned on previous tag: P(t_i|t_{i-1})
Choose a word conditioned on its tag: P(w_i|t_i)
```

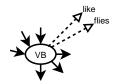
- So, model assumes:
- Each tag depends only on previous tag: a bigram model over tags.
- Words are independent given tags

Sharon Goldwater

POS tagging

Probabilistic finite-state machine

• When passing through a state, emit a word.



• Prob of emitting w from state s (emission probability): $P(w_i = w | t_i = s)$

Sharon Goldwater

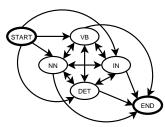
Goldwater POS tagging Example: computing joint probability P(S,T)

What's the probability of this tagged sentence?

This/DET is/VB a/DET simple/JJ sentence/NN

Probabilistic finite-state machine

• One way to view the model: sentences are generated by walking through **states** in a graph. Each state represents a tag.



• Prob of moving from state s to s' (transition probability): $P(t_i = s' | t_{i-1} = s)$

POS tagging What can we do with this model?

- Simplest thing: if we know the parameters (tag transition and word emission probabilities), can compute the probability of a tagged sentence.
- Let $S=w_1\ldots w_n$ be the sentence and $T=t_1\ldots t_n$ be the corresponding tag sequence. Then

$$p(S,T) = \prod_{i=1}^{n} P(t_i|t_{i-1})P(w_i|t_i)$$

Sharon Goldwater

12

14

16

Sharon Goldwater

Sharon Goldwater

POS tagging

15

13

Example: computing joint probability P(S,T)

What's the probability of this tagged sentence?

This/DET is/VB a/DET simple/JJ sentence/NN

 \bullet First, add begin- and end-of-sentence markers <s> and </s>. Then:

$$\begin{split} p(S,T) &= \prod_{i=1}^{n} P(t_i|t_{i-1}) P(w_i|t_i) \\ &= P(\mathsf{DET}|<\!\!\mathrm{s}\!\!>) P(\mathsf{VB}|\mathsf{DET}) P(\mathsf{DET}|\mathsf{VB}) P(\mathsf{JJ}|\mathsf{DET}) P(\mathsf{NN}|\mathsf{JJ}) P(<\!\!/\!\!\mathrm{s}\!\!>| \\ &\cdot P(\mathsf{This}|\mathsf{DET}) P(\mathsf{is}|\mathsf{VB}) P(\mathsf{a}|\mathsf{DET}) P(\mathsf{simple}|\mathsf{JJ}) P(\mathsf{sentence}|\mathsf{NN}) \end{split}$$

• OK. But now we need to plug in probabilities... from where?

Sharon Goldwater

POS tagging

Training the model

• Given a corpus annotated with tags (e.g., Penn Treebank), we estimate $P(w_i|t_i)$ and $P(t_i|t_{i-1})$ using familiar methods (MLE/smoothing)

POS tagging

17

Training the model

• Given a corpus annotated with tags (e.g., Penn Treebank), we estimate $P(w_i|t_i)$ and $P(t_i|t_{i-1})$ using familiar methods (MLE/smoothing)

	NNP	MD	VB	JJ	NN	RB	DT	
$\langle s \rangle$	0.2767	0.0006	0.0031	0.0453	0.0449	0.0510	0.2026	
NNP	0.3777	0.0110	0.0009	0.0084	0.0584	0.0090	0.0025	
MD	0.0008	0.0002	0.7968	0.0005	0.0008	0.1698	0.0041	
VB	0.0322	0.0005	0.0050	0.0837	0.0615	0.0514	0.2231	
JJ	0.0356	0.0004	0.0001	0.0733	0.4509	0.0036	0.0036	
NN	0.0096	0.0176	0.0014	0.0086	0.1216	0.0177	0.0068	
RB	0.0068	0.0102	0.1011	0.1012	0.0120	0.0728	0.0479	
DT	0.1147	0.0021	0.0002	0.2157	0.4744	0.0102	0.0017	
Figure 8.5	The A transi	ition probab	nilities P(t	t con	nnuted fro	om the W	SI cornus wif	hout

Figure 8.5 The A transition probabilities $P(t_i|t_{i-1})$ computed from the WSJ corpus withou smoothing. Rows are labeled with the conditioning event; thus P(VB|MD) is 0.7968.

(Fig from J&M draft 3rd edition)

Training the model

• Given a corpus annotated with tags (e.g., Penn Treebank), we estimate $P(w_i|t_i)$ and $P(t_i|t_{i-1})$ using familiar methods (MLE/smoothing)

	Janet	will	back	the	bill
NNP	0.000032	0	0	0.000048	0
MD	0	0.308431	0	0	0
VB	0	0.000028	0.000672	0	0.000028
JJ	0	0	0.000340	0.000097	0
NN	0	0.000200	0.000223	0.000006	0.002337
RB	0	0	0.010446	0	0
DT	0	0	0	0.506099	0

Figure 8.6 Observation likelihoods *B* computed from the WSJ corpus without smoothing.

(Fig from J&M draft 3rd edition)

But... tagging?

- Normally, we want to use the model to find the best tag sequence for an *untagged* sentence.
- Thus, the name of the model: hidden Markov model
 - Markov: because of Markov assumption (tag/state only depends on immediately previous tag/state).
 - hidden: because we only observe the words/emissions; the tags/states are hidden (or latent) variables.
- FSM view: given a sequence of words, what is the most probable state path that generated them?

Sharon Goldwater

POS tagging

Hidden Markov Model (HMM)

HMM is actually a very general model for sequences. Elements of an HMM:

- a set of states (here: the tags)
- an output alphabet (here: words)
- intitial state (here: beginning of sentence)
- state transition probabilities (here: $p(t_i|t_{i-1})$)
- symbol emission probabilities (here: $p(w_i|t_i)$)

Sharon Goldwater

POS tagging

Formalizing the tagging problem

 \bullet Normally, we want to use the model to find the best tag sequence T for an untagged sentence S:

 $\operatorname{argmax}_T p(T|S)$

· Bayes' rule gives us:

$$p(T|S) = \frac{p(S|T) \ p(T)}{p(S)}$$

• We can drop p(S) if we are only interested in argmax_T :

$$\operatorname{argmax}_T p(T|S) = \operatorname{argmax}_T p(S|T) p(T)$$

Sharon Goldwater

POS tagging

Search for the best tag sequence

- We have defined a model, but how do we use it?
 - given: word sequence S
 - wanted: best tag sequence T^{\ast}
- For any specific tag sequence T, it is easy to compute P(S,T) = P(S|T)P(T).

 $P(S|T) P(T) = \prod_{i} P(w_i|t_i) P(t_i|t_{i-1})$

• So, can't we just enumerate all possible *T*, compute their probabilites, and choose the best one?

Sharon Goldwater

POS tagging

 $P(T) = \prod_{i} P(t_i | t_{i-1})$

 $P(S|T) = \prod_{i} P(w_i|t_i)$

25

Enumeration won't work

- $\bullet\,$ Suppose we have c possible tags for each of the n words in the sentence.
- How many possible tag sequences?

20

22

24

Sharon Goldwater

Sharon Goldwater

P(S,T)).

• We already defined how!

• P(T) is the state transition sequence:

• P(S|T) are the emission probabilities:

untagged sentence *S*:

POS tagging

Formalizing the tagging problem

• Normally, we want to use the model to find the best tag sequence T for an

 $\operatorname{argmax}_T p(T|S)$

POS tagging

• Now we need to compute P(S|T) and P(T) (or really, P(S|T)P(T) =

21

23

Enumeration won't work

- Suppose we have \boldsymbol{c} possible tags for each of the \boldsymbol{n} words in the sentence.
- How many possible tag sequences?
- There are c^n possible tag sequences: the number grows $\textit{exponentially}\xspace$ in the length n.
- $\bullet\,$ For all but small n, too many sequences to efficiently enumerate.

Finding the best path

- The Viterbi algorithm finds this path without explicitly enumerating all paths.
- A type of **dynamic programming** (or **memoization**) algorithm: an algorithm that stores partial results in a **chart** to avoid recomputing them.
- Dynamic programming is a widely used algorithmic technique in comp ling:
 - Computing the minimum edit distance between two strings (J&M 3.11)
 - Viterbi algorithm and forward-backward algorithm for HMMs
 - Many parsing algorithms for CFGs and PCFGs (e.g., chart parsing)

Sharon Goldwater

POS tagging

28

Sharon Goldwater

POS tagging

29

References

Petrov, S., Das, D., and McDonald, R. (2011). A universal part-of-speech tagset. arXiv preprint arXiv:1104.2086.

Sharon Goldwater

POS tagging

30