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Recap: ngrams and smoothing

• One way to estimate P (~w): assume words only depend on fixed context

– n-gram model: sentence prob is product of each word’s prob conditioned on
n− 1 previous words.

– i.e., P (~w) =
∏

P (wi|wi−n+1 . . . wi−1).

• But even for smallish n, we might not see all possible n-grams in our corpus,
or see very few occurrences.

• Smoothing methods try to better estimate probabilities for infrequent events:
move probability mass from seen to unseen.

Sharon Goldwater smoothing 1

Recap: smoothing methods

• Two simple smoothing methods:

– Add-one: simplest choice, but steals way too much mass from seen items.
– Add-α: somewhat better; optimize α on held-out data.

• These may actually be good enough when not many distinct items in
“vocabulary”, e.g. n-gram models over

– characters or phonemes (to model phonotactics)
– parts of speech (syntactic categories): coming up

• But not good for word n-grams.

• This lecture: a taster of other methods for smoothing word probabilities.
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First, notation: adjusted counts

• Previously, we estimated probabilities based on actual counts

PML =
c

n

• Then, we changed the formula to estimate smoothed probabilities

P+α =
c+ α

n+ αv

• Another view: we adjusted the counts c

P+α =
c∗

n
⇒ c∗ = n P+α = (c+ α)

n

n+ αv
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Good-Turing Smoothing

• Adjust actual counts c to expected counts c∗ with formula

c∗ = (c+ 1)
Nc+1

Nc

– Nc number of n-grams that occur exactly c times in corpus

– N0 total number of unseen n-grams
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Good-Turing for 2-Grams in Europarl

Count Count of counts Adjusted count Test count

c Nc c∗ tc
0 7,514,941,065 0.00015 0.00016

1 1,132,844 0.46539 0.46235

2 263,611 1.40679 1.39946

3 123,615 2.38767 2.34307

4 73,788 3.33753 3.35202

5 49,254 4.36967 4.35234

6 35,869 5.32928 5.33762

8 21,693 7.43798 7.15074

10 14,880 9.31304 9.11927

20 4,546 19.54487 18.95948

tc are average counts of n-grams in test set that occurred c times in corpus
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Good-Turing justification: 0-count items

• Estimate the probability that the next observation is previously unseen (i.e.,
will have count 1 once we see it)

P (unseen) =
N1

n

This part uses MLE!

• Divide that probability equally amongst all unseen events

PGT =
1

N0

N1

n
⇒ c∗ =

N1

N0
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Good-Turing justification: 1-count items

• Estimate the probability that the next observation was seen once before (i.e.,
will have count 2 once we see it)

P (once before) =
2N2

n

• Divide that probability equally amongst all 1-count events

PGT =
1

N1

2N2

n
⇒ c∗ =

2N2

N1

• Same thing for higher count items
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Problems with Good-Turing

• Assumes we know the vocabulary size (no unseen words) [but see J&M 4.3.2]

• Doesn’t allow “holes” in the counts (if Ni > 0, Ni−1 > 0) [but see J&M 4.5.3]

• Applies discounts even to high-frequency items [but see J&M 4.5.3]

• Divides shifted probability mass evenly between all items of same frequency.
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Remaining problem

• In given corpus, suppose we never observe

– Scottish beer drinkers
– Scottish beer eaters

• If we build a trigram model smoothed with Add-α or G-T, which example has
higher probability?

Sharon Goldwater smoothing 9

Remaining problem

• Previous smoothing methods assign equal probability to all unseen events.

• Better: use information from lower order n-grams (shorter histories).

– beer drinkers
– beer eaters

• Two ways: interpolation (discussed here) and backoff (see J&M).
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Interpolation

• Higher and lower order n-gram models have different strengths and weaknesses

– high-order n-grams are sensitive to more context, but have sparse counts
– low-order n-grams consider only very limited context, but have robust counts

• So, combine them: PI(w3|w1, w2) = λ1 P1(w3)

+ λ2 P2(w3|w2)

+ λ3 P3(w3|w1, w2)

– Note that
∑

i λi = 1. These interpolation parameters can be optimized on
held-out data.
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Do our smoothing methods work here?

Example from MacKay and Bauman Peto (1994):

Imagine, you see, that the language, you see, has, you see, a frequently
occurring couplet, ’you see’, you see, in which the second word of the
couplet, see, follows the first word, you, with very high probability, you
see. Then the marginal statistics, you see, are going to become hugely
dominated, you see, by the words you and see, with equal frequency, you
see.

• P (see) and P (you) are both high, but see nearly always follows you.

• So P (see|novel) should be much lower than P (you|novel).
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Diversity of histories matters!

• A real example: the word York

– fairly frequent word in Europarl corpus, occurs 477 times
– as frequent as foods, indicates and providers
→ in unigram language model: a respectable probability

• However, it almost always directly follows New (473 times)

• So, in unseen bigram contexts, York should have low probability

– lower than predicted by unigram model used in interpolation/backoff.
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Kneser-Ney Smoothing

• Kneser-Ney smoothing takes diversity of histories into account

• Count of distinct histories for a word

N1+(•wi) = |{wi−1 : c(wi−1, wi) > 0}|

• Recall: maximum likelihood estimation of unigram language model

PML(w) =
c(wi)∑
wi

c(wi)

• In Kneser-Ney smoothing, replace raw counts with count of histories

PKN(wi) =
N1+(•w)∑
wi

N1+(•wi)
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Kneser-Ney in practice

• Original version used backoff, later “modified Kneser-Ney” introduced using
interpolation (Chen and Goodman, 1998).

• Fairly complex equations, but until recently the best smoothing method for
word n-grams.

• See Chen and Goodman for extensive comparisons of KN and other smoothing
methods.

• KN (and other methods) implemented in language modeling toolkits like
SRILM (classic), KenLM (good for really big models), OpenGrm Ngram library
(uses finite state transducers), etc.

Sharon Goldwater smoothing 15



Bayesian interpretations of smoothing

• We started off by asking: What is the best choice of θ given the data d that
we saw?

P (θ|d) ∝ P (d|θ)P (θ)

• MLE ignored P (θ), and we had to introduce smoothing.

• It turns out that many smoothing methods are mathematically equivalent to
forms of Bayesian estimation, i.e., the use of non-uniform priors!

– Add-α smoothing: Dirichlet prior
– Kneser-Ney smoothing: Pitman-Yor prior

See MacKay and Bauman Peto (1994); (Goldwater, 2006, pp. 13-17); Goldwater et al. (2006);

Teh (2006).
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Are we done with smoothing yet?
We’ve considered methods that predict rare/unseen words using

• Uniform probabilities (add-α, Good-Turing)

• Probabilities from lower-order n-grams (interpolation, backoff)

• Probability of appearing in new contexts (Kneser-Ney)

What’s left?
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Word similarity

• Two words with C(w1) ≫ C(w2)

– salmon
– swordfish

• Can P (salmon|caught two) tell us something about P (swordfish|caught two)?

• n-gram models: no.
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Word similarity in language modeling

• Early version: class-based language models (J&M 4.9.2)

– Define classes c of words, by hand or automatically

– PCL(wi|wi−1) = P (ci|ci−1)P (wi|ci) (an HMM)

• Recent version: distributed language models

– Current models have better perplexity than MKN.

– Ongoing research to make them more efficient.

– Examples: Recursive Neural Network LM (Mikolov et al., 2010), Log Bilinear
LM (Mnih and Hinton, 2007) and extensions.
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Distributed word representations

• Each word represented as high-dimensional vector (50-500 dims)

E.g., salmon is [0.1, 2.3, 0.6,−4.7, . . .]

• Similar words represented by similar vectors

E.g., swordfish is [0.3, 2.2, 1.2,−3.6, . . .]
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Distributed word representations

• Each word represented as high-dimensional vector (50-500 dims)

E.g., salmon is [0.1, 2.3, 0.6,−4.7, . . .]

• Similar words represented by similar vectors

E.g., swordfish is [0.3, 2.2, 1.2,−3.6, . . .]

• Representations can be thought of as feature vectors.

– A bit like representing phonemes as vectors of their distinctive features, or
vowel sounds as vectors of formant values.

– But unlike phoneme/acoustic feature vectors, the dimensions/values are
determined automatically, may not be easily interpretable.
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Learning the representations

• Goal: learn word representations (embeddings) such that words that behave
similarly end up near each other in high-dimensional space.

• 2-dimensional example:
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Learning the representations

• Goal: learn word representations (embeddings) such that words that behave
similarly end up near each other in high-dimensional space.

• 2-dimensional example:

• Machine learning methods (e.g. neural networks) are used to learn embeddings.

• Embeddings seem to encode both semantic and syntactic similarity (using
different dimensions) (Mikolov et al., 2013).
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Other Topics in Language Modeling

Many active research areas, some more linguistically interesting than others.

• Modeling issues:

– Morpheme-based language models
– Syntactic language models
– Domain adaptation: when only a small domain-specific corpus is available

• Implementation issues:

– Speed: both to train, and to use in real-time applications like translation
and speech recognition.

– Disk space and memory: espcially important for mobile devices
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Summary

• We can estimate sentence probabilities by breaking down the problem, e.g. by
instead estimating n-gram probabilities.

• Longer n-grams capture more linguistic information, but are sparser.

• Different smoothing methods capture different intuitions about how to estimate
probabilities for rare/unseen events.

• still lots of work on how to improve these models.
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What is part of speech tagging?

Given a string, identify parts of speech (syntactic categories):

This is a simple sentence
⇓

This/DET is/VB a/DET simple/ADJ sentence/NOUN

• First step towards syntactic analysis

• Taggers can help linguists analyze phenomena of interest

• Hidden Markov models for tagging illustrate important mathematical/computational
concepts
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Other tagging tasks in NLP

A number of problems can be framed as tagging (sequence labelling) problems:

• Named entity recognition: it may also be useful to find names of persons,
organizations, etc. in the text, e.g. Barack Obama

• Information field segmentation: Given specific type of text (classified
advert, bibiography entry), identify which words belong to which “fields”
(price/size/#bedrooms, author/title/year)

• Prosodic marking: In speech synthesis, decide which words/syllables have
stress or intonational changes, e.g. You’re going. vs You’re going?
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Parts of Speech

• Open class words (or content words)

– nouns, verbs, adjectives, adverbs
– mostly content-bearing: they refer to objects, actions, and features in the

world
– open class, since there is no limit to what these words are, new ones are

added all the time (email, website).

• Closed class words (or function words)

– pronouns, determiners, prepositions, connectives, ...
– there is a limited number of these
– mostly functional: to tie the concepts of a sentence together
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How many parts of speech?

• Both linguistic and practical considerations

• Corpus annotators decide. Distinguish between

– proper nouns (names) and common nouns?

– singular and plural nouns?

– past and present tense verbs?

– auxiliary and main verbs?

– etc
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English POS tag sets

• Usually 40-100 tags

• Brown corpus (87 tags)

– One of the earliest large corpora collected for computational linguistics
(1960s)

– A balanced corpus: different genres (fiction, news, academic, editorial, etc)

• Penn Treebank corpus (45 tags)

– First large corpus annotated (tagged by hand) with POS and full syntactic
trees (1992)

– Possibly the most-used corpus in NLP
– Contains only text from the Wall Street Journal (WSJ)
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J&M Fig 5.6: Penn Treebank POS tags 

POS tags in other languages

• Morphologically rich languages often have compound morphosyntactic tags

Noun+A3sg+P2sg+Nom (J&M, p.196)

• Hundreds or thousands of possible combinations

• Predicting these requires more complex methods than what we will discuss
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Universal POS tags (Petrov et al., 2011)

• A move in the other direction

• Simplify the set of tags to lowest common denominator across languages

• Map existing annotations onto universal tags

{VB, VBD, VBG, VBN, VBP, VBZ, MD} ⇒ VERB

• Allows interoperability of systems across languages

• Promoted by Google and others
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Universal POS tags (Petrov et al., 2011)

NOUN (nouns)
VERB (verbs)
ADJ (adjectives)
ADV (adverbs)
PRON (pronouns)
DET (determiners and articles)
ADP (prepositions and postpositions)
NUM (numerals)
CONJ (conjunctions)
PRT (particles)
’.’ (punctuation marks)
X (a catch-all for other categories such as abbreviations or foreign words)
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Why is automatic POS tagging hard?

The usual reasons!

• Ambiguity:

glass of water/NOUN vs. water/VERB the plants
lie/VERB down vs. tell a lie/NOUN
wind/VERB down vs. a mighty wind/NOUN (homographs)

How about time flies like an arrow?

• Sparse data:

– Words we haven’t seen before (at all, or in this context)

– Word-Tag pairs we haven’t seen before
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Relevant knowledge for POS tagging

• The word itself

– Some words may only be nouns, e.g. arrow
– Some words are ambiguous, e.g. like, flies
– Probabilities may help, if one tag is more likely than another

• Local context

– two determiners rarely follow each other
– two base form verbs rarely follow each other
– determiner is almost always followed by adjective or noun
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A probabilistic model for tagging

Let’s define a new generative process for sentences.

• To generate sentence of length n:

Let t0 =<s>
For i = 1 to n

Choose a tag conditioned on previous tag: P (ti|ti−1)
Choose a word conditioned on its tag: P (wi|ti)

• So, model assumes:

– Each tag depends only on previous tag: a bigram model over tags.
– Words are independent given tags
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Probabilistic finite-state machine

• One way to view the model: sentences are generated by walking through
states in a graph. Each state represents a tag.

VB

NN IN

DET

START

END

• Prob of moving from state s to s′ (transition probability): P (ti = s′|ti−1 = s)
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Probabilistic finite-state machine

• When passing through a state, emit a word.

VB

like
flies

• Prob of emitting w from state s (emission probability): P (wi = w|ti = s)
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What can we do with this model?

• Simplest thing: if we know the parameters (tag transition and word emission
probabilities), can compute the probability of a tagged sentence.

• Let S = w1 . . . wn be the sentence and T = t1 . . . tn be the corresponding tag
sequence. Then

p(S, T ) =

n∏

i=1

P (ti|ti−1)P (wi|ti)
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Example: computing joint probability P (S, T )

What’s the probability of this tagged sentence?

This/DET is/VB a/DET simple/JJ sentence/NN
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Example: computing joint probability P (S, T )

What’s the probability of this tagged sentence?

This/DET is/VB a/DET simple/JJ sentence/NN

• First, add begin- and end-of-sentence markers <s> and </s>. Then:

p(S, T ) =
n∏

i=1

P (ti|ti−1)P (wi|ti)

= P (DET|<s>)P (VB|DET)P (DET|VB)P (JJ|DET)P (NN|JJ)P (</s>|NN)
·P (This|DET)P (is|VB)P (a|DET)P (simple|JJ)P (sentence|NN)

• OK. But now we need to plug in probabilities... from where?
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Training the model

• Given a corpus annotated with tags (e.g., Penn Treebank), we estimate
P (wi|ti) and P (ti|ti−1) using familiar methods (MLE/smoothing)
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Training the model

• Given a corpus annotated with tags (e.g., Penn Treebank), we estimate
P (wi|ti) and P (ti|ti−1) using familiar methods (MLE/smoothing)

(Fig from J&M draft 3rd edition)
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Training the model

• Given a corpus annotated with tags (e.g., Penn Treebank), we estimate
P (wi|ti) and P (ti|ti−1) using familiar methods (MLE/smoothing)

(Fig from J&M draft 3rd edition)
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But... tagging?

• Normally, we want to use the model to find the best tag sequence for an
untagged sentence.

• Thus, the name of the model: hidden Markov model

– Markov: because of Markov assumption (tag/state only depends on
immediately previous tag/state).

– hidden: because we only observe the words/emissions; the tags/states are
hidden (or latent) variables.

• FSM view: given a sequence of words, what is the most probable state path
that generated them?
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Hidden Markov Model (HMM)

HMM is actually a very general model for sequences. Elements of an HMM:

• a set of states (here: the tags)

• an output alphabet (here: words)

• intitial state (here: beginning of sentence)

• state transition probabilities (here: p(ti|ti−1))

• symbol emission probabilities (here: p(wi|ti))
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Formalizing the tagging problem

• Normally, we want to use the model to find the best tag sequence T for an
untagged sentence S:

argmaxT p(T |S)
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Formalizing the tagging problem

• Normally, we want to use the model to find the best tag sequence T for an
untagged sentence S:

argmaxT p(T |S)

• Bayes’ rule gives us:

p(T |S) = p(S|T ) p(T )
p(S)

• We can drop p(S) if we are only interested in argmaxT :

argmaxT p(T |S) = argmaxT p(S|T ) p(T )
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Decomposing the model

• Now we need to compute P (S|T ) and P (T ) (or really, P (S|T )P (T ) =
P (S, T )).

• We already defined how!

• P (T ) is the state transition sequence:

P (T ) =
∏

i

P (ti|ti−1)

• P (S|T ) are the emission probabilities:

P (S|T ) =
∏

i

P (wi|ti)
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Search for the best tag sequence

• We have defined a model, but how do we use it?

– given: word sequence S
– wanted: best tag sequence T ∗

• For any specific tag sequence T , it is easy to compute P (S, T ) = P (S|T )P (T ).

P (S|T ) P (T ) =
∏

i

P (wi|ti) P (ti|ti−1)

• So, can’t we just enumerate all possible T , compute their probabilites, and
choose the best one?
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Enumeration won’t work

• Suppose we have c possible tags for each of the n words in the sentence.

• How many possible tag sequences?
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Enumeration won’t work

• Suppose we have c possible tags for each of the n words in the sentence.

• How many possible tag sequences?

• There are cn possible tag sequences: the number grows exponentially in the
length n.

• For all but small n, too many sequences to efficiently enumerate.
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Finding the best path

• The Viterbi algorithm finds this path without explicitly enumerating all paths.

• A type of dynamic programming (or memoization) algorithm: an algorithm
that stores partial results in a chart to avoid recomputing them.

• Dynamic programming is a widely used algorithmic technique in comp ling:

– Computing the minimum edit distance between two strings (J&M 3.11)

– Viterbi algorithm and forward-backward algorithm for HMMs

– Many parsing algorithms for CFGs and PCFGs (e.g., chart parsing)
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