Introduction to Computational Linguistics:
Parsing Algorithms

Sharon Goldwater
(based on slides by Mark Steedman and Philipp Koehn)

Parsers

A parser is an algorithm that computes a structure for an input string given a
grammar.

Understanding different parsing algorithms is important for:

e Computer scientists: parsers used to compile programs, check html, etc.

20 July 2015 o NLP researchers: efficient parsers needed for large-scale language tasks (e.g.,
used to create Google's “infoboxes”).
e Psycholinguists: what algorithm might be used by the human sentence
processing mechanism?
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Ambiguity refresher

Parsers need to handle (rampant!) syntactic ambiguity in natural language.

e global ambiguity: multiple full parses are possible, e.g., PP attachment:
I saw the man with the telescope

e local ambiguity: ambiguous partial structures, need not be consistent with
full parse.
— classic garden path sentences: the old man the boats

— but also lots of “normal” sentences: the dog bit the child

e Ambiguity can be structural (different possible phrasal constituents) or lexical
(word with multiple POS tags), often both.

CFG refresher

Parsing algorithms exist for many types of grammars, but we'll consider just
context-free grammars for now. CFG refresher (or see J&M 12.2-12.5):

e Two types of grammar symbols:

— terminals (t): words.
— Non-terminals (NT): phrasal categories like S, NP, VP, PP. Sometimes we
distinguish pre-terminals (POS tags), a type of NT.

e Rules must have the form NT — [3, where B is any string of NT's and t's.

e A CFG in Chomsky Normal Form only has rules of the form NT; — NT; NT
or NT; — t
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Parser properties

All parsers have two fundamental properties:

e Directionality: the sequence in which the structures are constructed.

— top-down: start with root category (S), choose expansions, build down to
words.

— bottom-up: build subtrees over words, build up to S.

— Mixed strategies also possible (e.g., left corner parsers)
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Example: search space for top-down parser
e Start with S node. S

e Choose one of many
possible expansions.

e Each of which has
children with many

possible expansions... R
e Search strategy: the order in which the search space of possible analyses is
explored. e etc
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Search strategies

e depth-first search: explore one branch of the search space at a time, as far
as possible. If this branch is a dead-end, parser needs to backtrack.

e breadth-first search: expand all possible branches in parallel (or simulated
parallel). Requires storing many incomplete parses in memory at once.

o best-first search: score each partial parse and pursue the highest-scoring
options first. (Will get back to this when discussing statistical parsing.)

Recursive Descent Parsing

e A recursive descent parser treats a grammar as a specification of how to
break down a top-level goal (find S) into subgoals (find NP VP).

e |t is a top-down, depth-first parser:
— blindly expand nonterminals until reaching a terminal (word).

— If terminal matches next input word, continue; else, backtrack.
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Backtrack points

e Need to keep track of backtrack points, to return to if we backtrack.

e Each backtrack point stores:

— A partial parse tree (what was completed when we made a choice)

— The rules we haven't tried yet
— The input words we haven't matched yet

e To ensure depth-first search, backtrack points are stored in a stack: last in,

RD Parsing: initialization
We start with
e The rules of our context-free grammar, e.g.,
S — NP VP VP =V NN — bit V— bit
NP — DT NN DT — the NN — dog V — dog

e Current partial parse (also current subgoal): the S node.

e An ordered list of subgoals, initially containing just S.

first out.
e An empty stack of backtrack points.
e The input sequence (e.g., the dog bit)
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RD Parsing: iterative steps

o If first subgoal in list is a non-terminal A:
— Pick a rule from the grammar to expand it (e.g., A— B C)
— Replace A in subgoal list with B C

o If first subgoal in list is a terminal w:

— If input is empty, backtrack.
— If next input word is different from w, backtrack.

— If next input word is w, match! i.e., consume input word w and subgoal w

and move to next subgoal.

RD Parsing: iterative steps

o If first subgoal in list is a non-terminal A:

— Pick a rule from the grammar to expand it (e.g., A — B C)
— Replace A in subgoal list with B C

o [f first subgoal in list is a terminal w:

— If input is empty, backtrack.*

— If next input word is different from w, backtrack.

— If next input word is w, match! i.e., consume input word w and subgoal w
and move to next subgoal.™

* If stack is empty, we lose! No parse is possible.
** If no more subgoals, we win! We found a parse.
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Recursive descent example

Step Op. Subgoals

0 S
1 E NP VP
e Grammar and sentence from 2 E DT NN VP
slide 9. 3 E the NN VP
4 M NN VP
e Operations: 5 E bit VP
~ Expand (E) 6 B4 NN VP
— Match (M) T B dog P
— Backtrack to step n (Bn) 8 M VP
9 E v
10 E bit
11 M

Input

the dog bit
the dog bit
the dog bit
the dog bit
dog bit
dog bit
dog bit
dog bit

bit

bit

bit
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Parsers vs Recognizers

e The above sketch is actually a recognizer: it tells us whether the sentence
has a valid parse, but not what the parse is.

e Would need to add more details to keep track of parse structure as it is built.
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Shift-Reduce Parsing

e Search strategy and directionality are orthogonal properties.

e Shift-reduce parsing is depth-first (like RD) but bottom-up (unlike RD).

e Basic shift-reduce recognizer repeatedly:

— Shifts input symbols onto a stack.

— Whenever possible, reduces one or more items from top of stack that match

RHS of rule, replacing with LHS of rule.

e Like RD parser, needs to maintain backtrack points.
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Shift-reduce example

Step Op. Stack Input
0 the dog bit
1 S the dog bit
2 R DT dog bit
e Same example grammar and 3 S DT dog bit
sentence. 4 R DT V bit
5 S DT V bit
e Operations: 6 R DT V V
_ Shift (S) 7 B5 DTV bit
— Reduce (R) 8 R DTV N .
— Backtrack to step n (Bn) 9 B3 DT dog b%t
10 R DT NN bit
11 R NP bit
12 R NP bit bit
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Depth-first parsing in practice

e Depth-first parsers are very efficient for unambiguous structures.
— Widely used to parse/compile programming languages

— Language/grammar is specially constructed to be unambiguous (sometimes
with finite lookahead).

Depth-first parsing in practice

o Depth-first parsers are very efficient for unambiguous structures.
— Widely used to parse/compile programming languages
— Language/grammar is specially constructed to be unambiguous (sometimes

with finite lookahead).

e But can be massively inefficient (exponential in sentence length) if faced with
local ambiguity.

— Blind backtracking may require re-building the same structure over and over.

— So, much less common for natural language parsing (though some work on
best-first probabilistic shift-reduce parsing: uses lookahead to help predict
which expansions to make).
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Breadth-first search using dynamic programming

e With a CFG, a parser should be able to avoid re-analyzing sub-strings because
the analysis of any sub-string is independent of the rest of the parse.

The dog saw @ man,in the park,
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Breadth-first search using dynamic programming

e With a CFG, a parser should be able to avoid re-analyzing sub-strings because
the analysis of any sub-string is independent of the rest of the parse.

The dog saw g man, in the park,

NP NP NP NP NP NP
PP PP
e To exploit this fact, chart parsing algorithms use dynamic programming to
store and reuse sub-parses.
e This permits exploring multiple potential parses at once: a breadth-first
strategy.
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Parsing as dynamic programming

e As in HMM algorithms, dynamic programming fills a table of solutions to
subproblems (memoization), then composes these to find the full solution.

e For parsing, subproblems are analyses of substrings, memoized in chart (aka
well-formed substring table, WFST).

e Chart entries are indexed by start and end positions in the sentence, and
correspond to:

— either a complete constituent (sub-tree) spanning those positions (if working

Depicting a WFST /Chart

o Chart can be depicted as either a matrix or a graph.
e In either case, we assume indices between each word in the sentence:
o See | with , a 3 telescope 4 in 5 hand ¢

e If using a matrix, cell [i, j] holds information about the word span from position
i to position j:

— The root node of any constituent(s) spanning those words

m- . . .
bottom-up), . . . . . — Pointers to its sub-constituents
— or a hypothesis about what complete constituent might be found (if working
top-down). — (Depending on parsing method,) predictions about what constituents might
follow the substring.
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Depicting a WFST as a Matrix

Depicting a WFST as a Graph

1 2 3 4 5 6
e Here, each sentence position index is a node or vertex.
0 \%
) ] 1 e edges (arcs) represent spans, labelled with the same information that goes in
-xample, partway through parsing. Prep PP a cell in the matrix representation.
o Here, only showing root nodes of 2 Det NP
each constituent. PP
3 N
o Lower left of chart never used;
often only upper right is shown. 4
5

o See | with , a j3telescopes in s handg¢

Sharon Goldwater Parsing 22 Sharon Goldwater Parsing 23



Algorithms for Chart Parsing CKY Algorithm

Many different chart parsing algorithms, including CKY (Cocke, Kasami, Younger) is a bottom-up, breadth-first parsing algorithm.
e the CKY algorithm, which memoizes only complete constituents e Original (simplest) version assumes grammar in Chomsky Normal Form.
e various algorithms that also memoize predictions/partial constituents e Add constituent A in cell (i,j) if:

— often using mixed bottom-up and top-down approaches, e.g., the Earley — there is a rule A — B, and B is in cell (i, ), or

algorithm described in J&M, and left-comer parsing. — thereis a rule A— B C, and B is in cell (i,k) and C is in cell (%, j).
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CKY Algorithm CKY Pseudocode

CKY (Cocke, Kasami, Younger) is a bottom-up, breadth-first parsing algorithm. e Assume input sentence with indices 0 to n, and chart c.

for len = 1 to n: #number of words in constituent
for i = 0 to n-len: #start position
j = itlen  #end position
#process unary rules
— there is a rule A — B, and B is in cell (i, ), or if A->B and c[i,j] has B, add A to cl[i,]]
for k = i+l to j-1  #mid position
#process binary rules
if A->B C and c[i,k] has B and c[k,j] has C, add A to c[i,j]

e Original (simplest) version assumes grammar in Chomsky Normal Form.

e Add constituent A in cell (i, )) if:

— thereis a rule A— B C, and B is in cell (i,k) and C is in cell (k, j).

e Fills chart in order: only looks for rules that use a constituent from i to j after

finding all constituents ending at i. So, guaranteed to find all possible parses. . . L
& g & P P e This algorithm performs recognition in time O(n?).
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CKY example Visualizing the Chart
Grammatical rules Lexical rules 1 2 3 4
S — NP VP Det — a | the (determiner)
NP — Det Nom N — fish | frogs | soup (noun) 0
NP — Nom Prep — in | for (preposition)
Nom — N SRel TV — saw | ate (transitive verb) 1
Nom — N IV — fish | swim (intransitive verb)
VP — TV NP Relpro — that (relative pronoun)
VP — IV PP 2
VP — IV
PP — Prep NP 3
SRel — Relpro VP
Nom: nominal (the part of the NP after the determiner, if any). the  frogs  ate fish

SRel: subject relative clause, as in the frogs that ate fish.
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Visualizing the Chart (0,1) Visualizing the Chart (1,2)
1 2 3 4 1 2 3 4
0 det 0 det
n
1 1 nom
np
2 2
3 3
the frogs ate fish the frogs ate fish
Unary branching rules: det — the Unary branching rules: N — frogs, Nom — N, NP — Nom
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Visualizing the Chart (2,3)

1 2 3 4
0 det
n
1 nom
np
2 tv
3
the frogs ate fish

Unary branching rules: tv — ate

Visualizing the Chart (3,4)

1 2 3 4
0 det
n
1 nom
np
2 tv
n
nom
3 np
v
vp
the frogs ate fish

Unary branching rules: N — fish, Nom — N, NP — Nom, iv — fish, vp — iv

Sharon Goldwater Parsing 32 Sharon Goldwater Parsing 33
Visualizing the Chart (0,2) Visualizing the Chart (1,3)
1 2 3 4 1 2 3 4
0 | det np 0 | det np
n n
1 nom 1 nom
np np
2 tv 2 tv
Hom r|lom
3 np 3 np
vp vp
the frogs ate fish the frogs ate fish
Binary branching rule: NP — Det Nom  (0,1) & (1,2) ~» (0,2) (1,2) & (2,3) +
Sharon Goldwater Parsing 34 Sharon Goldwater Parsing 35
Visualizing the Chart (2,4) Visualizing the Chart (0,3)
1 2 3 4 1 2 3 4
0 | det np 0 | det np
n n
1 nom 1 nom
np np
2 tv vp 2 tv vp
Hom r|lom
3 R/p 3 R/p
VP vp
the frogs ate fish the frogs ate fish
Binary branching rule: VP — TV NP (2,3) & (3,4) ~ (2,4) (0,1) & (1,3) » (0,2) & (2,3) »
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Visualizing the Chart (1,4) Visualizing the Chart (0,4)
1 2 3 4 1 2 3 4
0 det np 0 det np s
1 gom s ! Egm s
np
2 tv vp 2 tv vp
; - :
v vp
vp
the frogs ate fish
the frogs ate fish

Binary rule: S — NP VP (1,2) & (2,4) ~ (1,4)

(13) & (3.4)
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(0.1) & (1,4) »
Binary rule: S — NP VP (0,2) & (2,4) ~ (0,4)

(03) & (3.4) »

Sharon Goldwater Parsing

39



A note about CKY ordering
o Notice that to fill cell (i, ), we use a cell from row i and a cell from column j.
e So, we must fill in all cells down and left of (i, j) before filling (i, j).

e Here, we filled in all short entries, then longer ones, but other orders can work
(e.g., J&M fill in all spans ending at j, then increment j.)

From CKY Recognizer to CKY Parser
e As just specified, CKY only recognizes, but can't return the parse.
e e.g., we don't know from S cell how it was constructed.

e Easy to fix:

— whenever a constituent is found for cell (i,j), store the indices of the
sub-constituents that formed it.

— can mean storing multiple copies of A with different indices.

— Sometimes called a packed parse forest: represents a possibly exponential
number of trees in a compact way.
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CKY in practice

e Avoids re-computing substructures, so much more efficient than depth-first
parsers (in worst case).

e Still may compute a lot of unnecessary partial parses.
e Simple version requires converting the grammar to CNF (may cause blowup).

Various other chart parsing methods avoid these issues by combining top-down
and bottom-up approaches (see J&M).

We also haven't said anything about how to choose between different parses when
there's global ambiguity.
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Introduction to Computational Linguistics:
Parsing and Human Sentence Processing

Sharon Goldwater

20 July 2015

[ ] School of _ e
informatics
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Recap: Parsing

We have seen several different parsing algorithms:

e Recursive descent parsing: top-down, depth-first.

e Shift-reduce parsing: bottom-up, depth-first.

o CKY parsing: bottom-up, breadth-first.

Do any of these seem plausbile as a model of human sentence processing?
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Properties of human parsing mechanism
o Fast: real-time.
e Recognizes global ambiguity: at least to some extent.
e Incremental: words (and meaning) are integrated into structure immediately.
e Can be led astray: by local ambiguity (garden path sentences).

e But mostly isn’t: many local ambiguities don't cause problems.
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Global ambiguity

e Some examples are clearly (even humorously) ambiguous:

— I saw the man with a telescope.
— She sat on the chair covered in dust.
— Milk drinkers are turning to powder.

e But most ambiguity isn't even noticed!

— I'saw the man with a hat.
— She stood on the stoop covered in tears.
— Breast feeders are turning to a new enriched formula.
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Local ambiguity

e Same goes for local ambiguity:

— The old man the boats
— We painted the wall with cracks
— Fat people eat accumulates

Versus

— The dog bit the cat
— The green is used for playing soccer
— We stopped short of going
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Properties of our parsing algorithms

e Fast? We argued that RD and SR are inefficient, but could perhaps be

improved by good heuristics for choosing next rules. Anyway, hard to evaluate
what counts as “fast”.

e Recognize global ambiguity? CKY builds all parses, so definitely yes. RD/SR
can return multiple parses if run past the first one. But notice a distinction...

Serial versus parallel parsing

o Depth-first parsers are inherently serial: one structure processed at a time.
So, recognizing ambiguity implies backtracking/re-parsing, and one structure
will always be recognized first.

e Breadth-first parsers are idealized as parallel: multiple structures processed
simultaneously. If truly parallel, ambiguous structures identified simultaneously.
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Human parsing: serial or parallel?

e On the face of it, full parallel parsing seems implausible:

— Finds/notices all the global ambiguities.
— Doesn't get stuck in garden paths.

e Serial parsing provides a possible explanation for garden paths (backtracking).

e But there are parallel options too:

— limited parallelism: pursue a fixed (small) number of structures at once,
may still require occasional backtracking.

— ranked parallelism: (possibly in combination with above). Possible
structures ranked by preference; garden path if low-ranked structure turns
out to be correct.
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What about incrementality?

First, what does it mean to be incremental?

e Each word is integrated into the parse as soon as it is seen/heard.

e Problems with current parse are detected immediately; also possible to make
predictions about upcoming words.

e Evidence: eye-tracking of semantic interpretation, garden paths.
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Is CKY parsing incremental?
e The chart-filling order we used (short spans first) clearly isn't.
e What about J&M's ordering (fill all cells ending at j, then j+1)?

e Consider processing The girl gave the dog a bone:

S — NPVP Det — the|a
NP — Det CN CN — girl | dog | bone
VP — TVNP TV. —  bit
VP — DV NP NP DV — gave
Sharon Goldwater Human Parsing 9 Sharon Goldwater
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e There are still 4 disconnected structures before the rule VP — DV NP NP
applies, reducing the number to 2 (after which, 1).

The girl gave the dog a bone
o o Q

Another problematic example

Consider the garden path sentence the old man the boats.

e Assume a serial bottom-up parser (or limited parallel—key is that the correct
structure is not considered initially).

e At what point (intuitively) does a human realize the initial analysis is incorrect?

e At what point does the parser realize this?
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Another problematic example

Grammar for processing the old man the boats:

S — NPVP Det — the|a
NP — Det CN Adj — old
NP — Det Adj CN CN — man | boats | old
VP — TVNP TV — man| like
VP — DV NP NP DV — gave
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Garden path is too late!

The bottom-up parser doesn't realize its mistake until it reaches the end of the
sentence, and cannot create a full parse:

The old man the boats

But humans recognize a problem at the second the: they have an expectation
about what should come next, and it is violated.

Summary so far
e RD parsing cannot model humans because of problems with (eg.) left recursion.

e SR parsing cannot model humans because it doesn't recognize garden paths
immediately.

e CKY parsing cannot model humans because it is too parallel, or (if limited),
also doesn't recognize garden paths immediately.

e So, where does that leave us?
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Left Corner Parsing

Left corner parsing is more cognitively plausible: each word is immediately
integrated into a single evolving structure which makes predictions about what
will come next.

e Mixed directionality: constrained by input (like bottom-up) but also making
predictions (like top-down).

e Chart contains active edges: incomplete constituents representing predictions.

e Ex: NP/CN is an incomplete constituent that will become a complete NP if a
CN is seen next (cf. categorial grammar).
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Rules of Left Corner Parsing

1. Projection: For a completed edge Y and a grammar rule X — Y Z, add an
active edge X/Z, where Y and X/Z span the same part of the string.

2. Completion: For an active edge X/Y and a completed edge Y that are adjacent,
add a completed edge X that spans the width of both.

3. Composition: For two adjacent active edges X/Y and Y/Z, add an active edge
X/Z that spans the width of both.

Rule 3 is not necessary for LC parsing, but is necessary for a fully incremental
version (i.e., to ensure a single connected structure).
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Example of a left
corner chart:
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Rules of Left Corner Parsing

If dealing with non-binary grammar:

1. Projection: For a completed edge Y and a grammar rule X — Y «, add an
active edge X/a, where Y and X/a span the same part of the string.

2. Partial Completion: For an active edge X/Y o and a completed edge Y that
are adjacent, add an active edge X/ that spans the width of both.

3. Completion: For an active edge X/Y and a completed edge Y that are adjacent,
add a completed edge X that spans the width of both.

4. Composition: For two adjacent active edges X/Y and Y/Z, add an active edge
X/Z that spans the width of both.
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Example LC parse for garden path sentence

To try on your own with the grammar provided earlier: the old man the boats

Confirm that the parser realizes a problem where it should!
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Summary

e Left-corner parsing achieves full incrementality by using chart entries to
represent partial/predictive syntactic structure.

e Looks promising for modelling ambiguity resolution and garden paths.

e But still haven't explained why some parses are preferred or some locally
ambiguous sentences (but not others) cause garden paths.

e Other open research issues:

— Developing fully incremental parsers for wide range of grammar formalisms
(some easier than others).

— How/when does semantics fit in?
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