
Introduction to Computational Linguistics:
Parsing Algorithms

Sharon Goldwater
(based on slides by Mark Steedman and Philipp Koehn)

20 July 2015

Sharon Goldwater Parsing 20 July 2015

Parsers

A parser is an algorithm that computes a structure for an input string given a
grammar.

Understanding different parsing algorithms is important for:

• Computer scientists: parsers used to compile programs, check html, etc.

• NLP researchers: efficient parsers needed for large-scale language tasks (e.g.,
used to create Google’s “infoboxes”).

• Psycholinguists: what algorithm might be used by the human sentence
processing mechanism?

Sharon Goldwater Parsing 1

Ambiguity refresher

Parsers need to handle (rampant!) syntactic ambiguity in natural language.

• global ambiguity: multiple full parses are possible, e.g., PP attachment:
I saw the man with the telescope

• local ambiguity: ambiguous partial structures, need not be consistent with
full parse.

– classic garden path sentences: the old man the boats
– but also lots of “normal” sentences: the dog bit the child

• Ambiguity can be structural (different possible phrasal constituents) or lexical
(word with multiple POS tags), often both.

Sharon Goldwater Parsing 2

CFG refresher

Parsing algorithms exist for many types of grammars, but we’ll consider just
context-free grammars for now. CFG refresher (or see J&M 12.2-12.5):

• Two types of grammar symbols:

– terminals (t): words.
– Non-terminals (NT): phrasal categories like S, NP, VP, PP. Sometimes we

distinguish pre-terminals (POS tags), a type of NT.

• Rules must have the form NT → β, where β is any string of NT’s and t’s.

• A CFG in Chomsky Normal Form only has rules of the form NTi → NT j NTk

or NTi → t j

Sharon Goldwater Parsing 3

Parser properties

All parsers have two fundamental properties:

• Directionality: the sequence in which the structures are constructed.

– top-down: start with root category (S), choose expansions, build down to
words.

– bottom-up: build subtrees over words, build up to S.
– Mixed strategies also possible (e.g., left corner parsers)

• Search strategy: the order in which the search space of possible analyses is
explored.

Sharon Goldwater Parsing 4

Example: search space for top-down parser

• Start with S node.

• Choose one of many
possible expansions.

• Each of which has
children with many
possible expansions...

• etc

SS S

S S S S S

S

NP VP NP VP
aux

S

NP

NP

Sharon Goldwater Parsing 5

Search strategies

• depth-first search: explore one branch of the search space at a time, as far
as possible. If this branch is a dead-end, parser needs to backtrack.

• breadth-first search: expand all possible branches in parallel (or simulated
parallel). Requires storing many incomplete parses in memory at once.

• best-first search: score each partial parse and pursue the highest-scoring
options first. (Will get back to this when discussing statistical parsing.)

Sharon Goldwater Parsing 6

Recursive Descent Parsing

• A recursive descent parser treats a grammar as a specification of how to
break down a top-level goal (find S) into subgoals (find NP VP).

• It is a top-down, depth-first parser:

– blindly expand nonterminals until reaching a terminal (word).

– If terminal matches next input word, continue; else, backtrack.

Sharon Goldwater Parsing 7

Backtrack points

• Need to keep track of backtrack points, to return to if we backtrack.

• Each backtrack point stores:

– A partial parse tree (what was completed when we made a choice)
– The rules we haven’t tried yet
– The input words we haven’t matched yet

• To ensure depth-first search, backtrack points are stored in a stack: last in,
first out.

Sharon Goldwater Parsing 8

RD Parsing: initialization
We start with

• The rules of our context-free grammar, e.g.,

S→ NP VP VP→ V NN→ bit V→ bit

NP→ DT NN DT→ the NN→ dog V→ dog

• Current partial parse (also current subgoal): the S node.

• An ordered list of subgoals, initially containing just S.

• An empty stack of backtrack points.

• The input sequence (e.g., the dog bit)

Sharon Goldwater Parsing 9

RD Parsing: iterative steps

• If first subgoal in list is a non-terminal A:

– Pick a rule from the grammar to expand it (e.g., A→ B C)
– Replace A in subgoal list with B C

• If first subgoal in list is a terminal w:

– If input is empty, backtrack.
– If next input word is different from w, backtrack.
– If next input word is w, match! i.e., consume input word w and subgoal w

and move to next subgoal.

Sharon Goldwater Parsing 10

RD Parsing: iterative steps

• If first subgoal in list is a non-terminal A:

– Pick a rule from the grammar to expand it (e.g., A→ B C)
– Replace A in subgoal list with B C

• If first subgoal in list is a terminal w:

– If input is empty, backtrack.∗

– If next input word is different from w, backtrack.
– If next input word is w, match! i.e., consume input word w and subgoal w

and move to next subgoal.∗∗

∗ If stack is empty, we lose! No parse is possible.
∗∗ If no more subgoals, we win! We found a parse.

Sharon Goldwater Parsing 11

Recursive descent example

• Grammar and sentence from
slide 9.

• Operations:

– Expand (E)
– Match (M)
– Backtrack to step n (Bn)

Step Op. Subgoals Input
0 S the dog bit
1 E NP VP the dog bit
2 E DT NN VP the dog bit
3 E the NN VP the dog bit
4 M NN VP dog bit
5 E bit VP dog bit
6 B4 NN VP dog bit
7 E dog VP dog bit
8 M VP bit
9 E V bit
10 E bit bit
11 M

Sharon Goldwater Parsing 12

Parsers vs Recognizers

• The above sketch is actually a recognizer: it tells us whether the sentence
has a valid parse, but not what the parse is.

• Would need to add more details to keep track of parse structure as it is built.

Sharon Goldwater Parsing 13

Shift-Reduce Parsing

• Search strategy and directionality are orthogonal properties.

• Shift-reduce parsing is depth-first (like RD) but bottom-up (unlike RD).

• Basic shift-reduce recognizer repeatedly:

– Shifts input symbols onto a stack.
– Whenever possible, reduces one or more items from top of stack that match

RHS of rule, replacing with LHS of rule.

• Like RD parser, needs to maintain backtrack points.

Sharon Goldwater Parsing 14

Shift-reduce example

• Same example grammar and
sentence.

• Operations:

– Shift (S)
– Reduce (R)
– Backtrack to step n (Bn)

Step Op. Stack Input
0 the dog bit
1 S the dog bit
2 R DT dog bit
3 S DT dog bit
4 R DT V bit
5 S DT V bit

6 R DT V V

7 B5 DT V bit

8 R DT V NN

9 B3 DT dog bit
10 R DT NN bit
11 R NP bit
12 R NP bit bit
. . .

Sharon Goldwater Parsing 15

Depth-first parsing in practice

• Depth-first parsers are very efficient for unambiguous structures.

– Widely used to parse/compile programming languages

– Language/grammar is specially constructed to be unambiguous (sometimes
with finite lookahead).

Sharon Goldwater Parsing 16

Depth-first parsing in practice

• Depth-first parsers are very efficient for unambiguous structures.

– Widely used to parse/compile programming languages

– Language/grammar is specially constructed to be unambiguous (sometimes
with finite lookahead).

• But can be massively inefficient (exponential in sentence length) if faced with
local ambiguity.

– Blind backtracking may require re-building the same structure over and over.

– So, much less common for natural language parsing (though some work on
best-first probabilistic shift-reduce parsing: uses lookahead to help predict
which expansions to make).

Sharon Goldwater Parsing 17

Breadth-first search using dynamic programming

• With a CFG, a parser should be able to avoid re-analyzing sub-strings because
the analysis of any sub-string is independent of the rest of the parse.

The dog saw a man in the park

NPNP NP

PP

Sharon Goldwater Parsing 18

Breadth-first search using dynamic programming

• With a CFG, a parser should be able to avoid re-analyzing sub-strings because
the analysis of any sub-string is independent of the rest of the parse.

The dog saw a man in the park

NPNP NP

PP

• To exploit this fact, chart parsing algorithms use dynamic programming to
store and reuse sub-parses.

• This permits exploring multiple potential parses at once: a breadth-first
strategy.

Sharon Goldwater Parsing 19

Parsing as dynamic programming

• As in HMM algorithms, dynamic programming fills a table of solutions to
subproblems (memoization), then composes these to find the full solution.

• For parsing, subproblems are analyses of substrings, memoized in chart (aka
well-formed substring table, WFST).

• Chart entries are indexed by start and end positions in the sentence, and
correspond to:

– either a complete constituent (sub-tree) spanning those positions (if working
bottom-up),

– or a hypothesis about what complete constituent might be found (if working
top-down).

Sharon Goldwater Parsing 20

Depicting a WFST/Chart

• Chart can be depicted as either a matrix or a graph.

• In either case, we assume indices between each word in the sentence:

0 See 1 with 2 a 3 telescope 4 in 5 hand 6

• If using a matrix, cell [i, j] holds information about the word span from position
i to position j:

– The root node of any constituent(s) spanning those words

– Pointers to its sub-constituents

– (Depending on parsing method,) predictions about what constituents might
follow the substring.

Sharon Goldwater Parsing 21

Depicting a WFST as a Matrix

Example, partway through parsing.

• Here, only showing root nodes of
each constituent.

• Lower left of chart never used;
often only upper right is shown.

1 2 3 4 5 6

1

3

2

4

5

0

Prep

Det NP

N

PP

V

0 See 1 with 2 a 3 telescope 4 in 5 hand 6

Sharon Goldwater Parsing 22

Depicting a WFST as a Graph

• Here, each sentence position index is a node or vertex.

• edges (arcs) represent spans, labelled with the same information that goes in
a cell in the matrix representation.

with a telescope
1 2 43

NPrep Det

NP

PP

Sharon Goldwater Parsing 23

Algorithms for Chart Parsing

Many different chart parsing algorithms, including

• the CKY algorithm, which memoizes only complete constituents

• various algorithms that also memoize predictions/partial constituents

– often using mixed bottom-up and top-down approaches, e.g., the Earley
algorithm described in J&M, and left-corner parsing.

Sharon Goldwater Parsing 24

CKY Algorithm

CKY (Cocke, Kasami, Younger) is a bottom-up, breadth-first parsing algorithm.

• Original (simplest) version assumes grammar in Chomsky Normal Form.

• Add constituent A in cell (i, j) if:

– there is a rule A→ B, and B is in cell (i, j), or

– there is a rule A→ B C, and B is in cell (i,k) and C is in cell (k, j).

Sharon Goldwater Parsing 25

CKY Algorithm

CKY (Cocke, Kasami, Younger) is a bottom-up, breadth-first parsing algorithm.

• Original (simplest) version assumes grammar in Chomsky Normal Form.

• Add constituent A in cell (i, j) if:

– there is a rule A→ B, and B is in cell (i, j), or

– there is a rule A→ B C, and B is in cell (i,k) and C is in cell (k, j).

• Fills chart in order: only looks for rules that use a constituent from i to j after
finding all constituents ending at i. So, guaranteed to find all possible parses.

Sharon Goldwater Parsing 26

CKY Pseudocode

• Assume input sentence with indices 0 to n, and chart c.

for len = 1 to n: #number of words in constituent

for i = 0 to n-len: #start position

j = i+len #end position

#process unary rules

if A->B and c[i,j] has B, add A to c[i,j]

for k = i+1 to j-1 #mid position

#process binary rules

if A->B C and c[i,k] has B and c[k,j] has C, add A to c[i,j]

• This algorithm performs recognition in time O(n3).

Sharon Goldwater Parsing 27

CKY example
Grammatical rules Lexical rules
S → NP VP Det → a | the (determiner)
NP → Det Nom N → fish | frogs | soup (noun)
NP → Nom Prep → in | for (preposition)
Nom → N SRel TV → saw | ate (transitive verb)
Nom → N IV → fish | swim (intransitive verb)
VP → TV NP Relpro → that (relative pronoun)
VP → IV PP
VP → IV
PP → Prep NP
SRel → Relpro VP

Nom: nominal (the part of the NP after the determiner, if any).
SRel: subject relative clause, as in the frogs that ate fish.

Sharon Goldwater Parsing 28

Visualizing the Chart
1 4

0

1

2

3

32

the frogs ate fish

Sharon Goldwater Parsing 29

Visualizing the Chart (0,1)
1 4

0

1

2

3

32

the frogs ate fish

det

Unary branching rules: det → the

Sharon Goldwater Parsing 30

Visualizing the Chart (1,2)
1 4

0

1

2

3

32

n
nom
np

the frogs ate fish

det

Unary branching rules: N → frogs, Nom → N, NP → Nom

Sharon Goldwater Parsing 31

Visualizing the Chart (2,3)
1 4

0

1

2

3

32

nom
np

n

the frogs ate fish

det

tv

Unary branching rules: tv → ate

Sharon Goldwater Parsing 32

Visualizing the Chart (3,4)
1 4

0

1

2

3

32

n
nom
np

the frogs ate fish

det

vp

n
nom
np
iv

tv

Unary branching rules: N → fish, Nom → N, NP → Nom, iv → fish, vp → iv

Sharon Goldwater Parsing 33

Visualizing the Chart (0,2)
1 4

0

1

2

3

32

n
nom
np

the frogs ate fish

det np

tv

n
nom
np
iv
vp

Binary branching rule: NP → Det Nom (0,1) & (1,2) (0,2)

Sharon Goldwater Parsing 34

Visualizing the Chart (1,3)
1 4

0

1

2

3

32

n
nom
np

the frogs ate fish

det np

tv

n
nom
np
iv
vp

(1,2) & (2,3) 6

Sharon Goldwater Parsing 35

Visualizing the Chart (2,4)
1 4

0

1

2

3

32

n
nom
np

the frogs ate fish

det np

tv vp

n
nom
np
iv
vp

Binary branching rule: VP → TV NP (2,3) & (3,4) (2,4)

Sharon Goldwater Parsing 36

Visualizing the Chart (0,3)
1 4

0

1

2

3

32

n
nom
np

the frogs ate fish

det np

tv vp

n
nom
np
iv
vp

(0,1) & (1,3) 6 (0,2) & (2,3) 6

Sharon Goldwater Parsing 37

Visualizing the Chart (1,4)
1 4

0

1

2

3

32

n
nom
np

the frogs ate fish

det np

tv vp

s

n
nom
np
iv
vp

Binary rule: S → NP VP (1,2) & (2,4) (1,4) (1,3) & (3,4) 6

Sharon Goldwater Parsing 38

Visualizing the Chart (0,4)
1 4

0

1

2

3

32

n
nom
np

the frogs ate fish

det np

tv vp

s

n
nom
np
iv
vp

s

(0,1) & (1,4) 6
Binary rule: S → NP VP (0,2) & (2,4) (0,4) (0,3) & (3,4) 6

Sharon Goldwater Parsing 39

A note about CKY ordering

• Notice that to fill cell (i, j), we use a cell from row i and a cell from column j.

• So, we must fill in all cells down and left of (i, j) before filling (i, j).

• Here, we filled in all short entries, then longer ones, but other orders can work
(e.g., J&M fill in all spans ending at j, then increment j.)

Sharon Goldwater Parsing 40

From CKY Recognizer to CKY Parser

• As just specified, CKY only recognizes, but can’t return the parse.

• e.g., we don’t know from S cell how it was constructed.

• Easy to fix:

– whenever a constituent is found for cell (i, j), store the indices of the
sub-constituents that formed it.

– can mean storing multiple copies of A with different indices.

– Sometimes called a packed parse forest: represents a possibly exponential
number of trees in a compact way.

Sharon Goldwater Parsing 41

CKY in practice

• Avoids re-computing substructures, so much more efficient than depth-first
parsers (in worst case).

• Still may compute a lot of unnecessary partial parses.

• Simple version requires converting the grammar to CNF (may cause blowup).

Various other chart parsing methods avoid these issues by combining top-down
and bottom-up approaches (see J&M).

We also haven’t said anything about how to choose between different parses when
there’s global ambiguity.

Sharon Goldwater Parsing 42

Introduction to Computational Linguistics:
Parsing and Human Sentence Processing

Sharon Goldwater

20 July 2015

Sharon Goldwater Human Parsing 20 July 2015

Recap: Parsing

We have seen several different parsing algorithms:

• Recursive descent parsing: top-down, depth-first.

• Shift-reduce parsing: bottom-up, depth-first.

• CKY parsing: bottom-up, breadth-first.

Do any of these seem plausbile as a model of human sentence processing?

Sharon Goldwater Human Parsing 1

Properties of human parsing mechanism

• Fast: real-time.

• Recognizes global ambiguity: at least to some extent.

• Incremental: words (and meaning) are integrated into structure immediately.

• Can be led astray: by local ambiguity (garden path sentences).

• But mostly isn’t: many local ambiguities don’t cause problems.

Sharon Goldwater Human Parsing 2

Global ambiguity

• Some examples are clearly (even humorously) ambiguous:

– I saw the man with a telescope.
– She sat on the chair covered in dust.
– Milk drinkers are turning to powder.

• But most ambiguity isn’t even noticed!

– I saw the man with a hat.
– She stood on the stoop covered in tears.
– Breast feeders are turning to a new enriched formula.

Sharon Goldwater Human Parsing 3

Local ambiguity

• Same goes for local ambiguity:

– The old man the boats
– We painted the wall with cracks
– Fat people eat accumulates

versus

– The dog bit the cat
– The green is used for playing soccer
– We stopped short of going

Sharon Goldwater Human Parsing 4

Properties of our parsing algorithms

• Fast? We argued that RD and SR are inefficient, but could perhaps be
improved by good heuristics for choosing next rules. Anyway, hard to evaluate
what counts as “fast”.

• Recognize global ambiguity? CKY builds all parses, so definitely yes. RD/SR
can return multiple parses if run past the first one. But notice a distinction...

Sharon Goldwater Human Parsing 5

Serial versus parallel parsing

• Depth-first parsers are inherently serial: one structure processed at a time.
So, recognizing ambiguity implies backtracking/re-parsing, and one structure
will always be recognized first.

• Breadth-first parsers are idealized as parallel: multiple structures processed
simultaneously. If truly parallel, ambiguous structures identified simultaneously.

Sharon Goldwater Human Parsing 6

Human parsing: serial or parallel?

• On the face of it, full parallel parsing seems implausible:

– Finds/notices all the global ambiguities.
– Doesn’t get stuck in garden paths.

• Serial parsing provides a possible explanation for garden paths (backtracking).

• But there are parallel options too:

– limited parallelism: pursue a fixed (small) number of structures at once,
may still require occasional backtracking.

– ranked parallelism: (possibly in combination with above). Possible
structures ranked by preference; garden path if low-ranked structure turns
out to be correct.

Sharon Goldwater Human Parsing 7

What about incrementality?

First, what does it mean to be incremental?

• Each word is integrated into the parse as soon as it is seen/heard.

• Problems with current parse are detected immediately; also possible to make
predictions about upcoming words.

• Evidence: eye-tracking of semantic interpretation, garden paths.

Sharon Goldwater Human Parsing 8

Is CKY parsing incremental?

• The chart-filling order we used (short spans first) clearly isn’t.

• What about J&M’s ordering (fill all cells ending at j, then j+1)?

• Consider processing The girl gave the dog a bone:

S → NP VP
NP → Det CN
VP → TV NP
VP → DV NP NP

Det → the | a
CN → girl | dog | bone
TV → bit
DV → gave

Sharon Goldwater Human Parsing 9

• There are still 4 disconnected structures before the rule VP → DV NP NP
applies, reducing the number to 2 (after which, 1).

The gave the dog a bone

det cncndet det cndv

np npnp

vp

girl

The gave the dog a bone

det cncndet det cndv

np np np

girl

Sharon Goldwater Human Parsing 10

Another problematic example

Consider the garden path sentence the old man the boats.

• Assume a serial bottom-up parser (or limited parallel—key is that the correct
structure is not considered initially).

• At what point (intuitively) does a human realize the initial analysis is incorrect?

• At what point does the parser realize this?

Sharon Goldwater Human Parsing 11

Another problematic example

Grammar for processing the old man the boats:

S → NP VP
NP → Det CN
NP → Det Adj CN
VP → TV NP
VP → DV NP NP

Det → the | a
Adj → old
CN → man | boats | old
TV → man | like
DV → gave

Sharon Goldwater Human Parsing 12

Garden path is too late!

The bottom-up parser doesn’t realize its mistake until it reaches the end of the
sentence, and cannot create a full parse:

the

det det

np

The old man boats

np

adj cn cn

But humans recognize a problem at the second the: they have an expectation
about what should come next, and it is violated.

Sharon Goldwater Human Parsing 13

Summary so far

• RD parsing cannot model humans because of problems with (eg.) left recursion.

• SR parsing cannot model humans because it doesn’t recognize garden paths
immediately.

• CKY parsing cannot model humans because it is too parallel, or (if limited),
also doesn’t recognize garden paths immediately.

• So, where does that leave us?

Sharon Goldwater Human Parsing 14

Left Corner Parsing

Left corner parsing is more cognitively plausible: each word is immediately
integrated into a single evolving structure which makes predictions about what
will come next.

• Mixed directionality: constrained by input (like bottom-up) but also making
predictions (like top-down).

• Chart contains active edges: incomplete constituents representing predictions.

• Ex: NP/CN is an incomplete constituent that will become a complete NP if a
CN is seen next (cf. categorial grammar).

Sharon Goldwater Human Parsing 15

Rules of Left Corner Parsing

1. Projection: For a completed edge Y and a grammar rule X→ Y Z, add an
active edge X/Z, where Y and X/Z span the same part of the string.

2. Completion: For an active edge X/Y and a completed edge Y that are adjacent,
add a completed edge X that spans the width of both.

3. Composition: For two adjacent active edges X/Y and Y/Z, add an active edge
X/Z that spans the width of both.

Rule 3 is not necessary for LC parsing, but is necessary for a fully incremental
version (i.e., to ensure a single connected structure).

Sharon Goldwater Human Parsing 16

Example of a left
corner chart:

The kittens bite

cndet tv

np

det cn

dogthe

s

s/cn

s/np

s/vp

np/cn vp/np np/cn

Sharon Goldwater Human Parsing 17

Rules of Left Corner Parsing

If dealing with non-binary grammar:

1. Projection: For a completed edge Y and a grammar rule X→ Y α, add an
active edge X/α, where Y and X/α span the same part of the string.

2. Partial Completion: For an active edge X/Y α and a completed edge Y that
are adjacent, add an active edge X/α that spans the width of both.

3. Completion: For an active edge X/Y and a completed edge Y that are adjacent,
add a completed edge X that spans the width of both.

4. Composition: For two adjacent active edges X/Y and Y/Z, add an active edge
X/Z that spans the width of both.

Sharon Goldwater Human Parsing 18

Example LC parse for garden path sentence

To try on your own with the grammar provided earlier: the old man the boats

Confirm that the parser realizes a problem where it should!

Sharon Goldwater Human Parsing 19

Summary

• Left-corner parsing achieves full incrementality by using chart entries to
represent partial/predictive syntactic structure.

• Looks promising for modelling ambiguity resolution and garden paths.

• But still haven’t explained why some parses are preferred or some locally
ambiguous sentences (but not others) cause garden paths.

• Other open research issues:

– Developing fully incremental parsers for wide range of grammar formalisms
(some easier than others).

– How/when does semantics fit in?

Sharon Goldwater Human Parsing 20

