
Introduction to Computational Linguistics:
Treebanks and statistical parsing

Sharon Goldwater

23 July 2015

Sharon Goldwater Statistical parsing 23 July 2015

Towards probabilistic parsing

• We’ve seen how to parse incrementally (LC), and how to parse exhaustively
yet efficiently (CKY).

• But we haven’t discussed how to choose which of many possible parses is the
right one.

• Either to improve NLP, or to model human disambiguation.

• The obvious solution: probabilities.

Sharon Goldwater Statistical parsing 1

How big a problem is disambiguation?

• Early work in computational linguistics tried to develop broad-coverage hand-
written grammars.

• Various formalisms: LFG, HPSG, etc.

• As coverage grows, sentences can have hundreds or thousands of parses. Very
difficult to write heuristic rules for disambiguation.

• Plus, grammar is hard to keep track of!

• Enter the treebank grammar.

Sharon Goldwater Statistical parsing 2

Treebank grammars

• The big idea: instead of paying linguists to write a grammar, pay them to
annotate real sentences with parse trees.

• This way, we implicitly get a grammar (for CFG: read the rules off the trees).

• And we get probabilities for those rules (using any of our favorite estimation
techniques).

• We can use these probabilities to improve disambiguation and even speed up
parsing.

• And treebanks are also useful for linguistic study!

Sharon Goldwater Statistical parsing 3

The Penn Treebank

• The first large-scale syntactic annotation project, begun in 1989.

• Funded by DARPA in the context of their evaluation-led research funding
approach (“bakeoffs”).

• Original corpus of syntactic parses: Wall Street Journal text.

• Now many other data sets, and different kinds of annotation; also inspired
treebanks in many other languages.

Sharon Goldwater Statistical parsing 4

Other language treebanks

Many of these annotated with dependency grammar rather than CFG, some
require paid licenses, others are free. This list is definitely not exhaustive:

• Danish Dependency Treebank

• Alpino Treebank (Dutch)

• Bosque Treebank (Portuguese)

• Talbanken (Swedish)

• Prague Dependency Treebank (Czech)

• TIGER corpus, Tuebingen Treebank, NEGRA corpus (German)

• Penn Chinese Treebank

• Penn Arabic Treebank

• Tuebingen Treebank of Spoken Japanese, Kyoto Text Corpus

Sharon Goldwater Statistical parsing 5

Penn Treebank annotations

• Original (release 1) annotations fairly basic:

– Phrasal categories like NP, VP, PP.
– Annotation includes traces, e.g.:

I liked the show that we watched * last night
Robin found it difficult to * lift the boxes

• Later, annotations were updated to include more information:

– Categories like NP-SBJ, NP-DTV, ADVP-TMP, PP-LOC

Sharon Goldwater Statistical parsing 6

Creating a treebank PCFG

A probabilistic context-free grammar (PCFG) is a CFG where each rule A→ α
(where α is a symbol sequence) is assigned a probability P(α|A).

• The sum over all expansions of A must equal 1: ∑α′P(α′|A) = 1.

• Easiest way to create a PCFG from a treebank: MLE

– Count all occurrences of A→ α in treebank.
– Divide by the count of all rules whose LHS is A to get P(α|A)

• As usual, in practice many rules have very low frequencies, so we need to
smooth.

Sharon Goldwater Statistical parsing 7

The generative model

Like n-gram models and HMMs, PCFGs are a generative model. Assumes
sentences are generated as follows:

• Start with root category S.

• Choose an expansion α for S with probability P(α|S).

• Then recurse on each symbol in α.

• Continue until all symbols are terminals (nothing left to expand).

Sharon Goldwater Statistical parsing 8

The probability of a parse

• Under this model, the probability of a parse t is simply the product of all rules
in the parse:

P(t) = ∏
A→α∈t

A→ α

Sharon Goldwater Statistical parsing 9

Statistical disambiguation example

Let’s see how parse probabilities could help disambiguate PP attachment.

• Suppose we have the following PCFG, inspired by Manning & Schuetze (1999):

S → NP VP 1.0 NP → NP PP 0.4
PP → P NP 1.0 NP → kids 0.1
VP → V NP 0.7 NP → birds 0.18
VP → VP PP 0.3 NP → saw 0.04
P → with 1.0 NP → fish 0.18
V → saw 1.0 NP → binoculars 0.1

• We want to parse kids saw birds with fish.

Sharon Goldwater Statistical parsing 10

Probability of parse 1
S1.0

NP0.1

kids

VP0.7

V1.0

saw

NP0.4

NP0.18

birds

PP1.0

P1.0

with

NP0.18

fish

• P(t1) = 1.0 ·0.1 ·0.7 ·1.0 ·0.4 ·0.18 ·1.0 ·1.0 ·0.18 = 0.0009072

• In practice, we’d use log probabilities: recall Lab 1!

Sharon Goldwater Statistical parsing 11

Probability of parse 2
S1.0

NP0.1

kids

VP0.3

VP0.7

V1.0

saw

NP0.18

birds

PP1.0

P1.0

with

NP0.18

fish

• P(t2) = 1.0 ·0.1 ·0.3 ·0.7 ·1.0 ·0.18 ·1.0 ·1.0 ·0.18 = 0.0006804

• which is less than P(t1) = 0.0009072, so t1 is preferred. Yay!

Sharon Goldwater Statistical parsing 12

The probability of a sentence

• Since t implicitly includes the words ~w, we have P(t) = P(t,~w).

• So, we also have a language model. Sentence probability is obtained by
summing over T (~w), the set of valid parses of ~w:

P(~w) = ∑
t∈T (~w)

P(t,~w) = ∑
t∈T (~w)

P(t)

• In our example, P(kids saw birds with fish) = 0.0006804+0.0009072.

Sharon Goldwater Statistical parsing 13

Probabilistic CKY

It is straightforward to extend CKY parsing to the probabilistic case.

• Goal: return the highest probability parse of the sentence (cf. Viterbi)

– When we find an A spanning (i, j), store its probability along with its label
in cell (i, j).

– If we later find an A with the same span but higher probability, replace the
probability for A in cell (i, j).

Sharon Goldwater Statistical parsing 14

Probabilistic CKY

It is straightforward to extend CKY parsing to the probabilistic case.

• Goal: return the highest probability parse of the sentence (cf. Viterbi)

– When we find an A spanning (i, j), store its probability along with its label
in cell (i, j).

– If we later find an A with the same span but higher probability, replace the
probability for A in cell (i, j).

• Or, compute the probability of the sentence (cf. forward algorithm)

– Same as above, but instead of storing the best parse for A, store the sum of
all parses.

Sharon Goldwater Statistical parsing 15

Probabilistic CKY

It is straightforward to extend CKY parsing to the probabilistic case.

• Goal: return the highest probability parse of the sentence (cf. Viterbi)

– When we find an A spanning (i, j), store its probability along with its label
in cell (i, j).

– If we later find an A with the same span but higher probability, replace the
probability for A in cell (i, j).

• Or, compute the probability of the sentence (cf. forward algorithm)

– Same as above, but instead of storing the best parse for A, store the sum of
all parses.

• And, given a grammar, we can use EM to learn rule probs from unannotated
sentences with the inside-outside algorithm (cf. forward-backward).

Sharon Goldwater Statistical parsing 16

Best-first probabilistic parsing

• So far, we’ve been assuming exhaustive parsing: return all possible parses.

• But treebank grammars are huge!! Exhaustive parsing of all WSJ sentences
up to 40 words long takes on average over 1m edges.1

• Best-first parsing can help.

1Charniak, Goldwater, and Johnson, WVLC 1998.

Sharon Goldwater Statistical parsing 17

Best-first probabilistic parsing

• Basic idea: use probabilities of subtrees to decide which ones to build up
further.

– Keep an ordered agenda of (active or complete) edges to add to the chart.

– Not totally trivial: smaller subtrees have higher probabilities on average.

– So, agenda is ordered by a figure of merit that normalizes probabilities by
size of wordspan (or similar).

Sharon Goldwater Statistical parsing 18

Best-first probabilistic parsing

• Basic idea: use probabilities of subtrees to decide which ones to build up
further.

– Keep an ordered agenda of (active or complete) edges to add to the chart.

– Not totally trivial: smaller subtrees have higher probabilities on average.

– So, agenda is ordered by a figure of merit that normalizes probabilities by
size of wordspan (or similar).

• Many variations on this idea (including incremental ones), often limiting the
size of the agenda by pruning out low-scoring edges (beam search).

Sharon Goldwater Statistical parsing 19

But wait a minute...

Previous slides dealt with implementational issues of using treebank PCFGs. But
do PCFGs actually solve the original problem (disambiguation)?

• Our example grammar gave the right parse for kids saw birds with fish.

• What happens if we parse kids saw birds with binoculars?

Sharon Goldwater Statistical parsing 20

PCFGs don’t capture lexical dependencies
S1.0

NP0.1

kids

VP0.7

V1.0

saw

NP0.4

NP0.18

birds

PP1.0

P1.0

with

NP0.1

binoculars

S1.0

NP0.1

kids

VP0.3

VP0.7

V1.0

saw

NP0.18

birds

PP1.0

P1.0

with

NP0.1

binoculars

• These have exactly the same probabilities as the “fish” trees, except divide out
P(fish|NP) and multiply in P(binoculars|NP) in each case.

• So, the same tree (the left one) is preferred, but this time incorrectly!

Sharon Goldwater Statistical parsing 21

PCFGs don’t capture lexical dependencies

Replacing one word with another of the same POS will never result in a different
parsing decision, even though it should!

• More examples:

– She stood by the door covered in tears vs. She stood by the door covered in ivy

– She called on the student vs. She called on the phone.
(assuming “on” has the same POS...)

More generally, PCFGs don’t account for selectional preferences.

Sharon Goldwater Statistical parsing 22

PCFGs don’t capture lexical dependencies

PCFGs also don’t account for agreement/subcategorization:

• She ate the pizza vs. *She ate the pizza the table

• The boy is eating vs. The boy and the dog are eating

Sharon Goldwater Statistical parsing 23

PCFGs don’t capture global structural preferences

• Ex. in Switchboard corpus, the probability of NP→ Pronoun

– in subject position is 0.91
– in object position is 0.34

• Lots of other rules also have different probs depending on where in the sentence.

• But PCFGs are context-free, so can’t use this information.

Sharon Goldwater Statistical parsing 24

Ways to fix PCFGs (1): parent annotation

Basically, create new categories that include the old category and its parent.

• So, an NP in subject position becomes NP^S, with other NPs becoming NP^VP,
NP^PP, etc.

• Ex. rules:

– S^ROOT→ NP^S VP^S

– NP^S→ Pro^NP

– NP^S→ NP^NP PP^NP

Sharon Goldwater Statistical parsing 25

Ways to fix PCFGs (2): lexicalization

Again, create new categories, this time by adding the lexical head of the phrase:

S-saw

NP-kids

kids

VP-saw

VP-saw

V-saw

saw

NP-birds

birds

PP-fish

P-with

with

NP-fish

fish
• Now consider:
VP-saw→ VP-saw PP-fish vs. VP-saw→ VP-saw PP-binoculars

Sharon Goldwater Statistical parsing 26

Practical issues, again

• All this category-splitting makes the grammar much more specific (good!)

• But leads to huge grammar blowup and very sparse data (bad!)

• Lots of effort on how to balance these two issues.

– Complex smoothing schemes (similar to n-gram interpolation/backoff).
– More recently, increasing emphasis on automatically learned subcategories.

• Results on WSJ corpus:

– basic PCFG gets less than 80% of constituents right2

– lexicalizing + cat-splitting yields 89.5% (Charniak, 2000)
– (best current parsers get upwards of 92%)

2Charniak (1996) reports 81% but using gold POS tags as input.

Sharon Goldwater Statistical parsing 27

Other topics in syntax/parsing

We’ve only scratched the surface here. Lots of work on:

• Parsing speech, social media, and other non-WSJ-like forms.

• Parsing in other formalisms (dependency grammar, CCG).

• Joint morphosyntactic parsing for morphologically complex languages.

• Grammar induction from strings, or strings + semantics.

• Better models of human sentence processing.

Sharon Goldwater Statistical parsing 28

Summary

• Probabilistic models of syntax can help disambiguation and speed in broad-
coverage parsing.

• Treebanks are really useful, but models need more than just PCFG.

• Lots of work still to be done!

Sharon Goldwater Statistical parsing 29

