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Computational semantics

We talked about ways to “hack” PCFGs to return better parses.

Some of these are effectively encoding semantic information/world knowledge
into a syntactic grammar.

Maybe it’s time to think more about semantics generally...
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Natural language understanding

Full NLU is hard! So most computational work focuses on sub-problems:

• Recognizing lexical relationships: similarity, synonymy, hyponymy (kind-of),
meronymy (part-of).

• Disambiguating word senses (e.g., bank: river or finance?)

• Identifying which phrases fill the thematic roles of a verb. (J&M 19.4, 20.9)

• Recognizing entailment relations between sentences.

• Interpreting sentences to logical forms (semantic parsing), e.g., in a database
query language. (J&M Ch 17-18).
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Lexical relationships and disambiguation

Recognizing these can help with, e.g., question answering and machine translation.

• QA: Which animals love to swim? requires answers that are hyponyms of
animal.

• MT: interest might translate as Zins (financial charge), Anteil (legal stake),
or Interesse (concern, curiousity).

“Interest” example due to Philipp Koehn.
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WordNet

• One way to get lexical relationships: use a database or ontology.

• WordNet (English) is a hand-built resource containing 117,000 synsets: sets
of synonymous words (See http://wordnet.princeton.edu/)

• Synsets are connected by relations such as

– hyponym/hypernym (IS-A: chair-furniture)
– meronym (PART-WHOLE: leg-chair)
– antonym (OPPOSITES: good-bad)

• globalwordnet.org now lists wordnets in over 50 languages (but variable
size/quality/licensing)
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Word Sense Ambiguity

• Not all problems can be solved by WordNet alone.

• Two completely different words can be spelled the same (homonyms):

I put my money in the bank. vs. He rested at the bank of the river.
You can do it! vs. She bought a can of soda.

• More generally, words can have multiple (related or unrelated) senses
(polysemes)

• Polysemous words often fall into (semi-)predictable patterns: see next slides
(from Hugh Rabagliati in PPLS).
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How many senses?

• How many senses does the word interest have?

– She pays 3% interest on the loan.
– He showed a lot of interest in the painting.
– Microsoft purchased a controlling interest in Google.
– It is in the national interest to invade the Bahamas.
– I only have your best interest in mind.
– Playing chess is one of my interests.
– Business interests lobbied for the legislation.

• Are these seven different senses? Four? Three?

“Interest” example due to Philipp Koehn.
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WordNet senses for interest

• S1: a sense of concern with and curiosity about someone or something,
Synonym: involvement

• S2: the power of attracting or holding one’s interest (because it is unusual
or exciting etc.), Synonym: interestingness

• S3: a reason for wanting something done, Synonym: sake

• S4: a fixed charge for borrowing money; usually a percentage of the amount
borrowed

• S5: a diversion that occupies one’s time and thoughts (usually pleasantly),
Synonyms: pastime, pursuit

• S6: a right or legal share of something; a financial involvement with
something, Synonym: stake

• S7: (usually plural) a social group whose members control some field of
activity and who have common aims, Synonym: interest group
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Polysemy in WordNet

• Polysemous words are part of multiple synsets

• This is why relationships are defined between synsets, not words

• On average,

– nouns have 1.24 senses (2.79 if exluding monosemous words)
– verbs have 2.17 senses (3.57 if exluding monosemous words)

• Some argue Wordnet is too fine-grained.

Stats from: http://wordnet.princeton.edu/wordnet/man/wnstats.7WN.html
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Word sense disambiguation (WSD)

• For many applications, we would like to disambiguate senses

– we may be only interested in one sense
– searching for chemical plant on the web, we do not want to know about

chemicals in bananas

• Task: Given a polysemous word, find the sense in a given context

• Typical approach uses context words as features to train a supervised classifier.
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Classification (aka Categorization)

• Important in human learning and processing of language:

– phonetic categorization
– spoken word recognition
– learning syntactic categories

• And in NLP and linguistics:

– Word sense disambiguation
– Classifying text: into different topics, spam/not-spam, 1-5 star review
– Author attribution: male/female, specific author, healthy/mental illness
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Formalizing the classification task

• Assume we’ve made some observations ~x about the thing we want to classify.
(~x are observed variables).

• y (a hidden variable) is the class label, Y the set of class labels. We want:

ŷ = argmax
y∈Y

P (y|~x)

– Text classification: ~x are words in a document, y is spam/not spam.
– WSD: ~x are features of the ambiguous word, y is the sense.
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WSD as example classification task

• disambiguate three senses of the target word plant

– ~x are, e.g., the words and POS tags in the document the target word occurs
in

– y is the latent sense. Assume three possibilities:

y = sense
1 Noun: a member of the plant kingdom
2 Verb: to place in the ground
3 Noun: a factory
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Naive Bayes classifier

• Start with our usual step of applying Bayes’ rule:

ŷ = argmax
y∈Y

P (y|~x)

= argmax
y∈Y

P (~x|y)P (y)
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Naive Bayes classifier

• Start with our usual step of applying Bayes’ rule:

ŷ = argmax
y∈Y

P (y|~x)

= argmax
y∈Y

P (~x|y)P (y)

• Then, make a Naive Bayes assumption: features are conditionally independent
given class. Therefore,

P (~x|y) = P (x1, x2, . . . , xn|y)
≈ P (x1|y)P (x2|y) . . . P (xn|y)
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Application to WSD

• Let’s suppose the following features:

– x1 = POS of target word (obtained automatically, so not perfect)

– x2 = word to left of target word

– x3 = word to right of target word

– x4 = document contains the word animal
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Application to WSD

• Let’s suppose the following features:

– x1 = POS of target word (obtained automatically, so not perfect)

– x2 = word to left of target word

– x3 = word to right of target word

– x4 = document contains the word animal

• In this case we might expect:

– P (x1 = NN | y = 1) very high, and P (x1 = NN | y = 2) very low

– P (x2 = chemical | y = 1) much lower than P (x2 = chemical | y = 3)

– etc.
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Training the model

As usual, we can estimate these probabilities from an annotated corpus.

• The prior distribution over classes P (y) (proportion of things in each class).

• The feature probabilities P (xi|y) for each possible class y.

Given the probabilites, just apply them to features observed in test cases to find
the highest probability class.
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Advantages of Naive Bayes

• Very easy to implement

• Very fast to train and test

• Doesn’t require as much training data as some other methods

• Usually works reasonably well

• This should be your baseline method for any classification task
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Problems with Naive Bayes

• Naive Bayes assumption is naive!

• Consider our WSD categories for plant.

• Are the features we used really independent given the category?

– POS tag and word to the left?
– word to the left and word to the right?
– animal in doc and word to left?
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Problems with Naive Bayes

• Naive Bayes assumption is naive!

• Consider our WSD categories for plant.

• Are the features we used independent given the category?

– POS tag and word to the left?
– word to the left and word to the right?
– animal in doc and word to left?

• Clearly not, in some cases more than others.
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Non-independent features

• Features are not usually independent given the class

• Adding multiple feature types (e.g., words and morphemes) often leads to even
stronger correlations between features

• Accuracy of classifier can sometimes still be ok, but it will be highly
overconfident in its decisions.

– Ex: NB sees 5 features that all point to class 1, treats them as five
independent sources of evidence.

– Like asking 5 friends for an opinion when some got theirs from each other.
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A different approach to modeling

• so far, all our models have been generative

• discriminative models can address some of the above issues (although they
will introduce others)
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Generative probabilistic models

• Model the joint probability P (~x, ~y)

– ~x: the observed variables
– ~y: the latent variables (for Naive Bayes, just one y).

Model ~x ~y
Naive Bayes features class
HMM words tags
PCFG words rules in tree
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Generative models have a “generative story”

• a probabilistic process that describes how the data were created

– Multiplying probabilities of each step gives us P (~x, ~y).

• Naive Bayes: For each item i to be classified,

– Generate its class y(i)

– Generate its features x
(i)
1 . . . x

(i)
n conditioned on y(i)

• See previous lectures for HMM and PCFG generative stories.
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Inference in generative models

• At test time, given only ~x, we infer ~y using Bayes’ rule:

P (~y|~x) = P (~x|~y)P (~y)

P (~x)

• So, we actually model P (~x, ~y) as P (~x|~y)P (~y).

– You can confirm this for each of the previous models.

Sharon Goldwater Lexical semantics 28

Discriminative probabilistic models

• Model P (~y|~x) directly

• No model of P (~x, ~y)

• No generative story

• No Bayes’ rule
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Discriminative models more broadly

• Trained to discriminate correct vs. wrong values of ~y, given input ~x.

• Need not be probabilistic.

• Examples: support vector machines, artificial neural networks, decision trees,
nearest neighbor methods.

• Here, we consider only one method: Maximum Entropy (MaxEnt) models.
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MaxEnt classifiers

• Used widely in many different fields, under many different names

• Most commonly, multinomial logistic regression

– multinomial if more than two possible classes
– otherwise (or if lazy) just logistic regression

• Also: log-linear model, single neuron classifier, harmonic grammar, etc ...
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Defining a MaxEnt model for WSD

• Define features fi(~x, y) that depend on both observed and latent variables.

• Each feature fi has a real-valued weight wi (learned in training).

f1 : POS(tgt) = NN & y = 1
f2 : POS(tgt) = NN & y = 2
f3 : preceding word(tgt) = ‘chemical’ & y = 3
f4 : doc contains(‘animal’) & y = 1

where tgt is the target word

• For senses {1: member of plant kingdom; 2: put in ground; 3: factory},
which weights are likely to be positive? Negative?
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Feature templates

• In practice, features are usually defined using templates

POS(tgt)=t & y
preceding word(tgt)=w & y

doc contains(w) & y

– instantiate with all possible POSs t or words w and classes y
– usually filter out features occurring very few times
– templates can also define real-valued or integer-valued features
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Feature templates

• In practice, features are usually defined using templates

POS(tgt)=t & y
preceding word(tgt)=w & y

doc contains(w) & y

– instantiate with all possible POSs t or words w and classes y
– usually filter out features occurring very few times
– templates can also define real-valued or integer-valued features

• NLP tasks often have a few templates, but 1000s or 10000s of features

• Whereas in statistical analysis, we try to have very few features (independent
variables), to understand which affect the dependent variable.
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Classification with MaxEnt

• Choose the class that has highest probability according to

P (y|~x) = 1

Z
exp

(∑

i

wifi(~x, y)

)

where

– exp(x) = ex

–
∑

iwifi is the dot product of vectors ~w and ~f , also written ~w · ~f .
– The normalization constant Z =

∑
y′ exp(

∑
iwifi(~x, y

′))
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Which features are active?

• Example doc: [... animal/NN ... chemical/JJ plant/NN ...]

P (y = 1|~x) will have f1, f4 = 1 and f2, f3 = 0
P (y = 2|~x) f2 = 1 f1, f3, f4 = 0
P (y = 3|~x) f3 = 1 f1, f2, f4 = 0

• Notice that zero-valued features have no effect on the final probability

• Other features will be multiplied by their weights, summed, then exp.
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Training the model

• Given given items x(1) . . . x(N) with labels y(1) . . . y(N), choose weights that
make the labels most probable under the model:

ŵ = argmax
~w

∑

j

logP (y(j)|x(j))

• called conditional maximum likelihood estimation (CMLE)
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Training the model

• Given given items x(1) . . . x(N) with labels y(1) . . . y(N), choose weights that
make the labels most probable under the model:

ŵ = argmax
~w

∑

j

logP (y(j)|x(j))

• called conditional maximum likelihood estimation (CMLE)

• Like MLE, CMLE will overfit, so we use tricks (regularization) to avoid that.

• Training isn’t just counting things; instead requires iterative methods that
gradually update the weights: can be slow.

• Implemented in many existing packages (e.g., MALLET, scikit-learn)
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MaxEnt and Optimality Theory

Suppose our classification problem is:
Which surface form y is best, given underlying form x and constraints ~f?

/k o t . z/ Ident-Voice *Insert *Delete Faith-Voice
[k o t . z] 1 0 0 0
[k o t . i z] 0 1 0 0
[k o t . z i i ] 1 2 0 0
[k o t . ] 0 0 1 0
[k o t . s] 0 0 0 1
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MaxEnt and Optimality Theory

• MaxEnt is similar to OT, except

– features can have positive or negative weights (vs. constraints: violations
always bad)

– mulitple low-ranked active features can gang up and outweigh a single
high-ranked feature.

• In fact, Harmonic Grammar (precursor to OT) is MaxEnt.

• Linguistically motivated reasons for moving to OT, but current work looks at
advantages/disadvantes of each (in typology, learning, etc).

For more, see e.g. Goldwater and Johnson (2003); Hayes and Wilson (2008); Johnson et al.

(2015)
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How to represent other aspects of word meaning?

• QA ex: What is a good way to remove wine stains?

– To know that Salt is a great way to eliminate wine stains is a good answer,

– need to know that good and great have similar (in fact graded) meanings.

• There is some work on inferring similarity using WordNet

• But distributional representations are much more common.

Sharon Goldwater Distributional semantics 1

Meaning from context(s)

• Consider the example from J&M (quoted from earlier sources):

a bottle of tezgüino is on the table
everybody likes tezgüino
tezgüino makes you drunk
we make tezgüino out of corn

Sharon Goldwater Distributional semantics 2

Distributional hypothesis

• perhaps we can infer meaning just by looking at the contexts a word occurs in

• perhaps meaning IS the contexts a word occurs in (!)

• either way, similar contexts imply similar meanings:

– this idea is known as the distributional hypothesis
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“Distribution”: a polysemous word

• Probability distribution: a function from outcomes to real numbers

• Linguistic distribution: the set of contexts that a particular item (here, word)
occurs in
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Distributional semantics: basic idea

• Represent each word wi as a vector of its contexts

• Ex: each dimension is a context word; = 1 if it co-occurs with wi, otherwise 0.

pet bone fur run brown screen mouse fetch

w1 = 1 1 1 1 1 0 0 1
w2 = 1 0 1 0 1 0 1 0
w3 = 0 0 0 1 0 1 1 0

• Note: real vectors would be far more sparse
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Questions to consider

• What defines “context”? (What are the dimensions, what counts as co-
occurrence?)

• How to weight the context words (Boolean? counts? other?)

• How to measure similarity between vectors?
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Defining the context

• Usually ignore stopwords (function words and other very frequent/uninformative
words)

• Usually use a large window around the target word (e.g., 100 words, maybe
even whole document)

• Can use just cooccurrence within window, or may require more (e.g.,
dependency relation from parser)

• Note: all of these for semantic similarity; for syntactic similarity, use a small
window (1-3 words) and track only frequent words.
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How to weight the context words

• binary indicators not very informative

• presumably more frequent co-occurrences matter more

• but, is frequency good enough?

– frequent words are expected to have high counts in the context vector
– regardless of whether they occur more often with this word than with others
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Collocations

• We want to know which words occur surprisingly often in the context of w

• Put another way, what collocations include w?
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Collocations

• We want to know which words occur surprisingly often in the context of w

• Put another way, what collocations include w?

• Collocations used not just for word similarity (as in next slides).

– In general, they tell us about word associations.
– For example, which concepts associate with positive vs. negative words?

(sentiment analysis).
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Mutual information

• Recall the definition of pointwise mutual information:

PMI(x, y) = log2
P (x, y)

P (x)P (y)

⇐ Actual prob of seeing words x and y together

⇐ Predicted prob of same, if x and y are indep.

– How much more/less likely is the cooccurrence than if the words were
independent?

– Defn of coocurrence depends on task, but here: “within context window”.

Sharon Goldwater Distributional semantics 11

A problem with PMI

• In practice, PMI is computed with counts (using MLE).

• Result: it is over-sensitive to the chance co-occurrence of infrequent words

• See next slide: ex. PMIs from bigrams with 1 count in 1st 1000 documents of
NY Times corpus
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Example PMIs (Manning & Schütze, 1999, p181)
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Alternatives to PMI for finding collocations

• There are a lot, all ways of measuring statistical (in)dependence.

– Student t-test
– Pearson’s χ2 statistic
– Dice coefficient
– likelihood ratio test (Dunning, 1993)
– Lin association measure (Lin, 1998)
– and many more...

• Of those listed here, Dunning LR test probably most reliable for low counts.

• However, which works best may depend on particular application/evaluation.
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How to measure similarity

• So, let’s assume we have context vectors for two words ~v and ~w

• Each contains PMI values for all context words

• One way to think of these vectors: as points in high-dimensional space
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How to measure similarity

• So, let’s assume we have context vectors for two words ~v and ~w

• Each contains PMI values for all context words

• One way to think of these vectors: as points in high-dimensional space

– In practice, often use dimensionality reduction methods (PCA, LSA,
SVD) to create a more compact (but still high-dim!) representation while
preserving distances as much as possible.
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Vector space representation

• Ex. in 2-dim space: cat = (v1, v2), computer = (w1, w2)
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Euclidean distance

• We could measure (dis)similarity using Euclidean distance:
(∑

i(vi − wi)
2
)1/2

• But doesn’t work well if even one dimension has an extreme value

Sharon Goldwater Distributional semantics 18

Dot product

• Another possibility: take the dot product of ~v and ~w:

simDP(~v, ~w) = ~v · ~w
=

∑

i

viwi

– When vi and wi are both large (share a context word), this contributes a
large value to the sum.

– When vi is large but wi is small (inconsistent contexts), this does not
contribute much to the sum.
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Normalized dot product

• Some vectors are longer than others (have higher values):

[5, 2.3, 0, 0.2, 2.1] vs. [0.1, 0.3, 1, 0.4, 0.1]

– If vector is context word counts, these will be frequent words
– If vector is PMI values, these are likely to be infrequent words

• Dot product is generally larger for longer vectors, regardless of similarity
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Normalized dot product

• Some vectors are longer than others (have higher values):

[5, 2.3, 0, 0.2, 2.1] vs. [0.1, 0.3, 1, 0.4, 0.1]

– If vector is context word counts, these will be frequent words
– If vector is PMI values, these are likely to be infrequent words

• Dot product is generally larger for longer vectors, regardless of similarity

• To correct for this, we normalize: divide by the length of each vector:

simNDP(~v, ~w) = (~v · ~w)/(|~v||~w|)
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Normalized dot product = cosine

• The normalized dot product is just the cosine of the angle between vectors.

• Ranges from -1 (vectors pointing opposite directions) to 1 (identical vectors)
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Other similarity measures

• Again, many alternatives

– Jaccard measure
– Dice measure
– Jenson-Shannon divergence
– etc.

• Again, may depend on particular application/evaluation
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How do we evaluation these representations?

• We can use task-based evaluation: use the representations in a system, e.g.,

– information retrieval
– question answering
– automatic essay grading

• Or we can evaluate against human judgements, e.g.,

– relatedness judgments
– word association
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Relatedness judgments

• Participants are asked, e.g.: on a scale of 1-10, how related are the following
concepts?

LEMON FLOWER

• Usually given some examples initially to set the scale , e.g.

– LEMON-TRUTH = 1
– LEMON-ORANGE = 10

• But still a funny task, and answers depend a lot on how the question is asked
(‘related’ vs. ‘similar’ vs. other terms)
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Word association

• Participants see/hear a word, say the first word that comes to mind

• Data collected from lots of people provides probabilities of each answer:

LEMON ⇒

ORANGE 0.16
SOUR 0.11
TREE 0.09
YELLOW 0.08
TEA 0.07
JUICE 0.05
...

Example data from the Edinburgh Associative Thesaurus: http://www.eat.rl.ac.uk/
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Comparing to human data

• Human judgments provide a ranked list of related words/associations for each
word w

• Computer system provides a ranked list of most similar words to w

• Compute the Spearman rank correlation between the lists (how well do the
rankings match?)

• Often report on several data sets, as their details differ
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Current work: neural networks

• Another method for learning vector space representations

• Recent work has argued these representations capture important linguistic
regularities, not just similarity (Mikolov et al., 2013)
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Current work: compositionality

• One definition of collocations: non-compositional phrases

– White House: not just a house that is white
– barn raising: involves more than the parts imply

• But a lot of language is compositional

– red barn: just a barn that is red
– wooden plank: nothing special here

• Can we capture compositionality in a vector space model?
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Compositionality in a vector space

• More formally, compositionality implies some operator ⊕ such that

meaning(w1w2) = meaning(w1) ⊕ meaning(w2)

• Current work investigates possible operators

– vector addition (doesn’t work very well)
– tensor product
– nonlinear operations learned by neural networks

• One problem: words like not—more like operators than points in space.
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