

Sources of constraints

- Innate constraints:
 - Domain-general: memory, perception, reasoning, categorization.
 - Domain-specific: inventory of syntactic categories, rules, principles, parameters, etc.
- Previously acquired knowledge (bootstrapping):

She lumpled heavily into the room.

How do these interact with each other and the input?

Modeling approach

- Questions can be addressed within a Bayesian framework – a structured probabilistic approach.
 - Probabilistic: learner can exploit partial or uncertain information to help solve the bootstrapping problem.
 - Structured: models explicitly define representations, biases (constraints), and use of information.

Bayesian modeling

- An ideal observer approach.
 - What is the optimal solution to the induction problem, given particular assumptions about representation and available information?
 - In what ways might humans differ from this ideal learner, and why?

Outline

1. Introduction

- 2. Word segmentation, computational model and theoretical results (joint work with Tom Griffiths and Mark Johnson)
- Modeling experimental data

 (joint work with Mike Frank, Vikash Mansinghka, Tom Griffiths, and Josh Tenenbaum)

Word segmentation

- One of the first problems infants must solve when learning language.
- Infants make use of many different cues.
 - Phonotactics, allophonic variation, metrical (stress) patterns, effects of coarticulation, and statistical regularities in syllable sequences.
- Statistics may provide initial bootstrapping.
 Used very early (Thiessen & Saffran, 2003).
 - □ Language-independent.

Statistical segmentation

- Work on statistical segmentation often discusses transitional probabilities (Saffran et al. 1996; Aslin et al. 1998, Johnson & Jusczyk, 2001).
 - $\square P(syl_i \mid syl_{i-1}) \text{ is often lower at word boundaries.}$
- What do TPs have to say about words?
 - A word is a unit whose beginning predicts its end, but it does not predict other words.
- $\label{eq:order} Or \dots \quad \text{2.} \quad A \text{ word is a unit whose beginning predicts its end, and it also predicts future words.}$

Brent (1999)

- Describes a Bayesian unigram model for segmentation.
 Prior favors solutions with fewer words, shorter words.
- Problems with Brent's system:
 - □ Learning algorithm is approximate (non-optimal).
 - Difficult to extend to incorporate bigram info.

Bayesian model Assumes word w_i is generated as follows: 1. Is w_i a novel lexical item? $P(yes) = \frac{\alpha}{n+\alpha}$ Fewer word types = Higher probability $P(no) = \frac{n}{n+\alpha}$

Bigram model

2.

Assume word w_i is generated as follows:

1. Is (w_{i-1}, w_i) a novel bigram?

$$P(yes) = \frac{\beta}{n_{w_{i-1}} + \beta}$$
 $P(no) = \frac{n_{w_{i-1}}}{n_{w_{i-1}} + \beta}$

If novel, generate w_i using unigram model (almost). If not, choose lexical identity of w_i from words previously occurring after $w_{i,r}$.

$$P(w_i = w \mid w_{i-1} = w') = \frac{n_{(w',w)}}{n_{w'}}$$

Res	Results						
 Compared to unigram model, more boundaries are proposed, with little loss in accuracy: 							
			Boundary Precision	Boundary Recall			
	GGJ (unigram)		.92	.62			
	GGJ (bigram)		.90	.81			
 Accuracy is higher than previous models: 							
	Brent (unigram) GGJ (bigram)		oken F-score Type F-score		ore		
			.68	.52			
			.72		.59		

Summary

- More sophisticated use of available statistical information leads to better segmentation.
- Good segmentations of naturalistic data can be found using fairly weak prior assumptions.
 - □ Utterances are composed of discrete units (words).
 - Units tend to be short.
 - $\hfill\square$ Some units occur frequently, most do not.
 - Units tend to come in predictable patterns.

Remaining questions

- Is unigram segmentation sufficient to start bootstrapping other cues (e.g., stress)?
- How prevalent are multi-word chunks in infant vocabulary?
- Are humans able to segment based on bigram statistics?
- Is there any evidence that human performance is consistent with Bayesian predictions?

Outline

- 1. Introduction
- Word segmentation, computational model and theoretical results (joint work with Tom Griffiths and Mark Johnson)
- Modeling experimental data (joint work with Mike Frank, Vikash Mansinghka, Tom Griffiths, and Josh Tenenbaum)

Saffran-style experiment using multiple utterances. Synthesize stimuli with 500ms pauses between utterances. Synthesize stimuli with 500ms pauses between utterances. Signi dazi guitigupibavulukabitudulagikipavazi dazikipavazi bavulu kabitudulagitigupikabitudulagiti

Experiment 1: utterance length Vary the number of words per utterance. #vocab # wds/utt # utts tot # wds 6 1 1200 1200 6 1200 **(** 2 600 6 4 300 1200 6 200 1200 6 6 150 1200 8 6 12 100 1200 •

Experiment 2: exposure time							
 Vary the number of utterances heard in training. 							
	#vocab	# wds/utt	# utts	tot # wds			
	6	4	12	48			
	6	4	25	100			
	6	4	75	300			
	6	4	150	600			
	6	4	225	900			
	6	4	300	1200			

Exper	iment	3: voca	bulary	size		
 Vary the number of lexical items. 						
	#vocab	# wds/utt	# utts	tot # wds		
	3	4	150	600		
	4	4	150	600		
	5	4	150	600		
	6	4	150	600		
	9	4	150	600		

Model comparison

- Evaluated six different models.
- Each model trained and tested on same stimuli as humans.
- For testing, produce a score *s*(*w*) for each item in choice pair and use Luce choice rule:

$$P(w_1) = \frac{s(w_1)}{s(w_1) + s(w_2)}$$

• Calculate correlation coefficients between each model's results and the human data.

Models used

- Several variations on transitional probabilities (TP)
 s(w) = minimum TP in w.
- Swingley (2005)
 - □ Builds lexicon using local statistic and frequency thresholds.
 □ s(w) = max threshold at which w appears in lexicon.
- PARSER (Perruchet and Vintner, 1998)
 Incorporates principles of lexical competition and memory decay.
 s(w) = P(w) as defined by model.
- Bayesian model
 s(w) = P(w) as defined by model.

What's going wrong?

- TPs: smaller vocab => TPs across words are higher.
- Bayes: smaller vocab => Incorrect solutions have relatively small vocabularies with many frequent "words".

• With perfect memory, stronger statistical cues of larger vocabulary outweigh increased storage needs.

Memory limitations

- Modified Bayesian model has limited memory for data and generalizations.
 - Online learning algorithm processes one utterance at a time, one pass through data.
 - Random decay of items in lexicon.
- Learner is no longer guaranteed to find optimal solution.

Summary

- Humans behave like ideal learners in some cases.
 Longer utterances are harder competition.
 Shorter exposure is harder less evidence.
- Humans are unlike ideal learners in other cases.
 Larger vocabulary is harder for humans, easier for model.
- Memory-limited learner captures human behavior in all three experiments.

Conclusions

- Bayesian modeling provides a framework for investigating the relationship between linguistic input and the learner's representations and constraints.
- Work on word segmentation suggests
 - □ General constraints may be sufficient for this task.
 - Word-based (not boundary-based) representations are important for word segmentation.
 - Humans behave like ideal learners in some respects.
 - Accounting for limited memory is important.

Further details and extensions

This talk:

- Sharon Goldwater, Tom Griffiths, and Mark Johnson (2009). "A Bayesian framework for word segmentation Exploring the effects of context." Cognition 112(1):21–54.
- Michael C. Frank, Sharon Goldwater, Tom Griffiths, and Joshua B. Tenenbaum (2010). "Modeling human performance in statistical word segmentation." Cognition 117(2):107–125.

Online algorithms:

Lisa Pearl, Sharon Goldwater and Mark Steyvers (2010). "Online learning mechanisms for Bayesian models of word segmentation." *Research on Language and Computation* 8(2): 107-132.

Noisy input data:

Micha Elsner, Sharon Goldwater, and Jacob Eisenstein (2012). "Bootstrapping a unified model of lexical and phonetic acquisition." In *Proceedings of the* 50th Conference of the Association for Computational Linguistics.

