
Mixing Metaphors: Actors as Channels and
Channels as Actors

Abstract
Channel- and actor-based programming languages are both used in practice, but the two are often
confused. Languages such as Go provide anonymous processes which communicate using typed
buffers—known as channels—while languages such as Erlang provide addressable processes each
with a single incoming message queue—known as actors. The lack of a common representation
makes it difficult to reason about the translations that exist in the folklore. We define a calculus
λch for typed asynchronous channels, and a calculus λact for typed actors. We define translations
from λact into λch and λch into λact and prove that both translations are type- and semantics-
preserving. We show that our approach accounts for synchronisation and selective receive in
actor systems and discuss future extensions to support guarded choice and behavioural types.
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1 Introduction

When comparing channels (as used by Go) and actors (as used by Erlang), one runs into an
immediate mixing of metaphors. The words themselves do not refer to comparable entities!

In languages such as Go, anonymous processes pass messages via named channels, whereas
in languages such as Erlang, named processes accept messages from an associated mailbox.
A channel is a buffer, whereas an actor is a process. We should really be comparing
named processes (actors) with anonymous processes, and buffers tied to a particular process
(mailboxes) with buffers that can link any process to any process (channels). Nonetheless,
we will stick with the popular names, even if it is as inapposite as comparing TV channels
with TV actors.
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Figure 1 Channels and Actors

Figure 1 compares channels with actors. On the left, three anonymous processes com-
municate via channels named a, b, c. On the right, three processes named A,B,C send
messages to each others’ associated mailboxes. A common misunderstanding is that channels
are synchronous but actors are asynchronous [33], however while asynchrony is required by
actor systems, channels may be either synchronous or asynchronous; to ease comparison, we
consider asynchronous channels. A more significant difference is that each actor has a single
buffer, its mailbox, which can be read only by that actor, whereas channels are free-floating
buffers that can be read by any process with a reference to the channel.
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Channel-based languages such as Go enjoy a firm basis in process calculi such as CSP [21]
and the π-calculus [32]. It is easy to type channels, either with simple types (see [40], p.
231) or more complex systems such as session types [15, 22, 23]. Actor-based languages such
as Erlang are seen by many as the "gold standard" for distributed computing due to their
support for fault tolerance through supervision hierarchies [5, 7].

Both models are popular with developers, with channel-based languages and frameworks
such as Go, Concurrent ML [39], and Hopac [24]; and actor-based languages and frameworks
such as Erlang, Elixir, and Akka.

There is often confusion over the differences between channels and actors. For example,
two questions about this topic are:

“If I wanted to port a Go library that uses Goroutines, would Scala be a good choice
because its inbox/[A]kka framework is similar in nature to coroutines?” [26], and

“I don’t know anything about [the] actor pattern however I do know goroutines and
channels in Go. How are [the] two related to each other?” [25]

The success of actor-based languages is largely due to their support for supervision
hierarchies: processes are arranged in trees, where supervisor processes restart child processes
should they fail. Projects such as Proto Actor [38] emulate actor-style programming in a
channel-based language in an attempt to gain some of the benefits. Hopac [24] is a channel-
based library for F#, based on Concurrent ML [39]. The documentation [1] contains a
comparison with actors, including an implementation of a simple actor-based communication
model using Hopac-style channels, as well as an implementation of Hopac-style channels
using an actor-based communication model. By comparing the two, this paper provides a
formal model for the implementation technique used by Proto Actor, and a formal model
for an asynchronous variant of the translation from channels into actors as specified by the
Hopac documentation.
Putting Practice into Theory. We seek to characterise the core features of channel- and
actor-based models of concurrent programming, and distil them into minimal concurrent
λ-calculi. In doing so, we:

Obtain concise and expressive core calculi, which can be used as a basis to explore more
advanced features such as behavioural typing, and;
Make the existing folklore about the two models explicit, gaining formal guarantees about
the correctness of translations. In turn, we give a formal grounding to implementations
based on the translations, such as Proto Actor.

Our common framework is that of a concurrent λ-calculus: that is, a λ-calculus with a
standard term language equipped with primitives for communication and concurrency, as
well as a language of configurations to model concurrent behaviour. We choose a λ-calculus
rather than a process calculus as our starting point because we are ultimately interested in
actual programming languages, and in particular functional programming languages.

While actor-based languages must be asynchronous by design, channels may be either
synchronous (requiring a rendezvous between sender and receiver) or asynchronous (where
sending always happens immediately). We base λch on asynchronous channels since actors
are naturally asynchronous, and since it is possible to emulate asynchronous channels using
synchronous channels [39]. By working in the asynchronous setting, we can concentrate on
the more fundamental differences between the two models.

A central difference between the two models is depicted in Figure 2. Figure 2a shows
the communication patterns allowed by a single (full-duplex) channel: each process Pi can
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Figure 2 Mailboxes as pinned channels

use the channel to communicate with every other process. Conversely, Figure 2b shows the
communication patterns allowed by a mailbox associated with process P2: while any process
can send to the mailbox, only P2 can read from it. Viewed this way, it is apparent that the
restrictions imposed on the communication behaviour of actors are exactly those captured
by Merro and Sangiorgi’s localised π-calculus [31].

Readers familiar with actor-based programming may be wondering at this point whether
such a characterisation is too crude, as it does not take into account the possibility of
processing messages out-of-order. Fear not—we show in Section 7 that our basic actor
calculus can in fact simulate this functionality. The key idea is to simulate a mailbox
supporting selective receive by an actual mailbox augmented with a secondary queue of
values that have been received but not yet matched.
Outline and Contributions.

In §2 we present side-by-side implementations of a concurrent stack using channels and
using actors. The main contributions of this paper are as follows.

We define a calculus λch with typed asynchronous channels (§3), and a calculus λact with
type-parameterised actors (§4), by extending the simply-typed λ-calculus with commu-
nication primitives specialised to each model. We give a type system and operational
semantics for each calculus, and precisely characterise the notion of progress that each
calculus enjoys.
We define a simple translation from λact into λch, prove that the translation is type-
preserving, and prove that λch can simulate λact (§5).
We define a more involved translation from λch into λact, again proving that the translation
is type-preserving, and that λact can simulate λch (§6).
We introduce an extension of λact to support synchronous communication calls, and show
how this can simplify the translation from λch into λact (§7.1).
We introduce an extension of λact to support Erlang-style selective receive, and prove
that it can be simulated by λact without selective receive (§7.2).
We outline extension of λch with input-guarded nondeterministic choice (§7.3) and consider
how λact might be extended with behavioural types (§7.4).

In §8 we discuss related work and §9 concludes.

2 Channels and Actors Side-by-Side

Let us consider the example of a concurrent stack. A concurrent stack carrying values of type
A can receive a command to push a value onto the top of the stack, or to pop a value from
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chanStack(ch) ,
rec loop(st).

let cmd⇐ take ch in
case cmd {

Push(v) 7→ loop(v :: st)
Pop(resCh) 7→

case st {
[ ] 7→ give (None) resCh;

loop [ ]
x :: xs 7→ give (Some(x)) resCh;

loop xs }
}

chanStackClient(stackCh) ,
give (Push(5)) stackCh;
let resCh⇐ newCh in
give (Pop(resCh)) stackCh;
take resCh

chanMain ,
let stackCh⇐ newCh in
fork (chanStack(stackCh) [ ]);
chanStackClient(stackCh)

(a) Channel-Based Stack

actorStack ,
rec loop(st).

let cmd⇐ receive in
case cmd {

Push(v) 7→ loop(v :: st)
Pop(resPid) 7→

case st {
[ ] 7→ send (None) resPid;

loop [ ]
x :: xs 7→ send (Some(x)) resPid;

loop xs }
}

actorStackClient(stackPid) ,
send (Push(5)) stackPid;
let selfPid⇐ self in
send (Pop(selfPid)) stackPid;
receive

actorMain ,
let stackP id⇐ spawn (actorStack [ ]) in
actorStackClient(stackPid)

(b) Actor-Based Stack

Figure 3 Concurrent Stacks using Channels and Actors

the stack and return it to the process making the request. Assuming a standard encoding of
algebraic datatypes using binary sums, we define a type Operation(A) = Push(A) | Pop(B)
(where B = ChanRef(A) for channels, and ActorRef(A) for actors) to describe operations on
the stack, and Option(A) = Some(A) | None to handle the possibility of popping from an
empty stack.

Figure 3 shows the stack implemented using channels (Figure 3a) and using actors
(Figure 3b). Each implementation uses a common core language based on the simply-typed
λ-calculus extended with recursion, lists, and sums.

At first glance, the two stack implementations seem remarkably similar. Each:

1. Waits for a command
2. Case splits on the command, and either:

Pushes a value onto the top of the stack, or;
Takes the value from the head of the stack and returns it in a response message

3. Loops with an updated state.

The main difference is that chanStack is parameterised over a channel ch, and retrieves
a value from the channel using take ch. Conversely, actorStack retrieves a value from its
mailbox using the nullary primitive receive.

Let us now consider functions which interact with the stacks. The chanStackClient
function sends commands over the stackCh channel, and begins by pushing 5 onto the stack.
Next, the function creates a channel resCh to be used to receive the result and sends this
in a request, before retrieving the result from the result channel using take. In contrast,
actorStackClient performs a similar set of steps, but sends its process ID (retrieved using
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chanClient2(intStackCh,
stringStackCh) ,

let intResCh⇐ newCh in
let strResCh⇐ newCh in
give (Pop(intResCh)) intStackCh;
let res1⇐ take intResCh in
give (Pop(strResCh)) stringStackCh;
let res2⇐ take strResCh in
(res1, res2)

actorClient2(intStackPid,
stringStackPid) ,

let selfPid⇐ self in
send (Pop(selfPid)) intStackPid;
let res1⇐ receive in
send (Pop(selfPid)) stringStackPid;
let res2⇐ receive in
(res1, res2)

Figure 4 Clients Interacting with Multiple Stacks

self) in the request instead of creating a new channel; the result is then retrieved from the
mailbox using receive.
Type Pollution. The differences become more prominent when we consider clients which
interact with multiple stacks containing different types of values, as shown in Figure 4. Here,
chanStackClient2 creates new result channels for integers and strings, sends requests for the
results, and creates a pair of type (Option(Int)× Option(String)). The actorStackClient2
function attempts to do something similar, but cannot create separate result channels.
Consequently, the actor must be able to handle messages either of type Option(Int) or
type Option(String), meaning that the final pair has type (Option(Int) + Option(String)) ×
(Option(Int) + Option(String)).

Additionally, it is necessary to modify actorStack to use the correct injection into the
actor type when sending the result; for example an integer stack would have to send a value
inl (Some(5)) instead of simply Some(5). The requirement of knowing all message types
received by another actor is known as the type pollution problem, which can be addressed
neatly through the use of subtyping [19], or synchronisation abstractions such as futures [10].

3 λch: A Concurrent λ-calculus for Channels

In this section we introduce λch, a concurrent λ-calculus extended with asynchronous channels.
To concentrate on the core differences between channel- and actor-style communication, we
begin with minimal calculi; note that these do not contain all features (such as lists, sums,
and recursion) needed to express the examples in Section 2.

3.1 Syntax and Typing of Terms
Figure 5 gives the syntax and typing rules of λch, a lambda calculus based on fine-grain call-by-
value [29]: terms are partitioned into values and computations. Key to this formulation are two
constructs: returnV represents a computation that has completed, whereas let x⇐M in N
evaluates M to returnV , substituting V for x in M . Fine-grain call-by-value is convenient
because it makes evaluation-order completely explicit and (unlike A-normal form, for instance)
is closed under reduction.

Types consist of the unit type 1, function types A → B, and channel reference types
ChanRef(A) which can be used to communicate along a channel of type A. We let α range
over variables x and run time names a. We write letx = V inM for (λx.M)V and M ;N for
let x⇐M in N , where x is fresh.
Communication and Concurrency for Channels. The giveV W operation sends value
V along channel W , while takeV retrieves a value from a channel V . Assuming an extension
of the language with integers and arithmetic operators, we can define a function neg(c) which
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Syntax

Types A,B ::= 1 | A→ B | ChanRef(A)
Variables and names α ::= x | a
Values V,W ::= α | λx.M | ()
Computations L,M,N ::= V W

| let x⇐M in N | returnV
| forkM | giveV W | takeV | newCh

Value typing rules Γ ` V : A
Var
α : A ∈ Γ
Γ ` α : A

Abs
Γ, x : A `M : B

Γ ` λx.M : A→ B

Unit

Γ ` () : 1

Computation typing rules Γ `M : A
App
Γ ` V : A→ B Γ `W : A

Γ ` V W : B

EffLet
Γ `M : A Γ, x : A ` N : B

Γ ` let x⇐M in N : B

Return
Γ ` V : A

Γ ` returnV : A

Give
Γ ` V : A

Γ `W : ChanRef(A)
Γ ` giveV W : 1

Take
Γ ` V : ChanRef(A)

Γ ` takeV : A

Fork
Γ `M : 1

Γ ` forkM : 1

NewCh

Γ ` newCh : ChanRef(A)

Figure 5 Syntax and typing rules for λch terms and values

receives a number n along channel c and replies with the negation of n as follows:

neg(c) , let n⇐ take c in let negN⇐ (−n) in givenegN c

The operation newCh creates a new channel. The operation forkM spawns a new process
that performs computation M . Firstly, note that fork returns the unit value; the spawned
process is anonymous and therefore it is not possible to interact with it directly. Secondly,
note that channel creation is completely decoupled from process creation, meaning that a
process can have access to multiple channels.

3.2 Operational Semantics
Configurations. The concurrent behaviour of λch is given by a nondeterministic reduction
relation on configurations, ranged over by C and D (Figure 6). Configurations consist of
parallel composition (C ‖ D), restrictions ((νa)C), computations (M), and buffers (a(−→V ),
where −→V = V1 · . . . · Vn).
Evaluation Contexts. Reduction is defined in terms of evaluation contexts E, which are
simplified due to fine-grain call-by-value. We also define configuration contexts, allowing
reduction modulo parallel composition and name restriction.
Reduction. Figure 7 shows the reduction rules for λch. Reduction is defined as a determin-
istic reduction on terms (−→M) and a nondeterministic reduction relation on configurations
(−→). Reduction on configurations is defined modulo structural congruence rules which
capture commutativity and associativity of parallel composition, scope extrusion, and that
structural congruence extends to configuration contexts.
Typing of Configurations. We wish to ensure well-formedness of configurations—namely
that buffers are well-scoped and contain values of the correct type—so it is convenient to
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Syntax of evaluation contexts and configurations

Evaluation contexts E ::= [ ] | let x⇐ E in M
Configurations C,D, E ::= C ‖ D | (νa)C | a(−→V ) |M
Configuration contexts G ::= [ ] | G ‖ C | (νa)G

Typing rules for configurations Γ; ∆ ` C
Par
Γ; ∆1 ` C1 Γ; ∆2 ` C2

Γ; ∆1,∆2 ` C1 ‖ C2

Chan
Γ, a : ChanRef(A); ∆, a:A ` C

Γ; ∆ ` (νa)C

Buf
(Γ ` Vi : A)i

Γ; a : A ` a(−→V )

Term
Γ `M : 1
Γ; · `M

Figure 6 λch configurations and evaluation contexts

define typing rules on configurations as shown in Figure 6. The judgement Γ; ∆ ` C states
that under environments Γ and ∆, C is well-typed; Γ is a typing environment for terms,
whereas ∆ is a linear typing environment for configurations, mapping names a to channel
types A. Linearity in ∆ is purely a technical device to ensure that under a name restriction
(νa)C, that C contains exactly one buffer with name a; this should not be confused with
channel references which are contained in Γ and are unrestricted. Note that Chan extends
both Γ and ∆, adding a reference into Γ and the capability to type a buffer into ∆. Par
states that two configurations are typeable if they are each typeable under disjoint linear
environments, and Buf states that under a term environment Γ and a singleton linear
environment a : A, it is possible to type a buffer a(−→V ) if Γ ` Vi : A for all Vi ∈

−→
V . As an

example, (νa)(a(−→V )) is well-typed, but (νa)(a(−→V ) ‖ a(−→W )) and (νa)(return ()) are not.
Relation Notation. Given a relation R, we write R+ for its transitive closure, and R∗ for
its reflexive, transitive closure.
Properties of the Term Language. Reduction on terms is standard. It preserves typing
and purely-functional terms enjoy progress. We omit proofs in the body of the paper which
are mainly straightforward inductions; selected full proofs can be found in Appendix B.

I Lemma 1 (Preservation (λch terms)). If Γ `M : A and M −→M M ′, then Γ `M ′ : A.

I Lemma 2 (Progress (λch terms)).
Assume Γ is either empty or only contains entries of the form ai : ChanRef(Ai).
If Γ `M : A, then either:

1. M = returnV for some value V
2. M can be written E[M ′], where M ′ is a communication or concurrency primitive (i.e.

giveV W, takeV, forkM , or newCh)
3. There exists some M ′ such that M −→M M ′

Reduction on Configurations. Concurrency and communication is captured by reduction
on configurations. The Give rule reduces giveW a in parallel with a buffer a(−→V ) by adding
the value W onto the end of the buffer. The Take rule reduces take a in parallel with a
non-empty buffer by returning the first value in the buffer. The Fork rule reduces forkM
by spawning a new thread M in parallel with the parent process. The NewCh rule reduces
newCh by creating an empty buffer and returning a fresh name for that buffer.

Typeability of configurations is preserved by structural congruence, and reduction pre-
serves the typeability of configurations.

I Lemma 3. If Γ; ∆ ` C and C ≡ D for some configuration D, then Γ; ∆ ` D.

I Theorem 4 (Preservation (λch configurations)). If Γ; ∆ ` C1 and C1 −→ C2 then Γ; ∆ ` C2.
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Reduction on terms

(λx.M)V −→M M{V/x}
let x⇐ returnV in M −→M M{V/x}

E[M1] −→M E[M2] (if M1 −→M M2)

Structural congruence

C ‖ D ≡ D ‖ C C ‖ (D ‖ E) ≡ (C ‖ D) ‖ E C ‖ (νa)D ≡ (νa)(C ‖ D) if a 6∈ fv(C)

G[C] ≡ G[D] if C ≡ D

Reduction on configurations

Give E[giveW a] ‖ a(−→V ) −→ E[return ()] ‖ a(−→V ·W )
Take E[take a] ‖ a(W · −→V ) −→ E[returnW ] ‖ a(−→V )
Fork E[forkM ] −→ E[return ()] ‖M
NewCh E[newCh] −→ (νa)(E[return a] ‖ a(ε)) (a is a fresh name)
LiftM G[M1] −→ G[M2] (if M1 −→M M2)
Lift G[C1] −→ G[C2] (if C1 −→ C2)

Figure 7 Reduction on λch terms and configurations

3.3 Progress and Canonical Forms
While it is possible to prove deadlock-freedom in systems with more discerning type systems
based on linear logic (such as those of Wadler [42], and Lindley and Morris [30]) or those
using channel priorities (for example, the calculus of Padovani and Novara [36]), more liberal
calculi such as λch and λact allow deadlocked configurations. We thus define a form of
progress which does not preclude deadlock; to help with proving a progress result, it is
useful to consider the notion of a canonical form in order to allow us to reason about the
configuration as a whole.

I Definition 5 (Canonical form (λch)). A configuration C is in canonical form if it can be
written (νa1) . . . (νan)(M1 ‖ . . . ‖Mm ‖ a1(−→V1) ‖ . . . ‖ an(−→Vn)).

The following lemma states that well-typed open configurations can be written in a form
similar to canonical form, but without bindings for names already in the environment. An
immediate corollary is that well-typed closed configurations can always be written in a
canonical form.

I Lemma 6. If Γ; ∆ ` C with ∆ = a1 : A1, . . . , ak : Ak, then there exists a C′ ≡ C such that
C′ = (νak+1) . . . (νan)(M1 ‖ . . . ‖Mm ‖ a1(−→V1) ‖ . . . ‖ an(−→Vn)).

I Corollary 7. If ·; · ` C, then there exists some C′ ≡ C such that C′ is in canonical form.

Armed with a canonical form, we can now capture precisely the intuition that the only
situation in which a well-typed closed configuration C cannot reduce further is if all threads
are either blocked or fully evaluated. Consider a leaf configuration to be a configuration
without subconfigurations: in this case, either a term or a buffer.

I Theorem 8 (Weak progress (λch configurations)).
Let ·; · ` C, C 6−→, and let C′ = (νa1) . . . (νan)(M1 ‖ . . . ‖ Mm ‖ a1(−→V1) ‖ . . . an(−→Vn)) be a
canonical form of C. Then every leaf of C is either:
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1. A buffer ai(
−→
Vi);

2. A fully-reduced term of the form returnV , or;
3. A term of the form E[take ai], where

−→
Vi = ε.

4 λact: A Concurrent λ-calculus for Actors

In this section, we introduce λact, a core language providing actor-like concurrency.
Actors were originally introduced by Hewitt et al. [20] as a formalism for artificial

intelligence, where an actor is an entity endowed with an unforgeable address known as a
process ID, and a single incoming message queue known as a mailbox. There are many
variations of actor-based languages (the work of De Koster et al. [11] provides a detailed
taxonomy—our calculus firmly falls into the category of process-based actors), but the main
common feature is that each provide lightweight processes which are associated with a
mailbox. We follow the model of Erlang by providing an explicit receive operation to allow
an actor to retrieve a message from its mailbox, as opposed to making an event loop implicit.

While it is common to parameterise channels over types, parameterising actors over
types is more recent, in particular due to type pollution. Type-parameterised actors were
introduced by He [18] and He et al. [19], and more recently implemented in libraries such as
Akka Typed [4] and Typed Actors [41]. Indeed, Akka Typed hopes to replace untyped Akka
actors, so it seems useful to consider a typed calculus. A key difference between λch and λact
is that receive (unlike take) is a nullary operation to receive a value from the actor’s mailbox.
Consequently, it is necessary to use a simple type-and-effect system (as inspired by Gifford
and Lucassen [16]) to type terms with respect to the mailbox type of the enclosing actor.

λact is designed to be as minimal as possible, in order to concentrate on the core differences
with channel-based programming. Consequently, we treat the mailbox as a FIFO queue as
opposed to considering actor behaviours or selective, out-of-order reception of messages. This
is orthogonal to the core model of communication—we show in §7.2 that after extending the
term language of λact, it is possible to encode selective receive in the base calculus.

4.1 Syntax and Typing of Terms
Figure 8 shows the syntax and typing rules for λact. As with λch, α ranges over variables and
names. ActorRef(A) is an actor reference or process ID, and allows messages to be sent to
an actor. As for communication and concurrency primitives, spawnM spawns a new actor to
evaluate a computation M ; sendV W sends a value V to an actor referred to by reference W ;
receive receives a value from the actor’s mailbox; and self returns an actor’s own process ID.

Function arrows A →C B are annotated with a type C which denotes the type of the
mailbox of the actor evaluating the term. As an example, consider a function which multiplies
a received number by a given value:

recvAndMult , λn.let x⇐ receive in (x× n)

Such a function would have type Int →Int Int, and as an example would not be typeable
for an actor that could only receive strings. Again, we work in the setting of fine-grain
call-by-value; the distinction between values and computations is helpful when reasoning
about the metatheory. We have two typing judgements: the standard judgement on values
Γ ` V : A, and a judgement Γ | B ` M : A which states that a term M has type A under
typing context Γ, and can receive values of type B. The typing of receive and self depends
on the type of the actor’s mailbox.



XX:10 Mixing Metaphors

Syntax

Types A,B,C ::= 1 | A→C B | ActorRef(A)
Variables and names α ::= x | a
Values V,W ::= α | λx.M | ()
Computations L,M,N ::= V W

| let x⇐M in N | returnV
| spawnM | sendV W | receive | self

Value typing rules Γ ` V : A
Var
α : A ∈ Γ
Γ ` α : A

Abs
Γ, x : A | C `M : B
Γ ` λx.M : A→C B

Unit

Γ ` () : 1

Computation typing rules Γ | B `M : A

App
Γ ` V : A→C B

Γ `W : A
Γ | C ` V W : B

EffLet
Γ | C `M : A

Γ, x : A | C ` N : B
Γ | C ` let x⇐M in N : B

EffReturn
Γ ` V : A

Γ | C ` returnV : A

Send
Γ ` V : A

Γ `W : ActorRef(A)
Γ | C ` sendV W : 1

Recv

Γ | A ` receive : A

Spawn
Γ | A `M : 1

Γ | C ` spawnM : ActorRef(A)

Self

Γ | A ` self : ActorRef(A)

Figure 8 Syntax and typing rules for λact

4.2 Operational Semantics
Figure 9 shows the syntax of λact evaluation contexts, as well as the syntax and typing rules
of λact configurations. Evaluation contexts for terms and configurations are similar to λch.
The primary difference from λch is the actor configuration 〈a,M,

−→
V 〉, which can be read as

“an actor with name a evaluating term M , with a mailbox consisting of values −→V ”. Whereas
a term M is itself a configuration in λch, a term in λact must be evaluated as part of an actor
configuration. The typing rules for λact configurations ensure that all values contained in an
actor mailbox are well-typed with respect to the mailbox type, and that a configuration C
under a name restriction (νa)C contains an actor with name a.

Figure 10 shows the reduction rules for λact. Again, reduction on terms preserves typing,
and the functional fragment of λact enjoys progress.

I Lemma 9 (Preservation (λact terms)). If Γ `M : A and M −→M M ′, then Γ `M ′ : A.

I Lemma 10 (Progress (λact terms)).
Assume Γ is either empty or only contains entries of the form ai : ActorRef(Ai).

If Γ | B `M : A, then either:

1. M = returnV for some value V
2. M can be written as E[M ′], where M ′ is a communication or concurrency primitive (i.e.

spawnN , sendV W , receive, or self)
3. There exists some M ′ such that M −→M M ′

Reduction on Configurations. While λch makes use of separate constructs to create new
processes and channels, λact uses a single construct spawnM to spawn a new actor with
an empty mailbox to evaluate term M . Communication happens directly between actors
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Syntax of evaluation contexts and configurations

Evaluation contexts E ::= [ ] | let x⇐ E in M
Configurations C,D, E ::= C ‖ D | (νa)C | 〈a,M,

−→
V 〉

Configuration contexts G ::= [ ] | G ‖ C | (νa)G

Typing rules for configurations Γ; ∆ ` C

Par
Γ; ∆1 ` C1 Γ; ∆2 ` C2

Γ; ∆1,∆2 ` C1 ‖ C2

Pid
Γ, a : ActorRef(A); ∆, a : A ` C

Γ; ∆ ` (νa)C

Actor
Γ, a : ActorRef(A) | A `M : 1
(Γ, a : ActorRef(A) ` Vi : A)i

Γ, a : ActorRef(A); a : A ` 〈a,M,
−→
V 〉

Figure 9 λact evaluation contexts and configurations

instead of through an intermediate entity: as a result of evaluating sendV a, the value V
will be appended directly to the end of the mailbox of actor a. SendSelf allows reflexive
sending; an alternative would be to decouple mailboxes from the definition of actors, but this
complicates both the configuration typing rules and the intuition. Self returns the name of
the current process, and Receive retrieves the head value of a non-empty mailbox.

As before, typing is preserved modulo structural congruence and under reduction.

I Lemma 11. If Γ; ∆ ` C and there exists a D such that C ≡ D, then Γ; ∆ ` D.

I Theorem 12 (Preservation (λact configurations)). If Γ; ∆ ` C1 and C1 −→ C2, then Γ; ∆ ` C2.

4.3 Progress and Canonical Forms

Again, we cannot guarantee deadlock-freedom for λact. Instead, we characterise the exact
form of progress that λact enjoys: a well-typed configuration can always reduce unless all
leaves of the configuration typing judgement are actors which have either fully evaluated their
terms, or are blocked waiting for a message from an empty mailbox. Defining a canonical
form again aids us in reasoning about progress.

I Definition 13 (Canonical form (λact)). A λact configuration C is in canonical form if C can
be written (νa1) . . . (νan)(〈a1,M1,

−→
V1〉 ‖ . . . ‖ 〈an,Mn,

−→
Vn〉).

I Lemma 14. If Γ; ∆ ` C and ∆ = a1 : A1, . . . ak : Ak, then there exists C′ ≡ C such that
C′ = (νak+1) . . . (νan)(〈a1,M1,

−→
V1〉 ‖ . . . ‖ 〈an,Mn,

−→
Vn〉).

As before, it follows as a corollary of Lemma 14 that closed configurations can be written
in canonical form, and with canonical forms defined, we can classify the notion of progress
enjoyed by λact.

I Corollary 15. If ·; · ` C, then there exists some C′ ≡ C such that C′ is in canonical form.

I Theorem 16 (Weak progress (λact configurations)).
Let ·; · ` C, C 6−→, and let C′ = (νa1) . . . (νan)(〈a1,M1,

−→
V1〉 ‖ . . . ‖ 〈an,Mn,

−→
Vn〉) be a

canonical form of C. Each actor with name ai is either of the form:
1. 〈ai, returnW,−→Vi〉 for some value W , or;
2. 〈a,E[receive], ε〉.
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Reduction on terms

(λx.M)V −→M M{V/x}
let x⇐ returnV in M −→M M{V/x}

E[M ] −→M E[M ′] if M −→M M ′

Structural congruence

C ‖ D ≡ D ‖ C C ‖ (D ‖ E) ≡ (C ‖ D) ‖ E C ‖ (νa)D ≡ (νa)(C ‖ D) if a 6∈ fv(C)

G[C] ≡ G[D] if C ≡ D

Reduction on configurations

Spawn 〈a,E[spawnM ],−→V 〉 −→ (νb)(〈a,E[return b],−→V 〉 ‖ 〈b,M, ε〉)
(b is fresh)

Send 〈a,E[sendV ′ b],−→V 〉 ‖ 〈b,M,
−→
W 〉 −→ 〈a,E[return ()],−→V 〉 ‖ 〈b,M,

−→
W · V ′〉

SendSelf 〈a,E[sendV ′ a],−→V 〉 −→ 〈a,E[return ()],−→V · V ′〉
Self 〈a,E[self],−→V 〉 −→ 〈a,E[return a],−→V 〉

Receive 〈a,E[receive],W · −→V 〉 −→ 〈a,E[returnW ],−→V 〉
Lift G[C1] −→ G[C2] (if C1 −→ C2)

LiftM 〈a,M1,
−→
V 〉 −→ 〈a,M2,

−→
V 〉 (if M1 −→M M2)

Figure 10 Reduction on λact terms and configurations

5 From λact to λch

With both calculi in place, we are now ready to look at the translation from λact into λch.
The key idea is to emulate a mailbox using a channel, and to pass the channel as an argument
to each function. The translation on terms is parameterised over the variable referring to the
channel, which is used to implement context-dependent operations (i.e. receive and self).

As an example, consider recvAndDouble, which is a specialisation of the recvAndMult
function which doubles the number received from the mailbox.

recvAndDouble , let x⇐ receive in (x× 2)

A possible configuration would be an actor evaluating recvAndDouble, with some name a
and mailbox with values −→V , under a name restriction for a.

(νa)(〈a, recvAndDouble,
−→
V 〉)

The translation on terms takes a channel name ch as a parameter. As a result of the
translation, we have that:

J recvAndDouble K ch = let x⇐ take ch in (x× 2)

with the corresponding configuration (νa)(a(J−→V K) ‖ J recvAndDouble K a).
The values from the mailbox are translated pointwise and form the contents of a buffer

with name a. The translation of recvAndDouble is provided with the name a which is used
to emulate receive.

5.1 Translation (λact to λch)
Figure 11 shows the formal translation from λact into λch. Of particular note is the translation
on terms: J− K ch translates a λact term into an λch term using a channel with name ch
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Translation on types

J ActorRef(A) K = ChanRef(JA K) JA→C B K = JA K→ ChanRef(JC K)→ JB K J 1 K = 1

Translation on values

Jx K = x J a K = a Jλx.M K = λx.λch.(JM K ch) J () K = ()

Translation on computation terms
J let x⇐M in N K ch = let x⇐ (JM K ch) in JN K ch

JV W K ch = let f ⇐ (JV K JW K) inf ch
J returnV K ch = return JV K

J self K ch = return ch
J receive K ch = take ch

J spawnM K ch = let chMb⇐ newCh in
fork (JM K chMb);
return chMb

J sendV W K ch = give (JV K) (JW K)

Translation on configurations

J C1 ‖ C2 K = J C1 K ‖ J C2 K J (νa)C K = (νa) J C K J 〈a,M,
−→
V 〉 K = a(J−→V K) ‖ (JM K a)

Figure 11 Translation from λact into λch

to emulate a mailbox. An actor reference is represented as a channel reference in λch;
we emulate sending a message to another actor by writing to the channel emulating the
recipient’s mailbox. Key to translating λact into λch is the translation of function arrows
A→C B; the effect annotation C is replaced by a second parameter ChanRef(C), which is
used to emulate the mailbox of the actor. Values translate to themselves, with the exception
of λ abstractions, whose translation takes an additional parameter denoting the channel used
to emulate operations on a mailbox. Given parameter ch, the translation function for terms
emulates receive by taking a value from ch, and emulates self by returning ch.

Though the translation is straightforward, it is a global translation [12], as all functions
must be modified in order to take the channel emulating the mailbox as an additional
parameter.

5.2 Properties of the Translation

The translation on terms and values preserves typing. We extend the translation function
pointwise to typing environments: Jα1 : A1, . . . , αn : An K = α1 : JA1 K, . . . , αn : JAn K

I Lemma 17 (J− K preserves typing (terms and values)).

1. If Γ ` V : A in λact, then J Γ K ` JV K : JA K in λch.
2. If Γ | B `M : A in λact, then J Γ K, α : ChanRef(JB K) ` JM K α : JA K in λch.

To state a semantics preservation result, we also define a translation on configurations;
the translations on parallel composition and name restrictions are homomorphic. An actor
configuration 〈a,M,

−→
V 〉 is translated as a buffer a(J−→V K), (writing J

−→
V K = JV0 K·, . . . , ·JVn K

for each Vi ∈
−→
V ), composed in parallel with the translation of M , using a as the mailbox

channel. We can now see that the translation preserves typeability of configurations.
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I Theorem 18 (J− K preserves typeability (configurations)).
If Γ; ∆ ` C in λact, then J Γ K; J ∆ K ` J C K in λch.

We describe semantics preservation in terms of a simulation theorem: should a configura-
tion C1 reduce to a configuration C2 in λact, then there exists some configuration D in λch
such that J C1 K reduces in zero or more steps to D, with D ≡ J C2 K. To establish the result,
we begin by showing that λact term reduction can be simulated in λch.

I Lemma 19 (Simulation of λact term reduction in λch).
If Γ `M1 : A and M1 −→M M2 in λact, then given some α, JM1 K α −→∗M JM2 K α in λch.

Finally, we can see that the translation preserves structural congruences, and that λch
configurations can simulate reductions in λact.

I Lemma 20. If Γ; ∆ ` C and C ≡ D, then J C K ≡ JD K.

I Theorem 21 (Simulation of λact configurations in λch).
If Γ; ∆ ` C1 and C1 −→ C2, then there exists some D such that J C1 K −→∗ D, with D ≡ J C2 K.

6 From λch to λact

The translation from λact into λch emulates an actor mailbox using a channel, using it to
implement operations which normally rely on the context of the actor. Though global,
the translation is straightforward due to the limited form of communication supported by
mailboxes. Translating from λch into λact is more challenging. Each channel in a system
may have a different type; each process may have access to multiple channels; and (crucially)
channels may be freely passed between processes.

6.1 Extensions to the Core Language
To emulate channels using actors, we require several more term-level language constructs:
sums, products, recursive functions, and iso-recursive types. Recursive functions are used
to implement an event loop, and recursive types are used to maintain a buffer at the term
level in addition to the meta-level. Products are used to emulate the state of a channel, in
particular to record both a list of values in the buffer and a list of pending requests. Sum
types allow the disambiguation of the two types of messages sent to an actor: one to queue a
message (emulating give) and one to dequeue a message and return it to the actor making
the request (emulating take). Additionally, sums can be straightforwardly used to encode
monomorphic variant types. We write 〈`1 : A1, . . . , `n : An〉 for variant types and 〈`i = V 〉
for variant values.

Figure 12 shows the extensions required to the core term language and reduction rules;
we omit the reduction rule for case analysis on the right injection of a sum. With products,
sums, and recursive types, we can encode lists. The typing rules are shown for λch but can
be easily adapted for λact, and it is straightforward to verify that the extended languages
still enjoy progress and preservation.

6.2 Translation Strategy (λch into λact)
To translate typed actors into typed channels (shown in Figure 13), we emulate each channel
using an actor process, which is crucial in retaining the mobility of channel endpoints.
Channel types describe the typing of a communication medium between communicating
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Syntax
Types A,B,C ::=A×B | A+B | List(A) | µX.A | X | . . .
Values V,W ::= rec f(x) .M | (V,W ) | inlV | inrW | roll V | . . .
Terms L,M,N ::= let (x, y) = V inM | case V {inl x 7→M ; inr y 7→ N} | unroll V . . .

Additional value typing rules Γ ` V : A
Rec
Γ, x : A, f : A→ B `M : B

Γ ` rec f(x) .M : A→ B

Pair
Γ ` V : A Γ `W : B

Γ ` (V,W ) : A×B

Inl
Γ ` V : A

Γ ` inlV : A+B

Inr
Γ ` V : B

Γ ` inr V : A+B

Roll
Γ ` V : A{µX.A/X}

Γ ` roll V : µX.A

Additional term typing rules Γ `M : A
Let

Γ ` V : A×A′
Γ, x : A, y : A′ `M : B

Γ ` let (x, y) = V inM : B

Case
Γ ` V : A+A′

Γ, x : A `M : B Γ, y : A′ ` N : B
Γ ` case V {inlx 7→M ; inr y 7→ N} : B

Unroll
Γ ` V : µX.A

Γ ` unroll V : A{µX.A/X}

Additional term reduction rules M −→M M ′

(rec f(x) .M V ) −→M M{(rec f(x) .M)/f, V/x}
let (x, y) = (V,W ) inM −→M M{V/x,W/y}

case (inlV ) {inl x 7→M ; inr y 7→ N} −→M M{V/x}
unroll (roll V ) −→M returnV

Encoding of lists
List(A) , µX.1 + (A×X) [ ] , roll (inl ()) V :: W , roll (inr (V,W ))

case V {[ ] 7→M ;x :: y 7→ N} , let z ⇐ unroll V in case z {inl () 7→M ; inr (x, y) 7→ N}

Figure 12 Extensions to core languages to allow translation from λch into λact

processes, where processes are unaware of the identity of other communicating parties, and
the types of messages that another party may receive. Unfortunately, the same does not hold
for mailboxes. Consequently, we require that before translating into actors, every channel has
the same type. Although this may seem restrictive, it is both possible and safe to transform
a λch program with multiple channel types into a λch program with a single channel type.

As an example, suppose we have a program which contains channels carrying values
of types Int, String, and ChanRef(String). It is possible to construct a recursive variant
type µX.〈`1 : Int, `2 : String, `3 : ChanRef(X)〉 which can be assigned to all channels in the
system. Then, supposing we wanted to send a 5 along a channel which previously had type
ChanRef(Int), we would instead send a value roll 〈`1 = 5〉 (where roll V is the introduction
rule for an iso-recursive type). Appendix A provides more details, and proves that the
transformation is safe.

6.3 Translation
We write λch judgements of the form {B} Γ `M : A for a term where all channels have type
B, and similarly for value and configuration typing judgements. Under such a judgement,
we can write Chan instead of ChanRef(B).
Metalevel Definitions. The majority of the translation lies within the translation of
newCh, which makes use of the meta-level definitions body and drain. The body function
emulates a channel. Firstly, the actor receives a message recvVal from its mailbox, which is
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Figure 13 Translation Strategy: λch into λact

either of the form inlV to store a message V , or inrW to request that a value is dequeued and
sent to the actor with ID W . We assume a standard implementation of the list concatenation
function (++ ). If the message is inlV , then V is appended to the tail of the list of values
stored in the channel, and the new state is passed as an argument to drain. If the message
is inrW , then the process ID W is appended to the end of the list of processes waiting for a
value. The drain function satisfies all requests that can be satisfied, returning an updated
channel state.
Translation on Types. Figure 14 shows the translation from λch into λact. The translation
function on types L− M is defined with respect to the type of all channels C and is used
to annotate function arrows and to assign a parameter to ActorRef types. The (omitted)
translations on sums, products, and lists are homomorphic. The translation of Chan is
ActorRef(LC M+ActorRef(LC M)), meaning an actor which can receive a request to either store
a value of type LC M, or to dequeue a value and send it to a process ID of type ActorRef(LC M).
Translation on Communication and Concurrency Primitives. We omit the trans-
lation on values and functional terms, which are homomorphisms. Processes in λch are
anonymous, whereas all actors in λact are addressable; to emulate fork, we therefore discard
the reference returned by spawn. The translation of give wraps the translated value to be
sent in the left injection of a sum type, and sends to the translated channel name LW M.

To emulate take, self is firstly used to retrieve the process ID of the actor. Next, the
process ID is wrapped in the right injection and sent to the actor emulating the channel,
and the actor waits for the response message.

Finally, the translation of newCh spawns a new actor to execute body.
Translation on Configurations. The translation function L− M is homomorphic on parallel
composition and name restriction. Unlike λch, a term cannot exist outwith an enclosing actor
context in λact, so the translation of a process evaluating term M is an actor evaluating
LM M with some fresh name a and an empty mailbox, enclosed in a name restriction.

The translation of a λch buffer requires a term-level list to be constructed from a meta-level
sequence; the mailbox is required for requests to queue and dequeue values. Moreover, the
translation of a buffer is an actor with an empty mailbox which evaluates body with a state
containing the (term-level) list of values, and an empty request queue.

In contrast to the global transformation in the previous section, although the translation
from λch into λact, is much more verbose, it is (once all channels have the same type) a local
transformation [12].
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Translation on types (wrt. a channel type C)

L Chan M = ActorRef(LC M + ActorRef(LC M)) LA→ B M = LA M→L C M LB M

Translation on communication and concurrency primitives

L forkM M = let x⇐ spawn LM M in return ()
L giveV W M = send (inl LV M) LW M

L takeV M = let selfPid⇐ self in
send (inr selfPid) LV M;
receive

selfPid is a fresh variable

L newCh M = spawn (body ([ ], [ ]))

Translation on configurations

L C1 ‖ C2 M = L C1 M ‖ L C2 M L (νa)C M = (νa)L C M LM M = (νa)(〈a, LM M, ε〉)
a is a fresh name

L a(−→V ) M = 〈a, body (L−→V M, [ ]), ε〉 where L
−→
V M = LV0 M :: . . . :: LVn M :: [ ]

Metalevel definitions
drain , rec f(x).

let (vals, pids) = x in
case vals {

[ ] 7→ return (vals, pids)
v :: vs 7→

case pids {
[ ] 7→ return (vals, pids)
pid :: pids 7→ send v pid;

f (vs, pids)}
}

body , rec g(state) .
let recvVal⇐ receive in
let (vals, pids) = state in
case recvVal {

inl v 7→ let vals′ ⇐ vals++ [v] in
let state′ ⇐ drain (vals′, pids) in
g (state′)

inr pid 7→ let pids′ ⇐ pids ++ [pid] in
let state′ ⇐ drain (vals, pids′) in
g (state′) }

Figure 14 Translation from λch into λact

6.4 Properties of the Translation
We firstly define translations on typing environments. Since all channels in the source
language of the translation have the same type, we can assume that each entry in the
codomain of ∆ is the same type B. Importantly, each entry in the translated environment
refers to the name of a channel, and thus has the same type as the translation of Chan.

I Definition 22 (Translation of typing environments wrt. a channel type B).

1. If Γ = α1:A1, . . . , αn : An, define L Γ M = α1 : LA1 M, . . . , αn : LAn M.
2. Given a ∆ = a1 : B, . . . , an : B, define L ∆ M =

a1 : (LB M + ActorRef(LB M)), . . . , an : (LB M + ActorRef(LB M)).

The translation on terms preserves typing.

I Lemma 23 (L− M preserves typing (terms and values)).
1. If {B} Γ ` V :A, then L Γ M ` LV M:LA M.
2. If {B} Γ `M :A, then L Γ M | LB M ` LM M:LA M.

The translation on configurations also preserves typeability. We write Γ � ∆ if for each
a : A ∈ ∆, we have that a : ChanRef(A) ∈ Γ; for closed configurations this is ensured by
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Chan. This is necessary since the typing rules for λact require that the local actor name is
present in the term environment to ensure preservation in the presence of self, but there is
no such restriction in λch.

I Theorem 24 (L− M preserves typeability (configurations)).
If {A} Γ; ∆ ` C with Γ � ∆, then L Γ MA; L ∆ MA ` L C M.

It is clear that reduction on translated λch terms can simulate reduction in λact; in fact,
we obtain a tighter (lockstep) simulation result than the translation from λact into λch since
β-reduction only requires one reduction instead of two.

I Lemma 25. If {B} Γ `M1 : A and M1 −→M M2, then LM1 M −→M LM2 M.

Finally, we show that λact can simulate λch.

I Lemma 26. If Γ; ∆ ` C and C ≡ D, then L C M ≡ LD M.

I Theorem 27 (Simulation (λact configurations in λch)).
If {A} Γ; ∆ ` C1, and C1 −→ C2, then there exists some D such that L C1 M −→∗ D with
D ≡ L C2 M.

7 Extensions

In this section, we discuss common extensions to channel- and actor-based languages. Firstly,
we discuss synchronisation, which is ubiquitous in practical implementations of actor-inspired
languages. Adding synchronisation simplifies the translation from channels to actors, and
relaxes the restriction that all channels must have the same type. Secondly, we consider an
extension with Erlang-style selective receive, and show how to encode it in λact. Thirdly, we
discuss how to nondeterministically choose a message from a collection of possible sources,
and finally, we discuss what the translations tell us about the nature of behavioural typing
disciplines for actors. Establishing exactly how the latter two extensions fit into our framework
is the subject of ongoing and future work.

7.1 Synchronisation
While communicating with an actor via asynchronous message passing suffices for many
purposes, the approach can become cumbersome when implementing “call-response” style
interactions. Practical implementations such as Erlang and Akka implement some way of
synchronising on a result: Erlang achieves this by generating a unique reference to send along
with a request, selectively receiving from the mailbox to await a response tagged with the
same unique reference. Another method of synchronisation embraced by the Active Object
community [10, 27, 28] as well as the Akka framework is to generate a future variable which
is populated with the result of the call.

Figure 15 details an extension of λact with a synchronisation primitive, wait. In this
extension, we replace the unary type constructor for process IDs with a binary type constructor
ActorRef(A,B), where A is the type of messages that the process can receive from its mailbox,
and B is the type of value to which the process will eventually evaluate. We assume that the
remainder of the primitives are modified to take the additional effect type into account. A
variation of the wait primitive is implemented as part of the Links [9] concurrency model to
address the type pollution problem.

We now adapt the previous translation from λch to λact, making use of wait to avoid the
need for the coalescing transformation. In the modified translation, channel references are
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Additional types, terms, and configuration reduction rule

Types ::= ActorRef(A,B) | . . . Terms ::= waitV | . . .

〈a,E[wait b],−→V 〉 ‖ 〈b, returnV ′,−→W 〉 −→ 〈a,E[returnV ′],−→V 〉 ‖ 〈b, returnV ′,−→W 〉

(νa)(〈a, returnV,−→V 〉) ‖ C ≡ C

Modified typing rules for terms Γ | A,B `M : A

Sync-Spawn
Γ | A,B `M : B

Γ | C,C′ ` spawnM : ActorRef(A,B)

Sync-Wait
Γ ` V : ActorRef(A,B)
Γ | C,C′ ` waitV : B

Sync-Self

Γ | A,B ` self : ActorRef(A,B)

Modified typing rules for configurations Γ; ∆ ` C
Sync-Actor

Γ, a:ActorRef(A,B) `M :B
(Γ, a:ActorRef(A,B) ` Vi:A)i

Γ, a : ActorRef(A,B); a:(A,B) ` 〈a,M,
−→
V 〉

Sync-Nu
Γ, a : ActorRef(A,B); ∆, a : (A,B) ` C

Γ; ∆ ` (νa)C

Modified translation

L ChanRef(A) M =
ActorRef(LA M + ActorRef(LA M, LA M),1)

LA→ B M = LA M→C,1 LB M

L takeV M =
let requestorPid⇐ spawn (

let selfPid⇐ self in
send (inr selfPid) LV M;
receive) in

wait requestorPid

Figure 15 Extensions to add synchronisation to λact

translated into actor references which can either receive a value of type A, or a process which
can receive a value of type A and will eventually evaluate to a value of type A. Note that
the unbound annotation C, 1 on function arrows reflects that the mailboxes can be of any
type, since the mailboxes are unused in the actors emulating threads.

The key idea behind the modified translation is to spawn a fresh actor which makes the
request to the channel and blocks waiting for the response. Once the spawned actor has
received the result, the result can be retrieved synchronously using wait without reading from
the mailbox. The previous soundness theorems adapt to the new setting.

I Theorem 28. If Γ; ∆ ` C with Γ � ∆, then L Γ M; L ∆ M ` L C M.

I Theorem 29. If Γ; ∆ ` C1 and C1 −→ C2, then there exists some D such that L C M −→∗ D
with D ≡ L C2 M.

The translation in the other direction requires named threads and a join construct in λch.

7.2 Selective Receive
The receive construct in λact can only read the first message in the queue, which is cumbersome
as it often only makes sense for an actor to handle a subset of possible messages at a given
time. In practice, Erlang provides a selective receive construct, matching messages in the
mailbox against multiple pattern clauses. Assume we have a mailbox containing values
V1, . . . Vn and perform a selective receive receive {c1, . . . , cm}. The selective receive first tries
to match value V1 against clause c1—if the V1 matches the pattern of c1, then the body of c1
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Additional syntax

Receive Patterns c ::= (〈` = x〉 when M) 7→ N

Computations M ::= . . . | receive {−→c }

Additional term typing rule
Sel-Recv−→c = {〈`i = xi〉 when Mi 7→ Ni}i i ∈ J
Γ, xi : Ai `P Mi : Bool Γ, xi : Ai | 〈`j : Aj〉j ` Ni : C

Γ | 〈`j : Aj〉j∈J ` receive {−→c } : C

Additional configuration reduction rule
−→
V = V1 · . . . · Vn

−→c = {〈`i = xi〉 when Mi 7→ Ni}i

∃k, l.∀i.i < k ⇒ ¬(matchesAny(−→c , Vi)) ∧matches(cl, Vk) ∧ ∀j.j < l⇒ ¬(matches(cj , Vk))
Vk = 〈`k = V ′k〉

−→
V ′1 = −→V 1..(k−1)

−→
V ′2 = −→V (k+1)..n

〈a,E[receive {−→c }],−→V 〉 −→ 〈a,E[Nl{V ′k/xl}],
−→
V ′1 ·
−→
V ′2 〉

matches((〈` = x〉 when M) 7→ N, 〈`′ = V 〉) , (` = `′) ∧ (M{V/x} −→∗M return true)

matchesAny(−→c , V ) , ∃c ∈ −→c .matches(c, V )

Figure 16 Additional syntax, typing rules, and reduction rules for λact with selective receive

is evaluated, whereas if it fails, V1 is tested against c2 and so on. Should V1 not match any
of the patterns, then the process is repeated with V2; and subsequently each Vi until Vn has
been tested against cm. At this point, execution blocks until a matching message arrives.

More concretely, consider an actor with mailbox type C = 〈PriorityMessage : Message,
StandardMessage : Message,Timeout : 1〉 which can receive both high- and low-priority
messages. Let getPriority be a function which extracts a priority from a message.
Now consider the following actor:

receive {
〈PriorityMessage = msg〉 when (getPrioritymsg) > 5 7→ handleMessagemsg
〈Timeout = msg〉 when true 7→ ()

};
receive {
〈PriorityMessage = msg〉 when true 7→ handleMessagemsg
〈StandardMessage = msg〉 when true 7→ handleMessagemsg
〈Timeout = msg〉 when true 7→ ()

}

This actor begins by handling a message only if it has a priority greater than 5. After the
timeout message is received, however, it will handle any message—including lower-priority
messages that were received beforehand.

Figure 16 shows the additional syntax, typing rule, and configuration reduction rule
required to encode selective receive; the type Bool and logical operators are encoded using
sums in the standard way. We write Γ `P M : A to mean that under context Γ, a term M

which does not perform any communication or concurrency actions has type A. Intuitively,
this means that no subterm of M is a communication or concurrency construct.

The receive {−→c } construct models an ordered sequence of receive pattern clauses c of the
form (〈` = x〉 when M) 7→ N , which can be read as “If a message with body x has label `
and satisfies predicate M , then evaluate N”. The typing rule for receive {−→c } ensures that for
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Translation on types

bActorRef(〈`i : Ai〉i)c = ActorRef(〈`i : bAic〉i) bA×Bc = bAc × bBc bA+Bc = bAc+ bBc

bµX.Ac = µX.bAc bA→C Bc = bAc →bCc List(bCc)→bCc (bBc × List(bCc))

where C = 〈`i : A′i〉i, and bCc = 〈`i : bA′ic〉i
Translation on values

bλx.Mc = λx.λmb.(bMcmb) brec f(x) .Mc = rec f(x) . λmb.(bMcmb)

Translation on computation terms (wrt. a mailbox type 〈`i : Ai〉i)
bV W cmb = let f⇐ (bV c bW c) in f mb

breturnV cmb = return (bV c,mb)
blet x⇐M in Ncmb = let resPair⇐ bMcmb in let (x,mb′) = resPair in bNcmb′

bselfcmb = let selfPid⇐ self in return (selfPid,mb)
bsendV W cmb = let x⇐ send (bV c) (bW c) in return (x,mb)
bspawnMcmb = let spawnRes⇐ spawn(bMc[ ]) in return (spawnRes,mb)

breceive {−→c }cmb = find(−→c ,mb)
Translation on configurations

b(νa)Cc = {(νa)D | D ∈ bCc}
bC1 ‖ C2c = {D1 ‖ D2 | D1 ∈ bC1c ∧ D2 ∈ bC2c}

b〈a,M,
−→
V 〉c = {〈a, bMc [ ], b

−→
V c 〉} ∪

{〈a, (bMc
−→
W 1

i ),
−→
W 2

i 〉 | i ∈ 1..n}

where
−→
W 1

i = bV1c :: . . . :: bVic :: [ ]
−→
W 2

i = bVi+1c · . . . · bVnc

Figure 17 Translation from λact with selective receive into λact

each pattern 〈`i = xi〉 when Mi 7→ Ni in −→c , we have that there exists some `i : Ai contained
in the mailbox variant type; and when Γ is extended with xi : Ai, that the guard Mi has
type Bool and the body Ni has the same type C for each branch.

The reduction rule for selective receive is inspired by that of Fredlund [14]. Assume that
the mailbox is of the form V1 · . . . ·Vk · . . . Vn, with

−→
V ′1 = V1 · . . . ·Vk−1 and

−→
V ′2 = Vk+1 · . . . ·Vn.

The matches(c, V ) predicate is true if the label matches, and the branch guard evaluates to
true. The matchesAny(−→c , V ) predicate returns true if V matches any pattern in −→c . The key
idea is that Vk is the first value to satisfy a pattern. The construct evaluates to the body of
the matched pattern, with the message payload V ′k substituted for the pattern variable xk;
the final mailbox is the concatenation of

−→
V ′1 and

−→
V ′2 (that is, the original mailbox without

Vk). Reduction in the presence of selective receive preserves typing.

I Theorem 30 (Preservation (λact configurations with selective receive)). If Γ; ∆ | 〈`i : Ai〉i ` C1
and C1 −→ C2, then Γ; ∆ | 〈`i : Ai〉i ` C2.

Translation to λact. Although λact is a basic calculus, given the additional constructs
we used for the translation from λch into λact, it is possible to translate λact with selective
receive into λact without selective receive. The key to the translation is reasoning about
values in the mailbox at the term level; similar to the translation from λch into λact, we
maintain a term-level ‘save queue’ of values that have been received but not yet matched,
and can loop through the list to find the first matching term.

Figure 17 shows the translation from λact with selective receive into plain λact. The
translation on types is largely homomorphic, except for the translation on functions: here,
similar to the translation from λact into λch, we add an additional parameter referring to the
save queue. The translation on values is similar, adding an extra parameter to functions to
capture the save queue.
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find(−→c ,mb) ,
(recfindLoop(ms) .

let (mb1,mb2) = ms in
casemb2 {

[ ] 7→ loop(−→c ,mb1)
x :: mb′2 7→

let mb′ ⇐ mb1 ++ mb′2 in
case x {branches(−→c ,mb′,
λy.(let mb′1 ⇐ mb1 ++ [y] in

findLoop (mb′1,mb′2)))}) ([ ],mb)

label(〈` = x〉 when M 7→ N) = `

labels(−→c ) = {label(c) | c ∈ −→c }

ifPats(mb, `, y, ε, default) = default 〈` = y〉
ifPats(mb, `, y,

(〈` = x〉 when M 7→ N) · pats, default) =
let resPair⇐ (bMcmb){y/x} in
let (res,mb′) = resPair in
if res then (bNcmb′){y/x}
else ifPats(mb′, y, pats, default)

loop(−→c ,mb) ,
(rec recvLoop(mb) .

let x⇐ receive in
case x {branches(−→c ,mb,
λy. let mb′ ⇐ mb ++ [y] in

recvLoopmb′)})mb

branches(−→c ,mb, default) = patBranches(−→c ,mb, default) · defaultBranches(−→c ,mb, default)
patBranches(−→c ,mb, default) =
{〈` = y〉 7→ ifPats(mb, `, y,−→c` , default) | ` ∈ labels(−→c ) ∧

c` = {c′ | c′ ∈ −→c ∧ label(c′) = `} ∧ y fresh}
defaultBranches(−→c ,mb, default) =
{〈`j = x〉 7→ default 〈`j = x〉 | `j ∈ 〈`i : Ai〉i ∧ `j 6∈ labels(−→c ) ∧ x fresh}

Figure 18 Metalevel definitions for translation from λact with selective receive to λact

The translation on terms bMcmb takes a variable mb representing the save queue as its
parameter, returning a pair of the resulting term and the updated save queue. The majority of
cases are standard, except for receive {−→c }, which relies on the meta-level definition find(−→c ,
mb), which takes as its arguments a sequence of clauses −→c and a save queue mb, and consists
of a loop findLoop. The loop takes a pair of lists (ms1,ms2), where ms1 is the list of values
that has been processed already and found not to match, and ms2 is a list of values still to
be processed. The loop iterates through the list of values until one either matches, or the end
of the list is reached. Should no values in the term-level representation of the mailbox match,
then the loop function repeatedly receives from the mailbox, testing each new message to
see whether it matches any of the patterns.

Note that the case construct in the core λact calculus is more restrictive than that of the
selective receive construct: given a variant 〈`i : Ai〉i used as a mailbox type, the core calculus
requires a single branch for each possible value, whereas selective receive allows multiple
different branches for each label (each containing a possibly-different predicate), and does
not require pattern matching to be exhaustive. In order to translate the liberal selective
receive into the more basic case construct, we perform pattern matching compilation through
the use of the branches construct: patBranches creates a branch for each label present in
the selective receive, creating (via ifPats) a sequence of if-then-else statements to check
whether a value satisfies each predicate in turn; defaultBranches creates a branch for each
label that is present in the mailbox type but not in any of the selective receive clauses.

Properties of the translation. The translation preserves typing of terms and values.

I Lemma 31 (Translation preserves typing (values and terms)).

1. If Γ ` V : A, then bΓc ` bV c : bAc.
2. If Γ | 〈`i : Ai〉i ` M : B, then bΓc,mb : List(〈`i : bAic〉)i | 〈`i : bAic〉i ` bMcmb :

(bBc × List(〈`i : bAic〉i)).
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Γ ` V : ChanRef(A) Γ `W : ChanRef(B)
Γ ` chooseV W : A+B

E[choose a b] ‖ a(W1 ·
−→
V1) ‖ b(−→V2) −→ E[return (inlW1)] ‖ a(−→V1) ‖ b(−→V2)

E[choose a b] ‖ a(−→V1) ‖ b(W2 ·
−→
V2) −→ E[return (inrW2)] ‖ a(−→V1) ‖ b(−→V2)

Figure 19 Additional typing and evaluation rules for λch with choice

To obtain a semantics preservation result, again we provide a translation on configurations.
Alas, it is not possible to do a direct one-to-one translation, since a message in a mailbox in
the source language could be either in the mailbox or the save queue in the target language.
Consequently, we translate a configuration into a set of possible configurations, depending on
how many messages have been processed. We can show that all configurations in the resulting
set are type-correct, and can simulate the original reduction—for a set of configurations S,
we write S≡ for the set of configurations such that C ∈ S≡ ⇔ C′ ∈ S ∧ C ≡ C′.

I Theorem 32 (Translation preserves typing). If Γ; ∆ ` C, then ∀D ∈ bCc, it is the case that
bΓc; b∆c ` D.

I Theorem 33 (Simulation (λact with selective receive in λact)). If Γ; ∆ ` C and C −→ C′,
then ∀D ∈ bCc, there exists a D′ such that D −→+ D′ and D′ ∈ bC′c≡.

7.3 Choice
The calculus λch supports only blocking receive on a single channel. A more powerful
mechanism is selective communication, where a value is taken nondeterministically from two
channels. An important use case is receiving a value when either channel could be empty.

Here we have considered only the most basic form of selective choice over two channels.
More generally, it may be extended to arbitrary regular data types [37]. As Concurrent
ML [39] embraces rendezvous-based synchronous communication, it provides generalised
selective communication where a process can synchronise on a mixture of input or output
communication events. Similarly, the join patterns of the join calculus [13] provide a general
abstraction for selective communication over multiple channels.

As we are working in the asynchronous setting where a give operation can reduce
immediately, we consider only input-guarded choice. Input-guarded choice can be added
straightforwardly to λch, as shown in Figure 19. Emulating such a construct satisfactorily in
λact is nontrivial, because messages must be multiplexed through a local queue. One approach
could be to use the work of Chaudhuri [8] which shows how to implement generalised choice
using synchronous message passing, but implementing this in λch may be difficult due to the
asynchrony of give. We leave a more thorough investigation to future work.

7.4 Behavioural Types
Behavioural types allow the type of an object (e.g. a channel) to evolve as a program
executes. A widely studied behavioural typing discipline is that of session types [22, 23]
which supports channel types that are sufficiently rich to describe communication protocols
between participants. As an example, the session type for a channel which sends two integers
and receives their sum could be defined as !Int.!Int.?Int.end, where !A.S is the type of a
channel which sends a value of type A before continuing with behaviour S. Session types are
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particularly suited to channels, whereas current work on session-typed actors concentrates
on runtime monitoring [34].

A natural question to ask is whether one can combine the benefits of actors and of session
types—indeed, this was one of our original motivations for wanting to better understand the
relationship between actors and channels in the first place! A session-typed channel may
support both sending and receiving (at different points in the protocol it encodes). But
communication with another processes mailbox is one-way. We have studied several variants
of λact with polarised session types which capture such one-way communication, but they
seem too weak to simulate session-typed channels. In future, we would like to find a natural
extension of λact with behavioural types that admits a similar simulation result to the ones
in this paper.

8 Related Work

Our formulation of concurrent λ-calculi is inspired by λ(fut) [35], a concurrent λ-calculus
with threads and future variables, as well as reference cells and an atomic exchange construct.
In the presence of a list construct, futures are sufficient to encode asynchronous channels.
In λch, we concentrate on asynchronous channels as primitive entities to better understand
the correspondence with actors. Channel-based concurrent λ-calculi have been used as a
formalism for the design of channel-based languages with session types, richer type systems
which are expressive enough to encode protocols such as SMTP [15, 30].

Channel-based programming languages are inspired by CSP [21] and the π-calculus [32];
the name restriction and parallel composition operators in λch and λact are directly inspired
by analogous constructs in the π-calculus. Concurrent ML [39] extends Standard ML with a
rich set of concurrency constructs centred around synchronous channels, which again, can
emulate asynchronous channels. A core notion in Concurrent ML is nondeterministically
synchronising on multiple synchronous events, such as sending or receiving messages; relating
such a construct to an actor calculus is nontrivial, and remains an open problem.

The actor model was designed by Hewitt et al. [20] and examined in the context of
distributed systems by Agha [2]. Agha describes an operational semantics on systems of
actors, with a denotational interpretation of actor behaviours. Agha et al. [3] describe
a formalism for a functional actor language, based on the λ-calculus. Their formalism
consists of three core constructs: send sends a message; letactor creates a new actor; and
become changes an actor’s behaviour. While this system is closer to the actor model as
originally envisaged as a model of concurrency, by using an explicit receive construct instead
of using behaviours, our calculus—especially when extended with selective receive—more
closely resembles Erlang (which the authors refer to as “essentially an actor language”).
The semantics of this language are defined in terms of an actor configuration, consisting
of a global actor mapping, a global multiset of messages, as well as a set of receptionists
(names of actors which are externally visible to other configurations) and a set of external
actor names. In contrast, our semantics for λact takes a form closer to the π-calculus, with
visibility encoded via name restrictions and structural congruences. A strength of the work is
that the authors consider behavioural theory in terms of operational equivalence and testing
equivalence—something we have not investigated. Another difference is that we (following
the work of He et al. [19] and libraries such as Akka Typed) consider a typed actor calculus,
whereas this calculus is untyped.

Erlang [6] is a functional programming language supporting an actor-based style of
concurrency, and has a strong reputation for supporting the development of highly-scalable
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and fault-tolerant distributed systems [5]. In addition to the Akka framework, Scala has
native support for actor-style concurrency, implemented efficiently without explicit virtual
machine support [17]. Scala’s native support employs Erlang-style selective receive. In
the object-oriented setting, the actor model inspires active objects [28]: objects supporting
asynchronous method calls which return responses using futures. De Boer et al. [10] describe
a language and proof system for active objects with cooperatively scheduled threads within
each object. Core ABS [27] is a specification language based on active objects. Using futures
for synchronisation sidesteps the type pollution problem inherent in call-response patterns
with actors, although our translations work in the absence of synchronisation. By working in
the functional setting, we obtain more compact calculi.

Links [9] is a programming language designed for developing web applications which
includes an implementation of typed message-passing concurrency built on an effect type
system. The design of λact was inspired by Links.

Hopac [24] is a channel-based concurrency library for the F# programming language,
based on Concurrent ML. The Hopac documentation includes a discussion of CML-style
synchronous channels and actors [1], providing an implementation of actor-style concurrency
primitives using channels, and an implementation of channel-style concurrency primitives
using actors. The implementation of channels using actors uses shared-memory concurrency
in the form of ML-style references in order to implement the take function, whereas our
translation achieves this using message passing. Additionally, our translation is formalised
and we prove that the translations are type- and semantics-preserving.

9 Conclusion

Inspired by languages such as Go which take channels as core constructs for communication,
and languages such as Erlang which are based on the actor model of concurrency, we have
presented translations back and forth between a concurrent λ-calculus λch with channel-based
communication constructs and a concurrent λ-calculus λact with actor-based communication
constructs. We have proved that λact can simulate λch and vice-versa.

The translation from λact to λch is straightforward, whereas the translation from λch to
λact requires considerably more effort. Returning to Figure 2, this is unsurprising!

We have also shown how to extend λact with synchronisation, greatly simplifying the
translation from λch into λact, and have shown how Erlang-style selective receive can be
emulated in λact. Additionally, we have discussed input-guarded choice in λch, and how
behavioural types may fit in with λact.

With the base calculi and metatheory in place, we look forward to the following areas
of future work. First, we plan to strengthen our operational correspondence results by
considering the completeness direction for both translations. Second, we plan to investigate
how λch with input-guarded nondeterministic choice can be emulated using λact. Finally,
we intend to use the lessons learnt from studying theses calculi to inform the design of an
actor-style language with behavioural types which will support static checking of conformance
to communication patterns.
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A Coalescing Transformation

Our translation from λch into λact relies on the assumption that all channels have the
same type, which is rarely the case in practice. Here, we sketch a sample type-directed
transformation which we call coalescing, which transforms an arbitrary λch program into an
λch program which has only one type of channel. To encode such a translation, we use an
extension of the language with equirecursive types.

The transformation works by encapsulating each type of message in a variant type, and
ensuring that give and take use the correct variant injections. Although the translation
necessarily loses type information, thus introducing partiality, we can show that terms and
configurations that are the result of the coalescing transformation never reduce to an error.

We say that a type A is a base carried type in a configuration Γ; ∆ ` C if there exists
some subterm Γ ` V : ChanRef(A), where A is not of the form ChanRef(B).

In order to perform the coalescing transformation, we require an environment σ which
maps each base carried type A to a unique token `, which we use as an injection into a
variant type.

We write σ ^ Γ; ∆ ` C if σ contains a bijective mapping A 7→ ` for each base carried type
in Γ; ∆ ` C. We extend the relation analogously to judgements on values and computation
terms.

Next, we define the notion of a coalesced channel type, which can be used to ensure that
all channels in the system have the same type.

I Definition 34 (Coalesced channel type).
Given a token environment σ = A0 7→ `0, . . . An 7→ `n, we define the coalesced channel type
cct(σ) as

cct(σ) = µX.〈`0 : A0, . . . , `n : An, `c : ChanRef(X)〉

where

1 = 1
A→ B = A→ B

A×B = A×B

A+B = A+B

List(A) = List(A)
ChanRef(A) = ChanRef(X)

µX.A = µX.A
which is the single channel type which can receive values of all possible types sent in the

system.

Note that the definition of a base carried type excludes the possibility of a type of the
form ChanRef(A) appearing in σ. To handle the case of sending channels, we require cct(σ)
to be a recursive type; a distinguished token `c denotes the variant case for sending a channel
over a channel.

Retrieving a token from the token environment σ is defined by the following inference
rules. Note that ChanRef(A) maps to the distinguished token `c.

(A 7→ `) ∈ σ
σ(A) = ` σ(ChanRef(A)) = `c

With the coalesced channel type defined, we can define a function mapping types to
coalesced types.
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I Definition 35 (Type coalescing).

|1|σ = 1
|A→ B|σ = |A|σ →|B|σ

|A×B|σ = |A|σ ×|B|σ

|A+B|σ = |A|σ +|B|σ∣∣List(A)
∣∣σ = List(|A|σ)∣∣ChanRef(A)
∣∣σ = ChanRef(cct(σ))

|µX.A|σ = µX.|A|σ

We then extend |−|σ to typing environments Γ, taking into account that we must annotate
channel names.

I Definition 36 (Type coalescing on environments). 1. For Γ:

a.
∣∣∅∣∣σ = ∅

b. |x : A,Γ|σ = x : |A|σ ,|Γ|σ.
c.

∣∣a : ChanRef(A),Γ
∣∣σ = aA : ChanRef(cct(σ)),|Γ|σ.

2. For ∆:

a.
∣∣∅∣∣σ = ∅

b. |a : A,∆|σ = aA : cct(σ),|∆|σ

Figure 20 describes the coalescing pass from λch with multiple channel types into λch
with a single channel type. Judgements are of the shape {σ} Γ ` V : A  V ′ for values;
{σ} Γ `M : A M ′ for computations; and {σ} Γ ` C  C′ for configurations, where σ is
an bijective mapping from types to tokens, and primed values are the results of the coalescing
pass. We omit the rules for values and functional terms, which are homomorphisms.

Of particular note are the rules for give and take. The coalesced version of give ensures
that the correct token is used to inject into the variant type. The translation of take retrieves
a value from the channel, and pattern matches to retrieve a value of the correct type from
the variant. As we have less type information, we have to account for the possibility that
pattern matching fails by introducing an error term, which we define at the top-level of the
term:

let error = (rec f(x) . f x) in . . .

The translation on configurations ensures that all existing values contained within a
buffer are wrappen in the appropriate variant injection.

The coalescing step necessarily loses typing information on channel types. To aid us in
stating an error-freedom result, we annotate channel names a with their original type; for
example, a channel with name a carrying values of type A would be translated as aA. It is
important to note that annotations are irrelevant to reduction, i.e.:

E[give aAW ] ‖ aB(−→V ) −→ E[return ()] ‖ aB(−→V ·W )

As previously discussed, the coalescing pass means that channel types are less specific,
with the pass introducing partiality in the form of an error term, error. However, since we
began with a type-safe program in λch, we can show that programs that have been coalesced
from well-typed λch configurations never reduce to an error term.

I Definition 37 (Error configuration).
A configuration C is an error configuration if C ≡ G[error] for some configuration context G.
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Coalescing of channel names {σ} Γ ` V  V ′

Ref
a : ChanRef(A) ∈ Γ

{σ} Γ ` a : ChanRef(A) aA

Coalescing of communication and concurrency primitives {σ} Γ `M  M ′

Give
{σ} Γ ` V : A V ′

{σ} Γ `W : ChanRef(A) W ′ σ(A) = `

{σ} Γ ` giveV W : 1 give (roll 〈` = V ′〉)W ′

Take
{σ} Γ ` V : ChanRef(A) V ′ σ(A) = `j

{σ} Γ ` takeV : A let x⇐ takeV ′ in
let y ⇐ unroll x in
case y {
〈`0 = y〉 . . . 〈`j−1 = y〉 7→ error

〈`j = y〉 7→ y

〈`j+1 = y〉 . . . 〈`n = y〉 7→ error }

NewCh

{σ} Γ ` newCh : ChanRef(A) newChA

Fork
{σ} Γ `M : 1 M ′

{σ} Γ ` forkM : 1 forkM ′

Coalescing of configurations {σ} Γ ` C  C′

Par
{σ} Γ; ∆ ` C1  C′1 {σ} Γ; ∆ ` C2  C′2

{σ} Γ; ∆ ` C1 ‖ C2  C′1 ‖ C′2

Chan
{σ} Γ, a : ChanRef(A); ∆, a : A ` C  C′

{σ} Γ; ∆ ` (νa)C  (νaA)C′

Term
{σ} Γ `M : A M ′

{σ} Γ; · `M  M ′

Buf
({A, σ} Γ ` Vi : A V ′i )i

{σ} Γ; a : A ` a(−→V ) aA(
−→
V ′)

Coalescing of buffer values {A, σ} Γ ` V : A V ′

{σ} Γ ` V : A V ′ σ(A) = `

{A, σ} Γ ` V : A 〈` = V 〉

Figure 20 Type-directed coalescing pass
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I Definition 38 (Error-free configuration).
A configuration C is error-free if it is not an error configuration.

We can straightforwardly see that the initial result of a coalescing pass is error-free:

I Lemma 39. If σ ^ Γ ` C  C′, then C′ is error-free.

Proof. By induction on the derivation of Γ ` C  C′. J

Next, we show that error-freedom is preserved under reduction. To do so, we make
essential use of the fact that the coalescing pass annotates each channel with its original
type.

I Lemma 40 (Error-freedom (coalesced λch)).
If Γ; ∆ ` C  C′1, and C′1 −→∗ C′2, then C′2 is error free.

Proof. By preservation in λch, we have that Γ; ∆ ` C′2, and by Lemma 39, we can assume
that C′1 is error-free.

We show that an error term can never arise. Suppose that C′2 was an error configuration,
meaning that C′2 ≡ G[error] for some configuration context G. As we have decreed that the
error term does not appear in user programs, we know that error must have arisen from
the refinement pass. By observation of the refinement rules, we see that error is introduced
only in the refinement rule for Take.

Stepping backwards through the reduction sequence introduced by the Take rule, we
have that:

case 〈`k = W 〉 {
〈`0 = y〉 . . . 〈`j−1 = y〉 7→ error
〈`j = y〉 7→ y

〈`j+1 = y〉 . . . 〈`n = y〉 7→ error
}

for some k 6= j.
Stepping back further, we have that:

let x⇐ take aB in
let y ⇐ unroll (roll x) in
case y {
〈`0 = y〉 . . . 〈`j−1 = y〉 7→ error
〈`j = y〉 7→ y

〈`j+1 = y〉 . . . 〈`n = y〉 7→ error
}

Now, inspecting the premises of the refinement rule for Take, we have that Γ ` aB :
ChanRef(A) V ′ and σ(A) = `j . Examining the refinement rule for Name, we have that
Γ; Ψ ` a : ChanRef(A) aA, thus we have that B = A.

However, we have that σ(A) = `j and σ(A) = `k but we know that k 6= j, thus leading to
a contradiction since σ is bijective. J

Since annotations are irrelevant to reduction, it follows that C′ has identical reduction
behaviour with all annotations erased.
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B Selected full proofs

B.1 λch Preservation
I Lemma 41 (Replacement). If Γ ` E[M ] : A, Γ `M : B, and Γ ` N : B, then Γ ` E[N ] : A.

Proof. By induction on the structure of E. J

Theorem 4 (Preservation (λch configurations)
If Γ; ∆ ` C1 and C1 −→ C2, then Γ; ∆ ` C2.

Proof. By induction on the derivation of C −→ C′. We use Lemma 41 implicitly throughout.
Case Give
From the assumption Γ; ∆ ` E[giveW a] ‖ a(−→V ), we have that Γ; · ` E[giveW a] and
Γ; a : A ` a(−→V ). Consequently, we know that ∆ = a : A.

From this, we know that Γ ` giveW a : 1 and thus Γ ` W : A and Γ ` a : ChanRef(A).
We also have that Γ; a : A ` a(−→V ), thus Γ ` Vi : A for all Vi ∈

−→
V . By Unit we can show

Γ; · ` E[return ()] and by Buf we can show Γ; a : A ` a(−→V ·W ); recomposing, we arrive at
Γ; ∆ ` E[return ()] ‖ a(−→V W ) as required.
Case Take
From the assumption Γ; ∆ ` E[take a] ‖ a(W · −→V ), we have that Γ; · ` E[take a] and that
Γ; a : A ` a(W · −→V ). Consequently, we know that ∆ = a : A.

From this, we know that Γ ` take a : A, and thus Γ ` a : ChanRef(A). Similarly, we have
that Γ; a : ChanRef(A) ` a(W · −→V ), and thus Γ `W : A.

Consequently, we can show that Γ; · ` E[returnW ] and Γ; a : A ` a(−→V ); recomposing, we
arrive at Γ; ∆ ` E[returnW ] ‖ a(−→V ) as required.
Case NewCh
By Buf we can type Γ; a : A ` a(ε), and since Γ ` newCh : ChanRef(A), it is also possible to
show Γ, a : ChanRef(A) ` a : ChanRef(A), thus Γ, a : ChanRef(A) ` E[return a].

Recomposing by Par we have Γ, a : ChanRef(A); a : A ` E[return a] ‖ a(ε), and by Chan
we have Γ; · ` (νa)(E[return a] ‖ a(ε)) as required.
Case Fork
From the assumption Γ; ∆ ` E[forkM ], we have that ∆ = ∅ and Γ ` M : 1. By Unit we
can show Γ; · ` E[return ()], and by Term we can show Γ; · `M . Recomposing, we arrive at
Γ; ∆ ` E[return ()] ‖M as required.
Case Lift Immediate by the inductive hypothesis.
Case LiftV Immediate by Lemma 1. J
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B.2 λact Preservation
I Lemma 42 (Replacement). If Γ | C ` E[M ] : A, Γ | C `M : B, and Γ | C ` N : B, then
Γ | C ` E[N ] : B.

Proof. By induction on the structure of E. J

Theorem 12 (Preservation (λact configurations))
If Γ; ∆ ` C1 and C1 −→ C2, then Γ; ∆ ` C2.

Proof. By induction on the derivation of C1 −→ C2, making implicit use of Lemma 42.
Case Spawn
From the assumption that Γ; ∆ ` 〈a,E[spawnM ],−→V 〉, we have that ∆ = a : C, that
Γ | C ` spawnM : ActorRef(A) and Γ | A `M : 1.

We can show Γ, b : ActorRef(A) ` b : ActorRef(A); and therefore that Γ, b : ActorRef(A) `
E[return b] : 1. By Actor, it follows that Γ, b : ActorRef(A); a : C ` 〈a,E[return b],−→V 〉.

By Actor, we can show Γ, b : ActorRef(A); b : A ` 〈b,M, ε〉.
Finally, by Pid and Par, we have Γ; ∆ ` (νb)(〈a,E[return b],−→V 〉 ‖ 〈b,M, ε〉) as required.

Case Send
From the assumption that Γ; ∆ ` 〈a,E[sendV ′ b],−→V 〉 ‖ 〈b,M,

−→
W 〉, we have that Γ; a : A `

〈a,E[sendV ′ b],−→V 〉 and Γ; b : C ` 〈b,M,
−→
W 〉. Consequently, we can write ∆ = a : A, b : C.

From this, we know that Γ | A ` sendV ′ b : 1, so we can write Γ = Γ′, b : ActorRef(C), and
Γ ` V ′ : C. Additionally, we know that Γ; b : C ` 〈b,M,

−→
W 〉 and thus that (Γ `Wi : C) for

each entry Wi ∈
−→
W .

As Γ ` V ′ : C, it follows that Γ ` −→W ·V ′ and therefore that Γ; b : C ` 〈b,M,
−→
W ·V 〉. We can

also show that Γ | C ` return () : 1, and therefore it follows that Γ; a : A ` 〈a,E[return ()],−→V 〉.
Recomposing, we have that Γ; ∆ ` 〈a,E[return ()],−→W 〉 ‖ 〈b,M,

−→
W · V ′〉 as required.

Case Receive
By Actor, we have that Γ; ∆ ` 〈a,E[receive],W · −→V 〉. From this, we know that Γ | A `
E[receive] : 1 (and thus Γ | A ` receive : A) and Γ `W : A.

Consequently, we can show Γ ` E[returnW ] : 1. By Actor, we arrive at Γ; ∆ `
〈a,E[returnW ],−→V 〉 as required.
Case Self
By Actor, we have that Γ; ∆ ` 〈a,E[self],−→V 〉, and thus that Γ | A ` E[self] : 1 and
Γ | A ` self : ActorRef(A). We also know that Γ = Γ′, a : ActorRef(A), and that ∆ = a : A.

Trivially, we can show Γ′, a : ActorRef(A) ` a : ActorRef(A). Thus it follows that
Γ′, a : ActorRef(A) ` E[return a] : 1 and thus it follows that Γ; ∆ ` 〈a,E[return a],−→V 〉 as
required.
Case Lift Immediate by the inductive hypothesis.
Case LiftV Immediate by Lemma 9. J
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B.3 Translation: λact into λch

Lemma 23

1. If Γ ` V : A in λact, then J Γ K ` JV K : JA K in λch.
2. If Γ | B `M : A in λact, then J Γ K, α : ChanRef(JB K) ` JM K α : JA K in λch.

Proof. By simultaneous induction on the derivations of Γ ` V : A and Γ | B `M : A.
Premise 1

Case Γ ` x : A
By the definition of J− K, we have that Jα K = α. By the definition of J Γ K, we have that
α : JA K ∈ J Γ K. Consequently, it follows that J Γ K ` α : JA K.
Case Γ ` λx.M : A→ B

From the assumption that Γ ` λx.M : A→C B, we have that Γ, x : A | C `M : B. By the
inductive hypothesis (premise 2), we have that J Γ K, x : JA K, ch : ChanRef(JC K) ` JM K ch :
JB K.

By two applications of Abs, we have J Γ K ` λx.λch.JM K ch : JA K→ ChanRef(JC K)→
JB K as required.
Case Γ ` () : 1 Immediate.
Case Γ ` (V,W ) : (A×B)
From the assumption that Γ ` (V,W ) : (A,B) we have that Γ ` V : A and Γ `W : B. By the
inductive hypothesis (premise 1) and Pair, we can show J Γ K ` (JV K, JW K) : (JA K× JB K)
as required.
Premise 2
Case Γ | C ` V W : B
From the assumption that Γ | C ` V W : B, we have that Γ ` V : A→C B and Γ `W : B.
By the inductive hypothesis (premise 1), we have that J Γ K ` JV K : JA K→ ChanRef(JC K)→
JB K, and J Γ K ` JW K : JB K.

By extending the context Γ with a ch : ChanRef(JC K), we can show that J Γ K, ch :
ChanRef(JC K) ` JV K JW K ch : JB K as required.
Case Γ | C ` let x⇐M in N : B
From the assumption that Γ | C ` let x⇐M in N : B, we have that Γ | C `M : A and that
Γ, x : A | C ` N : B.

By the inductive hypothesis (premise 2), we have that J Γ K, ch : ChanRef(JC K) ` JM K ch :
JA K and J Γ K, x : JA K, ch : ChanRef(JC K) ` JN K ch : JB K.

By EffLet, it follows that J Γ K, ch : ChanRef(JC K) ` let x⇐ JM K ch in JN K ch : JB K
as required.
Case Γ | C ` returnV : A
From the assumption that Γ | C ` returnV : A, we have that Γ ` V : A.

By the inductive hypothesis (premise 1), we have that J Γ K ` JV K : JA K.
By weakening (as we do not use the mailbox channel), we can show that J Γ K, y :

ChanRef(JC K) ` return JV K : JA K as required.
Case Γ | C ` sendV W : 1
From the assumption that Γ | C ` sendV W : 1, we have that Γ ` V : A and Γ ` W :
ChanRef(A).

By the inductive hypothesis (premise 1) we have that J Γ K ` JV K : JA K and J Γ K ` JW K :
ChanRef(JA K).

By Give, we can show that J Γ K ` give JV K JW K : 1, and by weakening we have that
J Γ K, y : ChanRef(JC K) ` give JV K JW K : 1 as required.
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Case Γ | C ` receive : C
Given a ch : ChanRef(JC K), we can show that J Γ K, ch : ChanRef(JC K) ` ch : ChanRef(JC K)
and therefore that J Γ K, ch : ChanRef(JC K) ` take ch : JC K as required.
Case Γ | C ` spawnM : ActorRef(A)
From the assumption that Γ | C ` spawnM : ActorRef(A), we have that Γ | A `M : A.

By the inductive hypothesis (premise 2), we have that J Γ K, chMb : ChanRef(JA K) `
JM K chMb : JA K. By Fork and Return, we can show that J Γ K, chMb : ChanRef(JA K) `
fork (JM K chMb); return chMb : ChanRef(JA K).

By NewCh and EffLet, we can show that J Γ K ` let chMb⇐ newCh in fork (JM K chMb); return chMb :
ChanRef(JA K).

Finally, by weakening, we have that

J Γ K, ch : ChanRef(JC K) ` let chMb⇐ newCh in (fork JM K chMb); return chMb : ChanRef(JA K)

as required.
Case Γ | C ` self : ActorRef(C)
Given a ch : ChanRef(JC K), we can show that J Γ K, ch : ChanRef(JC K) ` return ch :
ChanRef(JC K) as required.

J

Theorem 18 If Γ; ∆ ` C, then J Γ K; J ∆ K ` JC K.

Proof. By induction on the derivation of Γ ` C.
Case Par
From the assumption that Γ; ∆ ` C1 ‖ C2, we have that ∆ splits as ∆1,∆2 such that
Γ; ∆1 ` C1 and Γ; ∆2 ` C2. By the inductive hypothesis, we have that J Γ K; J ∆1 K ` J C1 K and
J Γ K; J ∆2 K ` J C2 K. Recomposing by Par, we have that J Γ K; J ∆1 K, J ∆2 K ` J C1 K ‖ J C2 K as
required.
Case Pid
From the assumption that Γ; ∆ ` (νa)C, we have that Γ, a : ActorRef(A); ∆, a : A ` C.
By the inductive hypothesis, we have that J Γ K, a : ChanRef(JA K); J ∆ K, a : JA K ` J C K.
Recomposing by Pid, we have that J Γ K ` (νa)J C K as required.
Case Actor
From the assumption that Γ, a : ActorRef(A); a : A ` 〈a,M,

−→
V 〉, we have that Γ, a :

ActorRef(A) | A `M : 1. By Lemma 17, we have that J Γ K, a : ChanRef(JA K) ` JM K a : 1.
It follows straightforwardly that J Γ K, a : ChanRef(JA K); · ` JM K a.

We can also show that J Γ K, a : ChanRef(JA K); a : JA K ` a(J−→V K) (where J
−→
V K =

JV1 K · . . . · JVn K), by repeated applications of Lemma 17.
By Term and Par, we have that J Γ K, a : ChanRef(JA K); a : JA K ` a(J−→V K) ‖ JM K a as

required.
J

Theorem 21
If Γ ` C1 and C1 −→ C2, then there exists some D such that J C1 K −→∗ D, with D ≡ J C2 K.

Proof. By induction on the derivation of C −→ C′.
Case Spawn

Assumption J 〈a,E[spawnM ],−→V 〉 K (1)
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Definition of J− K a(J−→V K) ‖ (JE K[let c⇐ newCh in fork (JM K c); return c] a) (2)
newCh reduction a(J−→V K) ‖ (νb)((JE K[let c⇐ return b in fork (JM K c); return c] a) ‖ b(ε)) (3)
Let reduction a(J−→V K) ‖ (νb)((JE K[fork (JM K b); return b] a) ‖ b(ε)) (4)
Fork reduction a(J−→V K) ‖ (νb)((JE K[return (); return b] a) ‖ (JM K b) ‖ b(ε)) (5)
Let reduction a(J−→V K) ‖ (νb)((JE K[return b] a) ‖ (JM K b) ‖ b(ε)) (6)
≡ (νb)(a(J−→V K) ‖ (JE K[return b] a) ‖ b(ε) ‖ (JM K b)) (7)
= J (νb)(〈a,E[return b],−→V 〉 ‖ 〈b,M, ε〉) K (8)

Case Self

Assumption J 〈a,E[self],−→V 〉 K (1)
Definition of J− K a((J−→V K)) ‖ (JE K[return a] a) (2)
= J 〈a,E[return a],−→V 〉 K

Case Send

Assumption J 〈a,E[sendV ′ b],−→V 〉 ‖ 〈b,M,
−→
W 〉 K (1)

Definition of J− K a(J−→V K) ‖ (JE K[give JV ′ K b] a) ‖ b(J−→W K) ‖ (JM K b) (2)
Give reduction a(J−→V K) ‖ (JE K[return ()] a) ‖ b(J−→W K · JV ′ K) ‖ (JM K b) (3)
= J 〈a,E[return ()],−→V 〉 ‖ 〈b,M,

−→
W · V ′〉 K (4)

Case Receive

Assumption J 〈a,E[receive],W · −→V 〉 K (1)
Definition of J− K a(JW K · J

−→
V K) ‖ (JE K[take a] a) (2)

Take reduction a(J−→V K) ‖ (JE K[return JW K] a) (3)
= J 〈a,E[returnW ],−→V 〉 K (4)

Lift is immediate from the inductive hypothesis, and LiftV is immediate from Lemma 19.
J
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B.4 Translation: λch into λact

Lemma 23

1. If {B} Γ ` V : A, then L Γ M ` LV M : LA M.
2. If {B} Γ `M : A, then L Γ M | LB M ` LM M : LA M.

Proof. By simultaneous induction on the derivations of {B} Γ ` V : A and {B} Γ `M : A.
Premise 1

Case Var
From the assumption that {B} Γ ` α : A, we know that α : A ∈ Γ. By the definition of L Γ M,
we have that α : LA M ∈ L Γ M. Since Lα M = α, it follows that L Γ M ` α : LA M as required.
Case Abs
From the assumption that {C} Γ ` λx.M : A→ B, we have that {C} Γ, x : A `M : B. By
the inductive hypothesis (Premise 2), we have that L Γ M, x : LA M | LC M ` LM M : LA M. By
Abs, we can show that L Γ M | LC M ` λx.LM M : LA M→LC M LB M as required.
Case Rec Similar to Abs.
Case Unit Immediate.
Case Pair
From the assumption that {C} Γ ` (V,W ) : A×B, we have that {C} Γ ` V : A and that
{C} Γ `W : B.

By the inductive hypothesis (premise 1), we have that L Γ M ` LV M : LA M and that
L Γ M ` LW M : LB M.

It follows by Pair that L Γ M ` (LV M, LW M) : (LA M× LB M) as required.
Cases Inl, Inr Similar to Pair.
Case Roll Immediate.
Premise 2

Case App
From the assumption that {C} Γ ` V W : B, we have that {C} Γ ` V : A→ B and {C} Γ `
W : A. By the inductive hypothesis (premise 1), we have that L Γ M ` LV M : LA M→LC M LB M
and that L Γ M ` LW M : LA M.

By App, it follows that L Γ M | LC M ` LV M LW M : LB M as required.
Case Return
From the assumption that {C} Γ ` returnV : A, we have that {C} Γ ` V : A. By the
inductive hypothesis we have that L Γ M ` LV M : LA M and thus by Return we can show that
L Γ M | LC M ` return LV M : LA M as required.

Case EffLet
From the assumption that {C} Γ ` let x⇐M in N : B, we have that {C} Γ `M : A and
{C} Γ, x : A ` N : B.

By the inductive hypothesis (premise 2), we have that L Γ M | LC M ` LM M : LA M and
L Γ M, x : LA M | LC M ` LN M : LB M. Thus by EffLet it follows that L Γ M | LC M ` let x ⇐
LM M in LN M : LB M.
Case LetPair Similar to EffLet.
Case Case
From the assumption that {C} Γ ` case V {inlx 7→ M ; inr y 7→ N} : B, we have that
{C} Γ ` V : A+A′, that {C} Γ, x : A `M : B, and that {C} Γ, y : A′ ` N : B.



XX:38 REFERENCES

By the inductive hypothesis (premise 1) we have that L Γ M ` LV M : LA M + LA′ M, and by
premise 2 we have that L Γ M, x : LA M | LC M ` LM M : LB M and L Γ M, y : LA′ M | LC M ` LM M :
LB M.

By Case, it follows that L Γ M | LC M ` case LV M {inlx 7→ LM M; inr y 7→ LN M} : LB M.
Case Unroll Immediate.
Case Fork
From the assumption that {A} Γ ` forkM : 1, we have that {A} Γ ` M : 1. By the
inductive hypothesis, we have that L Γ M | LA M ` LM M : 1.

We can show that L Γ M | LA M ` spawn LM M : ActorRef(1) and also show that L Γ M, x :
ActorRef(1) ` return () : 1.

Thus by EffLet, it follows that L Γ M | LA M ` let x ⇐ spawn LM M in return () : 1 as
required.
Case Give
From the assumption that {A} Γ ` giveV W : 1, we have that {A} Γ ` V : A and
{A} Γ ` W : Chan. By the inductive hypothesis, we have that L Γ M ` LV M : LA M and
L Γ M ` LW M : ActorRef(LA M + ActorRef(LA M)). We can show that L Γ M ` inl LV M : LA M +
ActorRef(LA M), and thus it follows that L Γ M | LA M ` send inlV LW M : 1 as required.
Case Take
From the assumption that {A} Γ ` takeV : A, we have that {A} Γ ` V : Chan.

By the inductive hypothesis (premise 1), we have that L Γ M ` LV M : ActorRef(LA M +
ActorRef(LA M)).

We can show that:

L Γ M | LA M ` self : ActorRef(LA M)
L Γ M | LA M ` inr self : LA M + ActorRef(LA M)
L Γ M, selfPid : ActorRef(LA M) | LA M ` send inr selfPid LV M : 1
L Γ M, selfPid : ActorRef(LA M), z : 1 | LA M ` receive : LA M

Thus by two applications of EffLet (noting that we desugar M ;N into let z ⇐M in N ,
where z is fresh), we arrive at:

L Γ M | LA M ` let selfPid⇐ self in send (inr selfPid) LV M; receive : LA M

as required.
Case NewCh
We have that {A} Γ; ∆ ` newCh : Chan.

Our goal is to show that L Γ M | LA M ` spawn body ([ ], [ ]) : ActorRef(LA M+ActorRef(LA M)).
To do so amounts to showing that L Γ M | LA M + ActorRef(LA M) ` body ([ ], [ ]) : 1.

We sketch the proof as follows. Firstly, by the typing of receive, recvVal must have type
LA M + ActorRef(LA M). By inspection of both case branches and LetPair, we have that state
must have type List(LA M)× List(ActorRef(LA M)).

We expect drain to have type

List(LA M)× List(ActorRef(LA M))→LA M List(LA M)× List(ActorRef(LA M))

since we use the returned value as a recursive call to g, which must have the same type of
state. Inspecting the case split in drain, we have that the empty list case for values returns
the input state, which of course has the same type. The same can be said for the empty list
case of the readers case split.
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In the case where both the values and readers lists are non-empty, we have that v has
type LA M and pid has type ActorRef(LA M). Additionally, we have that vs has type List(LA M)
and pids has type List(ActorRef(LA M)). We can show via send that send v pid has type 1.
After desugaring M ;N into an EffLet, we can show that a recursive call to f is well-typed.

J

Theorem 24 If {A} Γ; ∆ ` C with Γ � ∆, then L Γ M; L ∆ M ` L C M.

Proof. By induction on the derivation of {A} Γ; ∆ ` C.
Case Par
From the assumption that {A} Γ; ∆ ` C1 ‖ C2, we have that ∆ splits as ∆1,∆2 such that
{A} Γ; ∆1 ` C1 and {A} Γ; ∆2 ` C2.

By the inductive hypothesis, we have that L Γ M; L ∆1 M ` L C1 M and L Γ M; L ∆2 M ` L C2 M. By
the definition of L− M on linear configuration environments, it follows that L ∆1 M, L ∆2 M = L ∆ M.
Consequently, by Par, we can show that L Γ M; L ∆ M ` LC M1 ‖ LC M2 as required.
Case Chan
From the assumption that {A} Γ; ∆ ` (νa)C, we have that {A} Γ, a : ChanRef(A); ∆, a : A `
C. By the inductive hypothesis, we have that L Γ M, a : ActorRef(LA M+ActorRef(LA M)); L ∆ M, a :
LA M + ActorRef(LA M) ` LC M.

By Pid, it follows that L Γ M; L ∆ M ` (νa)L C M as required.
Case Term
From the assumption that {A} Γ; · `M , we have that {A} Γ `M : 1.

By Lemma 23, we have that L Γ M | LA M ` LM M : 1. By weakening, we can show that
L Γ M, a : ActorRef(LA M) | LA M ` LM M : 1.

It follows that, by Actor, we can construct a configuration of the form L Γ M, a :
ActorRef(LA M); a : LA M ` 〈a, LM M, ε〉, and by Pid, we arrive at

L Γ M; · ` (νa)(〈a, LM M, ε〉)

as required.
Case Buf
We assume that {A} Γ; a : A ` a(−→V ), and since Γ � ∆, we have that we can write
Γ = Γ′, a : ChanRef(A).

From the assumption that {A} Γ′, a : ChanRef(A); a : A ` a(−→V ), we have that {A} Γ′, a :
ChanRef(A) ` Vi : A for each Vi ∈

−→
V .

By repeated application of Lemma 23, we have that {A} L Γ M, a : ActorRef(LA M +
ActorRef(LA M)) ` LVi M : LA M for each Vi ∈

−→
V , and by ListCons and EmptyList we can

construct a list LV0 M :: . . . :: LVn M :: [ ] with type List(LA M).
Relying on our previous analysis of the typing of body, we have that L body M has type:

(List(LA M)× List(ActorRef(LA M)))→LA M+ActorRef(LA M) 1

Thus it follows that

L Γ′ M, a : ActorRef(LA M + ActorRef(LA M)) | LA M + ActorRef(LA M) `
body (L−→V M, [ ]) : 1



XX:40 REFERENCES

By Actor, we can see that

L Γ′ M, a : ActorRef(LA M + ActorRef(LA M)); a : LA M + ActorRef(LA M) `
〈a, body (L−→V M, [ ]), ε〉

as required.
J

Theorem 27
If {A} Γ; ∆ ` C1, and C1 −→ C2, then there exists some D such that L C1 M −→∗ D with
D ≡ L C2 M.

Proof.
By induction on the derivation of Γ; ∆ ` C1.
Case Give

Assumption E[giveW a] ‖ a(−→V )
Definition of L− M (νb)(〈b, LE M[send (inl LW M) a], ε〉) ‖ 〈a, body ([L−→V M], [ ]), ε〉

≡ (νb)(〈b, LE M[send (inl LW M) a], ε〉 ‖ 〈a, body ([L−→V M], [ ]), ε〉)
−→ (Send) (νb)(〈b, LE M[return ()], ε〉 ‖ 〈a, body ([L−→V M], [ ]), inl LW M〉)

Now, let G[−] = (νb)〈b, LE M[return ()], ε〉 ‖ [−]).
We now have

G[〈a, body ([L−→V M], [ ]), (inl LW M)〉]

which we can expand to

G[〈a, (rec g(state) .
let recvV al⇐ receive in
let (vals, readers) = state in

case recvVal {
inl v 7→ let newVals⇐ vals++ [v] in

let state′ ⇐ drain (newVals, readers) in
body (state′)

inr pid 7→ let newReaders⇐ readers++ [pid] in
let state′ ⇐ drain (vals,newReaders) in
body (state’)}) (L−→V M, [ ])

, inl LW M〉]

Applying the arguments to the recursive function f ; performing the receive, and the let
and case reductions, we have:

G[〈a, let newVals⇐ L
−→
V M ++ [LW M] in

let state′ ⇐ drain (newVals, [ ]) in
body (state′)

, ε〉]
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Next, we reduce the append operation, and note that since we pass a state without
pending readers into drain, that the argument is returned unchanged:

G[〈a, let state′ ⇐ return (L−→V M :: LW M :: [ ]) in
body state′

, ε〉]

Next, we apply the let-reduction and expand the evaluation context:

(νb)(〈b, LE M[return ()], ε〉 ‖ 〈a, body (L−→V M :: LW M :: [ ]), ε〉)

which is structurally congruent to

(νb)(〈b, LE M[return ()], ε〉) ‖ 〈a, body (L−→V M :: LW M :: [ ]), ε〉

which is equal to

LE[return ()] ‖ a(L−→V ·W M) M

as required.
Case Take

Assumption E[take a] ‖ a(W · −→V )
Definition of L− M (νb)(〈b, LE M[ let selfPid⇐ self in

send (inr selfPid) a;
receive]

, ε〉) ‖ 〈b, body (LW M :: L
−→
V M, [ ]), ε〉

≡ (νb)(〈b, LE M[ let selfPid⇐ self in
send (inr selfPid) a;
receive]

, ε〉 ‖ 〈b, body (LW M :: L
−→
V M, [ ]), ε〉)

−→ (Self) (νb)(〈b, LE M[ let selfPid⇐ return b in
send (inr selfPid) a;
receive]

, ε〉 ‖ 〈b, body (LW M :: L
−→
V M, [ ]), ε〉)

−→M (Let) (νb)(〈b, LE M[ send (inr b) a;
receive]

, ε〉 ‖ 〈b, body (LW M :: L
−→
V M, [ ]), ε〉)

−→ (Send) (νb)(〈b, LE M[return (); receive], ε〉 ‖ 〈b, body (LW M :: L
−→
V M, [ ]), (inr b)〉)

−→M (Let) (νb)(〈b, LE M[receive], ε〉 ‖ 〈b, body (LW M :: L
−→
V M, [ ]), (inr b)〉)

Now, let G[−] = (νb)(〈b, LE M[receive], ε〉 ‖ [−]).
Expanding, we begin with:
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G[〈a, (rec g(state) .
let recvV al⇐ receive in
let (vals, readers) = state in

case recvVal {
inl v 7→ let newVals⇐ vals++ [v] in

let state′ ⇐ drain (newVals, readers) in
g (state′)

inr pid 7→ let newReaders⇐ readers++ [pid] in
let state′ ⇐ drain (vals,newReaders) in
g (state’)}) (LW M :: L

−→
V M, [ ])

, (inr b)〉]

Reducing the recursive function, receiving from the mailbox, splitting the pair, and then
taking the second branch on the case statement, we have:

G[〈a, let newReaders⇐ [ ] ++ [b] in
let state′ ⇐ drain (vals,newReaders) in
body state′

, ε〉]

Reducing the list append operation, expanding drain, and re-expanding G, we have:

(νb)(〈b, E[receive], ε〉 ‖ 〈a, let state′ ⇐ (rec f(x).
let (vals, readers) = x in
case vals {

[ ] 7→ return (vals, readers)
v :: vs 7→

case readers {
[ ] 7→ return (vals, readers)
pid :: pids 7→ send v pid;

f (vs, pids)}}) (LW M :: L
−→
V M, [b]) in

body state′

, ε〉

Next, we reduce the recursive function and the case statements:

(νb)(〈b, E[receive], ε〉 ‖ 〈a, let state′ ⇐ send LW M b;
drain (L−→V M, [ ]))

body state′

, ε〉

We next perform the send operation, and note that the recursive call to drain will return
the argument unchanged, since (L−→V M, [ ]) has no pending requests.

Thus we have:

(νb)(〈b, E[receive], LW M〉 ‖ 〈a, body ((L−→V M, [ ])), ε〉

Finally, we perform the receive and apply a structural congruence to arrive at

(νb)(〈b, E[LW M], ε〉) ‖ 〈a, body ((L−→V M, [ ])), ε〉
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which is equal to

LE[returnW ] ‖ a(−→V ) M

as required.
Case NewCh

Assumption E[newCh]
Definition of L− M (νa)(〈a, LE M[spawn (body ([ ], [ ]))], ε〉)

−→ (νa)(νb)(〈a, LE M[return b], ε〉 ‖ 〈b, body ([ ], [ ]), ε〉)
≡ (νb)(νa)(〈a, LE M[return b], ε〉) ‖ 〈b, body ([ ], [ ]), ε〉)
= L (νb)(E[return b] ‖ b(ε)) M

as required.
Case Fork

Assumption E[forkM ]
Definition of L− M (νa)(〈a, LE M[let x⇐ spawn LM M in return ()], ε〉)

−→ (νa)(νb)(〈a, LE M[let x⇐ return b in return ()], ε〉 ‖ 〈a, LM M, ε〉)
−→M (νa)(νb)(〈a, LE M[return ()], ε〉 ‖ 〈b, LM M, ε〉)
≡ (νa)(〈a, LE M[return ()], ε〉) ‖ (νb)(〈b, LM M, ε〉)
= LE[return ()] ‖M M

as required.
Case Lift Immediate by the inductive hypothesis.
Case LiftV Immediate by Lemma 25.

J
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