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Abstract. Channel- and actor-based programming languages are both
used in practice, but the two are often confused. Languages such as Go
provide anonymous processes which communicate using typed buffers—
known as channels—while languages such as Erlang provide addressable
processes each with a single incoming message queue—known as actors.
The lack of a common representation makes it difficult to reason about
the translations that exist in the folklore. We define a calculus λch for
typed asynchronous channels, and a calculus λact for typed actors. We
show translations from λact into λch and λch into λact and prove that
both translations are type- and semantics-preserving.

1 Introduction

When comparing channels (as used by Go) and actors (as used by Erlang), one
runs into an immediate mixing of metaphors. The words themselves do not refer
to comparable entities!

In languages such as Go, anonymous processes pass messages via named chan-
nels, whereas in languages such as Erlang, named processes accept messages from
an associated mailbox. A channel is a buffer, whereas an actor is a process. We
should really be comparing named processes (actors) with anonymous processes,
and buffers tied to a particular process (mailboxes) with buffers that can link any
process to any process (channels). Nonetheless, we will stick with the popular
names, even if it is as inapposite as comparing TV channels with TV actors.

Figure 1 compares channels with actors. On the left, three anonymous pro-
cesses communicate via channels named a, b, c. On the right, three processes
namedA,B,C send messages to each others’ associated mailboxes. A common mis-
understanding is that channels are synchronous but actors are asynchronous [32],
however while asynchrony is required by actor systems, channels may be either
synchronous or asynchronous; to ease comparison, we consider asynchronous
channels. A more significant difference is that each actor has a single buffer, its
mailbox, which can be read only by that actor, whereas channels are free-floating
buffers that can be read by any process with a reference to the channel.

Channel-based languages such as Go enjoy a firm basis in process calculi such
as the π-calculus [31]. It is easy to type channels, either with simple types [30] or
more complex systems such as session types [13, 20, 21]. Actor-based languages
such as Erlang are seen by many as the ”gold standard” for distributed computing
due to their support for fault tolerance through supervision hierarchies [4, 6].
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Fig. 1: Channels and Actors

Both models are popular with developers, with channel-based languages and
frameworks such as Go, Concurrent ML [37], and Hopac [22]; and actor-based
languages and frameworks such as Erlang, Elixir, and Akka.

There is often confusion over the differences between channels and actors. For
example, two questions about this topic are:

“If I wanted to port a Go library that uses Goroutines, would Scala be
a good choice because its inbox/akka framework is similar in nature to
coroutines?” [24], and

“I don’t know anything about [the] actor pattern however I do know gor-
outines and channels in Go. How are [the] two related to each other?” [23]

The success of actor-based languages is largely due to their support for
supervision hierarchies : processes are arranged in trees, where supervisor processes
restart child processes should they fail. Projects such as the Go Actor Model
framework (GAM) [15] emulate actor-style programming in a channel-based
language in an attempt to gain some of the benefits. Hopac [22] is a channel-based
library for F#, based on Concurrent ML [37]. The documentation [1] contains
a comparison with actors, including an implementation of a simple actor-based
communication model using Hopac-style channels, as well as an implementation of
Hopac-style channels using an actor-based communication model. By comparing
the two, this paper provides a formal model for the implementation technique
used by GAM, and a formal model for an asynchronous variant of the translation
from channels into actors as specified by the Hopac documentation.

Putting Practice into Theory. We seek to characterise the core features of
channel- and actor-based models of concurrent programming, and distil them
into minimal concurrent λ-calculi. In doing so, we:
– Obtain concise and expressive core calculi, which can be used as a basis to

explore more advanced features such as behavioural typing, and;
– Make the existing folklore about the two models explicit, gaining formal

guarantees about the correctness of translations. In turn, we give a formal
grounding to implementations based on the translations, such as GAM.
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Our common framework is that of a concurrent λ-calculus: that is, a λ-calculus
with a standard term language equipped with primitives for communication
and concurrency, as well as a language of configurations to model concurrent
behaviour. We choose a λ-calculus rather than a process calculus as our starting
point because we are ultimately interested in actual programming languages, and
in particular functional programming languages.

While actor-based languages must be asynchronous by design, channels may
be either synchronous (requiring a rendezvous between sender and receiver) or
asynchronous (where sending always happens immediately). We base λch on
asynchronous channels since actors are naturally asynchronous, and since it is
possible to emulate asynchronous channels using synchronous channels [37]. By
working in the asynchronous setting, we can concentrate on the more fundamental
differences between the two models.

Outline and Contributions. In §2 we present side-by-side implementations
of a concurrent stack using channels and using actors. The main contributions of
this paper are as follows.

– We define a calculus λch with typed asynchronous channels (§3), and a
calculus λact with type-parameterised actors (§4), by extending the simply-
typed λ-calculus with communication primitives specialised to each model.
We give a type system and operational semantics for each calculus, and
precisely characterise the notion of progress that each calculus enjoys.

– We define a simple translation from λact into λch, prove that the translation
is type-preserving, and prove that λch can simulate λact (§5).

– We define a more involved translation from λch into λact, again proving that
the translation is type-preserving, and that λact can simulate λch (§6).

– We consider an extension of λact with the ability to make synchronous calls;
an extension of λch with input-guarded nondeterministic choice; and discuss
how λact could be extended with behavioural types (§7).

In §8 we discuss related work and §9 concludes.

2 Channels and Actors Side-by-Side

Let us consider the example of a concurrent stack. A concurrent stack carrying
values of type A can receive a command to push a value onto the top of the
stack, or to pop a value from the stack and return it to the process making the
request. Assuming a standard encoding of algebraic datatypes using binary sums,
we define a type Operation(A) = Push(A) | Pop(B) (where B = ChanRef(A) for
channels, and ActorRef(A) for actors) to describe operations on the stack, and
Option(A) = Some(A) | None to handle the possibility of popping from an empty
stack.

Figure 2 shows the stack implemented using channels (Figure 2a) and using
actors (Figure 2b). Each implementation uses a common core language based on
the simply-typed λ-calculus extended with recursion, lists, and sums.

At first glance, the two stack implementations seem remarkably similar. Each:
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chanStack(ch) ,
rec loop(st).

let cmd⇐ take ch in
case cmd {

Push(v) 7→ loop(v :: st)
Pop(resCh) 7→

case st {
[ ] 7→ give (None) resCh;

loop [ ]
x :: xs 7→ give (Some(x)) resCh;

loop xs }
}

chanStackClient(stackCh) ,
give (Push(5)) stackCh;
let resCh⇐ newCh in
give (Pop(resCh)) stackCh;
take resCh

chainMain ,
let stackCh⇐ newCh in
fork (chanStack(stackCh) [ ]);
chanStackClient(stackCh)

(a) Channel-Based Stack

actorStack ,
rec loop(st).

let cmd⇐ receive in
case cmd {

Push(v) 7→ loop(v :: st)
Pop(resPid) 7→

case st {
[ ] 7→ send (None) resPid;

loop [ ]
x :: xs 7→ send (Some(x)) resPid;

loop xs }
}

actorStackClient(stackPid) ,
send (Push(5)) stackPid;
let selfPid⇐ self in
send (Pop(selfPid)) stackPid;
receive

actorMain ,
let stackP id⇐ spawn (actorStack [ ]) in
actorStackClient(stackPid)

(b) Actor-Based Stack

Fig. 2: Concurrent Stacks using Channels and Actors

1. Waits for a command
2. Case splits on the command, and either:

– Pushes a value onto the top of the stack, or;
– Takes the value from the head of the stack and returns it in a response

message
3. Loops with an updated state.

The main difference is that chanStack is parameterised over a channel ch,
and retrieves a value from the channel using take ch. Conversely, actorStack
retrieves a value from its mailbox using the nullary primitive receive.

Let us now consider functions which interact with the stacks. The chanStack-

Client function sends commands over the stackCh channel, and begins by
pushing 5 onto the stack. Next, the function creates a channel resCh to be used
to receive the result and sends this in a request, before retrieving the result from
the result channel using take. In contrast, actorStackClient performs a similar
set of steps, but sends its process ID (retrieved using self) in the request instead
of creating a new channel; the result is then retrieved from the mailbox using
receive.

Type Pollution. The differences become more prominent when we consider
clients which interact with multiple stacks containing different types of values, as
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chanClient2(intStackCh,

stringStackCh) ,
let intResCh⇐ newCh in
let strResCh⇐ newCh in
give (Pop(intResCh)) intStackCh;
let res1⇐ take intResCh in
give (Pop(strResCh)) stringStackCh;
let res2⇐ take strResCh in
(res1, res2)

actorClient2(intStackPid,

stringStackPid) ,
let selfPid⇐ self in
send (Pop(selfPid)) intStackPid;
let res1⇐ receive in
send (Pop(selfPid)) stringStackPid;
let res2⇐ receive in
(res1, res2)

Fig. 3: Clients Interacting with Multiple Stacks

shown in Figure 3. Here, chanStackClient2 pushes 5 onto the integer stack as
before. Next, the client creates new result channels for integers and strings, sends
requests for the results, and creates a pair of type (Option(Int)×Option(String)).

The actorStackClient2 function attempts to do something similar, but can-
not create separate result channels. Consequently, the actor must be able to handle
messages either of type Option(Int) or type Option(String), meaning that the final
pair has type (Option(Int) + Option(String))× (Option(Int) + Option(String)).

Additionally, it is necessary to modify actorStack to use the correct injection
into the actor type when sending the result; for example an integer stack would
have to send a value inl (Some(5)) instead of simply Some(5). The requirement
of knowing all message types received by another actor is known as the type
pollution problem; some implementations sidestep this through the use of subtyp-
ing [17], and support synchronisation through either selectively receiving from a
mailbox [5], or through synchronisation abstractions such as futures [9].

3 λch: A Concurrent λ-calculus for Channels

In this section we introduce λch, a concurrent λ-calculus extended with asyn-
chronous channels.

3.1 Syntax and Typing of Terms

Figure 4 gives the syntax and typing rules of λch, a lambda calculus based on fine-
grain call-by-value [27]: terms are partitioned into values and computations. Fine-
grain call-by-value is convenient because it makes evaluation-order completely
explicit and (unlike A-normal form, for instance) is closed under reduction. Types
consist of the unit type 1, function types A→ B, and channel reference types
ChanRef(A) which can be used to communicate along a channel of type A. We
let α range over variables x and run time names a. We write letx = V inM for
(λx.M)V and M ;N for let x⇐M in N , where x is fresh.

Communication and Concurrency for Channels. The giveV W operation
sends value V along channel W , while takeV retrieves a value from a channel V .
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Syntax

Types A,B ::= 1 | A→ B | ChanRef(A)
Variables and names α ::= x | a
Values V,W ::= α | λx.M | ()
Computations L,M,N ::= V W

| let x⇐M in N | returnV
| forkM | giveV W | takeV | newCh

Value typing rules Γ ` V : A

Var

α : A ∈ Γ
Γ ` α : A

Abs

Γ, x : A `M : B

Γ ` λx.M : A→ B

Unit

Γ ` () : 1

Computation typing rules Γ `M : A

App

Γ ` V : A→ B Γ `W : A

Γ ` V W : B

EffLet

Γ `M : A Γ, x : A ` N : B

Γ ` let x⇐M in N : B

Return

Γ ` V : A

Γ ` returnV : A

Give

Γ ` V : A Γ `W : ChanRef(A)

Γ ` giveV W : 1

Take

Γ ` V : ChanRef(A)

Γ ` takeV : A

Fork

Γ `M : 1

Γ ` forkM : 1

NewCh

Γ ` newCh : ChanRef(A)

Fig. 4: Syntax and Typing Rules for λch Terms and Values

Assuming an extension of the language with integers and arithmetic operators,
we can defined a function neg(c) which receives a number n along channel c and
replies with the negation of n as follows:

neg(c) , let n⇐ take c in
let negN⇐ (−n) in givenegN c

The operation newCh creates a new channel. The operation forkM spawns a
new process that performs computation M . Firstly, note that fork returns the
unit value; the spawned process is anonymous and therefore it is not possible
to interact with it directly. Secondly, note that channel creation is completely
decoupled from process creation, meaning that a process can have access to
multiple channels.

3.2 Operational Semantics

Configurations. The concurrent behaviour of λch is given by a nondeterministic
reduction relation on configurations, ranged over by C and D (Figure 5). Configu-



Mixing Metaphors 7

Syntax of evaluation contexts and configurations

Evaluation contexts E ::= [ ] | let x⇐ E inM

Configurations C,D ::= C ‖ D | (νa)C | a(
−→
V ) |M

Configuration contexts G ::= [ ] | G ‖ C | (νa)G

Typing rules for configurations Γ ;∆ ` C

Par

Γ ;∆1 ` C1 Γ ;∆2 ` C2
Γ ;∆1,∆2 ` C1 ‖ C2

Chan

Γ, a : ChanRef(A);∆, a:A ` C
Γ ;∆ ` (νa)C

Buf

(Γ ` Vi : A)i

Γ ; a : A ` a(
−→
V )

Term

Γ `M : A

Γ ; · `M

Fig. 5: λch Configurations and Evaluation Contexts

rations consist of parallel composition (C ‖ D), restrictions ((νa)C), computations

(M), and buffers (a(
−→
V )).

Evaluation Contexts. Reduction is defined in terms of evaluation contexts E,
which are simplified due to fine-grain call-by-value. We also define configuration
contexts, allowing reduction modulo parallel composition and name restriction.

Reduction. Figure 6 shows the reduction rules for λch. Reduction is defined
as a deterministic reduction on terms (−→M) and a nondeterministic reduction
relation on configurations (−→). Reduction on configurations is defined modulo
structural congruence rules which capture commutativity and associativity of
parallel composition, scope extrusion, and that structural congruence extends to
configuration contexts.

Typing of Configurations. Figure 5 includes typing rules on configurations,
which ensure that buffers are well-scoped and contain values of the correct type.
The judgement Γ ;∆ ` C states that under environments Γ and ∆, C is well-typed;
Γ is a typing environment for terms, whereas ∆ is a linear typing environment for
configurations, mapping names a to channel types A. Note that Chan extends
both Γ and ∆, adding a reference into Γ and the capability to type a buffer into
∆. Par states that two configurations are typeable if they are each typeable
under disjoint linear environments; a term is typeable as a process if it has type

1 under an empty linear environment and a buffer a(
−→
V ) is typeable under a

singleton linear environment a : A if all Vi ∈
−→
V have type A. Linearity ensures

that under a name restriction (νa)C a configuration C will contain exactly one
buffer with name a.

Relation Notation. Given a relation R, we write R+ for its transitive closure,
and R∗ for its reflexive, transitive closure.
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Reduction on terms

(λx.M)V −→M M{V/x}
let x⇐ returnV inM −→M M{V/x}

E[M1] −→M E[M2] (if M1 −→M M2)

Structural congruence

C ‖ D ≡ D ‖ C C ‖ (D ‖ E) ≡ (C ‖ D) ‖ E C ‖ (νa)D ≡ (νa)(C ‖ D) if a 6∈ fv(C)

G[C] ≡ G[D] if C ≡ D

Reduction on configurations

Give E[giveW a] ‖ a(
−→
V ) −→ E[return ()] ‖ a(

−→
V ·W )

Take E[take a] ‖ a(W ·
−→
V ) −→ E[returnW ] ‖ a(

−→
V )

Fork E[forkM ] −→ E[return ()] ‖M
NewCh E[newCh] −→ (νa)(E[return a] ‖ a(ε)) (a is a fresh name)
LiftM G[M1] −→ G[M2] (if M1 −→M M2)
Lift G[C1] −→ G[C2] (if C1 −→ C2)

Fig. 6: Reduction on λch Terms and Configurations

Properties of the Term Language. Reduction on terms is standard. It
preserves typing and purely-functional terms enjoy progress. We omit proofs in
the body of the paper which are mainly straightforward inductions; selected full
proofs can be found in Appendix B.

Lemma 1 (Preservation (λch terms)).
If Γ `M : A and M −→M M ′, then Γ `M ′ : A.

Lemma 2 (Progress (λch terms)).
Assume Γ is either empty or only contains entries of the form ai : ChanRef(Ai).
If Γ `M : A, then either:

1. M = returnV for some value V
2. M can be written E[M ′], where M ′ is a communication or concurrency

primitive (i.e. giveV W, takeV, forkM , or newCh)
3. There exists some M ′ such that M −→M M ′

Reduction on Configurations. Concurrency and communication is entirely
captured by reduction on configurations. The Give rule reduces giveW a in

parallel with a buffer a(
−→
V ) by adding the value W onto the end of the buffer.

The Take rule reduces take a in parallel with a non-empty buffer by returning
the first value in the buffer. The Fork rule reduces forkM by spawning a new
thread M in parallel with the parent process. The NewCh rule reduces newCh
by creating an empty buffer and returning a fresh name for that buffer.

We now state some properties of λch. Firstly, typeability of configurations is
preserved by structural congruence.
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Lemma 3. If Γ ;∆ ` C and C ≡ D for some configuration D, then Γ ;∆ ` D.

Next, we can show that reduction preserves the typeability of configurations.

Theorem 4 (Preservation (λch configurations)).
If Γ ;∆ ` C1 and C1 −→ C2 then Γ ;∆ ` C2.

3.3 Progress and Canonical Forms

While it is possible to prove deadlock-freedom in systems with more discerning
type systems based on linear logic (such as those of Wadler [39], and Lindley and
Morris [28]) or those using channel priorities (for example, the calculus of Padovani
and Novara [35]), more liberal calculi such as λch and λact allow deadlocked
configurations. We thus define a form of progress which does not preclude
deadlock. To help with proving a progress result, it is useful to consider the
notion of a canonical form in order to allow us to reason about the configuration
as a whole.

Definition 5 (Canonical form (λch)).
A configuration C is in canonical form if C can be written

(νa1) . . . (νan)(M1 ‖ . . . ‖Mm ‖ a1(
−→
V1) ‖ . . . ‖ an(

−→
Vn)).

The following lemma states that well-typed open configurations can be written
in a form similar to canonical form, but without bindings for names already in
the environment. An immediate corollary is that well-typed closed configurations
can always be written in a canonical form.

Lemma 6. If Γ ;∆ ` C with ∆ = a1 : A1, . . . , ak : Ak, then there exists a C′ ≡ C
such that C′ = (νak+1) . . . (νan)(M1 ‖ . . . ‖Mm ‖ a1(

−→
V1) ‖ . . . ‖ an(

−→
Vn)).

Corollary 7. If ·; · ` C, then there exists some C′ ≡ C such that C′ is in canonical
form.

Armed with a canonical form, we can now capture precisely the intuition that
the only situation in which a well-typed closed configuration C cannot reduce
further is if all threads are either blocked or fully evaluated.

Theorem 8 (Weak progress (λch configurations)).

Let ·; · ` C, C 6−→, and let C′ = (νa1) . . . (νan)(M1 ‖ . . . ‖ Mm ‖ a1(
−→
V1) ‖

. . . an(
−→
Vn)) be a canonical form of C. Then every leaf of C is either:

1. A fully-reduced term of the form returnV ;

2. A buffer ai(
−→
Vi), or;

3. A term of the form E[take ai], where
−→
Vi = ε.
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4 λact: A Concurrent λ-calculus for Actors

In this section, we introduce λact, a core language providing actor-like concurrency.

Actors were originally introduced by Hewitt et al. [18] as a formalism for
artificial intelligence, where an actor is an entity endowed with an unforgeable
address known as a process ID, and a single incoming message queue known
as a mailbox. There are many variations of actor-based languages (the work of
De Koster et al. [10] provides a detailed taxonomy), but the main common feature
is that each provide lightweight processes which are associated with a mailbox.
We follow the model of Erlang by providing an explicit receive operation to
allow an actor to retrieve a message from its mailbox, as opposed to making an
event loop implicit.

While it is common to parameterise channels over types, parameterising
actors over types is more challenging, in particular due to type pollution. Type-
parameterised actors were introduced by He [16] and He et al. [17], and more
recently implemented in libraries such as Akka Typed [3] and Typed Actors [38].

A key difference between λch and λact is that receive (unlike take) is a nullary
operation to receive a value from the actor’s mailbox. Consequently, it is necessary
to use a simple type-and-effect system (as inspired by Gifford and Lucassen [14])
to type terms with respect to the mailbox type of the enclosing actor.

4.1 Syntax and Typing of Terms

Figure 7 shows the syntax and typing rules for λact. As with λch, α ranges
over variables and names. ActorRef(A) is an actor reference or process ID, and
allows messages to be sent to an actor. As for communication and concurrency
primitives, spawnM spawns a new actor to evaluate a computation M ; sendV W
sends a value V to an actor referred to by reference W ; receive receives a value
from the actor’s mailbox; and self returns an actor’s own process ID.

Function arrows A →C B are annotated with a type C which denotes the
type of the mailbox of the actor evaluating the term. As an example, consider a
function which multiplies a received number by a given value:

recvAndMult , λn.let x⇐ receive in (x× n)

Such a function would have type Int→Int Int, and as an example would not be
typeable for an actor that could only receive strings. Again, we work in the setting
of fine-grain call-by-value; the distinction between values and computations is
helpful when reasoning about the metatheory. We have two typing judgements:
the standard judgement on values Γ ` V : A, and a judgement Γ | B ` M : A
which states that a term M has type A under typing context Γ , and can receive
values of type B. The typing of receive and self depends on the type of the actor’s
mailbox.
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Syntax

Types A,B,C ::= 1 | A→C B | ActorRef(A)
Variables and names α ::= x | a
Values V,W ::= α | λx.M | ()
Computations L,M,N ::= V W

| let x⇐M in N | returnV
| spawnM | sendV W | receive | self

Value typing rules Γ ` V : A

Var

α : A ∈ Γ
Γ ` α : A

Abs

Γ, x : A | C `M : B

Γ ` λx.M : A→C B

Unit

Γ ` () : 1

Computation typing rules Γ | B `M : A

App

Γ ` V : A→C B Γ `W : A

Γ | C ` V W : B

EffLet

Γ | C `M : A Γ, x : A | C ` N : B

Γ | C ` let x⇐M in N : B

EffReturn

Γ ` V : A

Γ | C ` returnV : A

Send

Γ ` V : A Γ `W : ActorRef(A)

Γ | C ` sendV W : 1

Recv

Γ | C ` receive : C

Spawn

Γ | A `M : 1

Γ | C ` spawnM : ActorRef(A)

Self

Γ | A ` self : ActorRef(A)

Fig. 7: λact Typing Rules

4.2 Operational Semantics

Figure 8 shows the syntax of λact evaluation contexts, as well as the syntax and
typing rules of λact configurations. Evaluation contexts for terms and configura-
tions are similar to λch. The primary difference from λch is the actor configuration

〈a,M,
−→
V 〉, which can be read as “an actor with name a evaluating term M , with

a mailbox consisting of values
−→
V ”. Whereas a term M is itself a configuration

in λch, a term in λact must be evaluated as part of an actor configuration. The
typing rules for λact configurations ensure that all values contained in an actor
mailbox are well-typed with respect to the mailbox type, and that a configuration
C under a name restriction (νa)C contains an actor with name a.

Figure 9 shows the reduction rules for λact. Again, reduction on terms preserves
typing, and the functional fragment of λact enjoys progress.

Lemma 9 (Preservation (λact terms)).
If Γ `M : A and M −→M M ′, then Γ `M ′ : A.
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Syntax of evaluation contexts and configurations

Evaluation contexts E ::= [ ] | let x⇐ E inM

Configurations C,D, E ::= C ‖ D | (νa)C | 〈a,M,
−→
V 〉

Configuration contexts G ::= [ ] | G ‖ C | (νa)G

Typing rules for configurations Γ ;∆ ` C

Par

Γ ;∆1 ` C1 Γ ;∆2 ` C2
Γ ;∆1,∆2 ` C1 ‖ C2

Pid

Γ, a : ActorRef(A);∆, a : A ` C
Γ ;∆ ` (νa)C

Actor

Γ, a : ActorRef(A) | A `M : 1 (Γ, a : ActorRef(A) ` Vi : A)i

Γ, a : ActorRef(A); a : A ` 〈a,M,
−→
V 〉

Fig. 8: λact Evaluation Contexts and Configurations

Lemma 10 (Progress (λact terms)).
Assume Γ is either empty or only contains entries of the form ai : ActorRef(Ai).

If Γ | B `M : A, then either:

1. M = returnV for some value V
2. M can be written as E[M ′], where M ′ is a communication or concurrency

primitive (i.e. spawnN , sendV W , receive, or self)
3. There exists some M ′ such that M −→M M ′

Reduction on Configurations. While λch makes use of separate constructs
to create new processes and channels, λact uses a single construct spawnM to
spawn a new actor with an empty mailbox to evaluate term M . Communication
happens directly between actors instead of through an intermediate entity: as a
result of evaluating sendV a, the value V will be appended directly to the end of
the mailbox of actor a. SendSelf allows reflexive sending; an alternative would
be to decouple mailboxes from the definition of actors, but this complicates both
the configuration typing rules and the intuition. Self returns the name of the
current process, and Receive retrieves the head value of a non-empty mailbox.

As before, typing is preserved modulo structural congruence and under re-
duction.

Lemma 11. If Γ ;∆ ` C and there exists a D such that C ≡ D, then Γ ;∆ ` D.

Theorem 12 (Preservation (λact configurations)).
If Γ ;∆ ` C1 and C1 −→ C2, then Γ ;∆ ` C2.

4.3 Progress and Canonical Forms

Again, we cannot guarantee deadlock-freedom for λact. Instead, we characterise
the exact form of progress that λact enjoys: a well-typed configuration can always
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Reduction on terms

(λx.M)V −→M M{V/x}
let x⇐ returnV inM −→M M{V/x}

E[M ] −→M E[M ′] if M −→M M ′

Structural congruence

C ‖ D ≡ D ‖ C C ‖ (D ‖ E) ≡ (C ‖ D) ‖ E C ‖ (νa)D ≡ (νa)(C ‖ D) if a 6∈ fv(C)

G[C] ≡ G[D] if C ≡ D

Reduction on configurations

Spawn 〈a,E[spawnM ],
−→
V 〉 −→ (νb)(〈a,E[return b],

−→
V 〉

‖ 〈b,M, ε〉) (b is fresh)

Send 〈a,E[send b V ′],
−→
V 〉 ‖ 〈b,M,

−→
W 〉 −→ 〈a,E[return ()],

−→
V 〉 ‖ 〈b,M,

−→
W · V ′〉

SendSelf 〈a,E[send aV ′],
−→
V 〉 −→ 〈a,E[return ()],

−→
V · V ′〉

Self 〈a,E[self],
−→
V 〉 −→ 〈a,E[return a],

−→
V 〉

Receive 〈a,E[receive],W ·
−→
V 〉 −→ 〈a,E[returnW ],

−→
V 〉

Lift G[C1] −→ G[C2] (if C1 −→ C2)

LiftM 〈a,M1,
−→
V 〉 −→ 〈a,M2,

−→
V 〉 (if M1 −→M M2)

Fig. 9: Reduction Rules and Equivalences for Terms and Configurations

reduce unless all leaves of the configuration typing judgement are actors which
have either fully evaluated their terms, or are blocked waiting for a message from
an empty mailbox. Defining a canonical form again aids us in reasoning about
progress.

Definition 13 (Canonical form (λact)). A λact configuration C is in canoni-

cal form if C can be written (νa1) . . . (νan)(〈a1,M1,
−→
V1〉 ‖ . . . ‖ 〈an,Mn,

−→
Vn〉).

Lemma 14. If Γ ;∆ ` C and ∆ = a1 : A1, . . . ak : Ak, then there exists C′ ≡ C
such that C′ = (νak+1) . . . (νan)(〈a1,M1,

−→
V1〉 ‖ . . . ‖ 〈an,Mn,

−→
Vn〉).

As before, it follows as a corollary of Lemma 14 that closed configurations can
be written in canonical form, and with canonical forms defined, we can classify
the notion of progress enjoyed by λact.

Corollary 15. If ·; · ` C, then there exists some C′ ≡ C such that C′ is in
canonical form.

Theorem 16 (Weak progress (λact configurations)).

Let ·; · ` C, C 6−→, and let C′ = (νa1) . . . (νan)(〈a1,M1,
−→
V1〉 ‖ . . . ‖ 〈an,Mn,

−→
Vn〉)

be a canonical form of C. Each actor with name ai is either of the form:

1. 〈ai, returnW,
−→
Vi〉 for some value W , or;

2. 〈a,E[receive], ε〉.
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5 From λact to λch

With both calculi in place, we are now ready to look at the translation from λact
into λch. The translation strategy is straightforward, but not previously formalised.
The key idea is to emulate a mailbox using a channel, and to pass the channel as
an argument to each function. The translation on terms is parameterised over the
variable referring to the channel, which is used to implement context-dependent
operations (i.e. receive and self).

As an example, consider recvAndDouble, which is a specialisation of the
recvAndMult function which doubles the number received from the mailbox.

recvAndDouble , let x⇐ receive in (x× 2)

A possible configuration would be an actor evaluating recvAndDouble, with some

name a and mailbox with values
−→
V , under a name restriction for a.

(νa)(〈a, recvAndDouble,
−→
V 〉)

The translation on terms takes a channel name ch as a parameter. As a result of
the translation, we have that:

J recvAndDouble K ch = let x⇐ take ch in (x× 2)

with the corresponding configuration:

(νa)(a(J
−→
V K) ‖ J recvAndDouble K a)

The values from the mailbox are translated pointwise and form the contents of
a buffer with name a. The translation of recvAndDouble is provided with the
name a which is used to emulate receive.

5.1 Translation (λact to λch)

Figure 10 shows the formal translation from λact into λch. Of particular note is
the translation on terms: J− K ch translates a λact term into an λch term using a
channel with name ch to emulate a mailbox.

An actor reference is simply represented as a channel reference in λch; we
emulate sending a message to another actor by writing to the channel emulating
the recipient’s mailbox. Key to translating λact into λch is the translation of
function arrows A →C B; the effect annotation C is replaced by a second
parameter ChanRef(C), which is used to emulate the mailbox of the actor. Values
are translated to themselves, with the exception of λ abstractions, which are
translated to take an additional parameter denoting the channel used to emulate
operations on a mailbox. Given a parameter ch, the translation function for terms
emulates receive by taking a value from ch, and emulates self by returning ch.

Although the translation is straightforwardly defined, it is a global trans-
lation [11], since all functions must be modified in order to take the channel
emulating the mailbox as an additional parameter.
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Translation on types

JActorRef(A) K = ChanRef(JA K)
J1 K = 1

JA→C B K = JA K→ ChanRef(JC K)→ JB K

Translation on values

Jx K = x J a K = a Jλx.M K = λx.λch.(JM K ch) J () K = ()

Translation on computation terms

J let x⇐M in N K ch = let x⇐ (JM K ch) in JN K ch

JV W K ch = (JV K) (JW K) ch
J returnV K ch = return JV K

J self K ch = return ch
J receive K ch = take ch

J spawnM K ch = let chMb⇐ newCh in
fork (JM K chMb);
return chMb

J sendV W K ch = give (JV K) (JW K)

Translation on configurations

J C1 ‖ C2 K = J C1 K ‖ J C2 K
J (νa)C K = (νa) J C K

J 〈a,M,
−→
V 〉 K = a(J

−→
V K) ‖ (JM K a)

Fig. 10: Translation from λact into λch

5.2 Properties of the Translation

The translation on terms and values preserves typing. We extend the translation
function pointwise to typing environments:

Jα1 : A1, . . . , αn : An K = α1 : JA1 K, . . . , αn : JAn K

Lemma 17 (J− K preserves typing (terms and values)).

1. If Γ ` V : A in λact, then JΓ K ` JV K : JA K in λch.
2. If Γ | B ` M : A in λact, then JΓ K, α : ChanRef(JB K) ` JM K α : JA K in

λch.

To state a semantics preservation result, we also define a translation on
configurations; the translations on parallel composition and name restrictions are

homomorphic. An actor configuration 〈a,M,
−→
V 〉 is translated as a buffer a(J

−→
V K),

(writing J
−→
V K = JV0 K·, . . . , ·JVn K for each Vi ∈

−→
V ), composed in parallel with

the translation of M , using a as the mailbox channel.
We can now see that the translation preserves typeability of configurations.

Theorem 18 (J− K preserves typeability (configurations)).
If Γ ;∆ ` C in λact, then JΓ K; J∆ K ` J C K in λch.
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a

b

(a) Before Translation

a

c

a

d b e

(b) After Translation

Fig. 11: Translation Strategy: λch into λact

We describe semantics preservation in terms of a simulation theorem: should
a configuration C1 reduce to a configuration C2 in λact, then there exists some
configuration D in λch such that J C1 K reduces in zero or more steps to D, with
D ≡ J C2 K. To establish the result, we begin by showing that λact term reduction
can be simulated in λch.

Lemma 19 (Simulation of λact term reduction in λch).
If Γ ` M1 : A and M1 −→M M2 in λact, then given some α, JM1 K α −→∗M
JM2 K α in λch.

Finally, we can see that the translation preserves structural congruences, and
that λch configurations can simulate reductions in λact.

Lemma 20. If Γ ;∆ ` C and C ≡ D, then J C K ≡ JD K.

Theorem 21 (Simulation of λact configurations in λch).
If Γ ;∆ ` C1 and C1 −→ C2, then there exists some D such that J C1 K −→∗ D,
with D ≡ J C2 K.

6 From λch to λact

The translation from λact into λch emulates a actor mailbox using a channel,
using it to implement operations which normally rely on the context of the
actor. Although a global translation, the translation is straightforward due to
the limited form of communication supported by mailboxes.

Translating from λch into λact is more challenging. Each channel in a system
may have a different type; each process may have access to multiple channels;
and (crucially) channels may be freely passed between processes.

6.1 Translation Strategy (λch into λact)

To translate typed actors into typed channels (shown in Figure 11), we emulate
each channel using an actor process, which is crucial in retaining the mobility of
channel endpoints.
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Syntax

Types A,B,C ::=A×B | A+B | List(A) | . . .
Values V,W ::= rec f(x) .M | (V,W ) | inlV | inrW | [ ] | V :: W | . . .
Terms L,M,N ::= let (x, y) = V inM

| case V {inl x 7→M ; inr y 7→ N}
| case V {[ ] 7→M ;x :: y 7→ N} | . . .

Additional value typing rules Γ ` V : A
Rec

Γ, x : A, f : A→ B `M : B

Γ ` rec f(x) .M : A→ B

Pair

Γ ` V : A Γ `W : B

Γ ` (V,W ) : A×B

Inl

Γ ` V : A

Γ ` inlV : A+B

Inr

Γ ` V : B

Γ ` inr V : A+B

EmptyList

Γ ` [ ] : List(A)

Cons

Γ ` V : A Γ `W : List(A)

Γ ` V :: W : List(A)

Additional term typing rules Γ `M : A

Let

Γ ` V : A×A′
Γ, x : A, y : A′ `M : B

Γ ` let (x, y) = V inM : B

ListCase

Γ ` V : List(A)
Γ `M : B Γ, x : A, y : List(A) ` N : B

Γ ` case V {[ ] 7→M ;x :: y 7→ N} : B

Case

Γ ` V : A+A′ Γ, x : A `M : B Γ, y : A′ ` N : B

Γ ` case V {inlx 7→M ; inr y 7→ N} : B

Additional term reduction rules M −→M M ′

(rec f(x) .M V ) −→M M{(rec f(x) .M)/f, V/x}
let (x, y) = (V,W ) inM −→M M{V/x,W/y}

case (inlV ) {inl x 7→M ; inr y 7→ N} −→M M{V/x}
case V :: W {[ ] 7→M ;x :: y 7→ N} −→M N{V/x,W/y}

Fig. 12: Extensions to Core Languages to Allow Translation from λch into λact

Channel types describe the typing of a communication medium between
communicating processes, where processes are unaware of the identity of other
communicating parties, and the types of messages that another party may receive.
Unfortunately, the same does not hold for actors. Consequently, we require that
before translating into actors, that every channel has the same type. Although
this may seem restrictive, it is both possible and safe to transform a λch program
with multiple channel types into a λch program with a single channel type.

As an example, suppose we have a program which contains channels carrying
values of types Int, String, and Bool. It is possible to construct a variant type
〈`1 : Int, `2 : String, `3 : Bool〉 which can be assigned to all channels in the system.
Then, supposing we wanted to send a 5 along a channel which previously had
type ChanRef(Int), we would instead send a value 〈`1 = 5〉.

Appendix A provides more details, and proves that the transformation is safe.
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drain , rec f(x).
let (vals, pids) = x in
case vals {

[ ] 7→ return (vals, pids)
v :: vs 7→

case pids {
[ ] 7→ return (vals, pids)
pid :: pids 7→ send v pid;

f (vs, pids)}
}

body , rec g(state) .
let recvVal⇐ receive in
let (vals, pids) = state in
case recvVal {

inl v 7→ let vals′ ⇐ vals++ [v] in
let state′ ⇐ drain (vals′, pids) in
g (state′)

inr pid 7→ let pids′ ⇐ pids ++ [pid] in
let state′ ⇐ drain (vals, pids′) in
g (state′) }

Fig. 13: Metalevel Definitions Required for the Translation from λch into λact

6.2 Extensions to Core Language

To emulate channels using actors, we require several more term-level language
constructs: sums, products, recursive functions, and lists. Recursive functions
are used to implement an event loop, and lists are used to maintain a buffer at
the term level in addition to the meta-level. Products are used to emulate the
state of a channel, in particular to record both a list of values in the buffer and a
list of pending requests. Sum types allow the disambiguation of the two types
of messages sent to an actor: one to queue a message (emulating give) and one
to dequeue a message and return it to the actor making the request (emulating
take). Additionally, sums can be used to encode monomorphic variant types.

Figure 12 shows the extensions required to the core term language and
reduction rules; we omit the reduction rules for case analysis on the right injection
of a sum and the empty list. The typing rules are shown for λch but can be easily
adapted for λact, and it is straightforward to verify that the extended languages
still enjoy progress and preservation.

6.3 Translation

We write λch judgements of the form {B} Γ `M : A for a term where all channels
have type B, and similarly for value and configuration typing judgements. Under
such a judgement, we can write Chan instead of ChanRef(B).

Metalevel Definitions. The majority of the translation lies within the transla-
tion of newCh, which makes use of the meta-level definitions shown in Figure 13.
The body function emulates a channel. Firstly, the actor receives a message
recvVal from its mailbox, which is either of the form inlV to store a message V ,
or inrW to request that a value is dequeued and sent to the actor with ID W .
We assume a standard implementation of the list concatenation function (++ ). If
the message is inlV , then V is appended to the tail of the list of values stored in
the channel, and the new state is passed as an argument to drain. If the message
is inrW , then the process ID W is appended to the end of the list of processes
waiting for a value. The drain function satisfies all requests that can be satisfied,
returning an updated channel state.
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Translation on types

LChan MC = ActorRef(LC MC + ActorRef(LC MC))

LA→ B MC = (LA MC)→L C M C (LB MC)

Translation on communication and concurrency primitives

L forkM M = let x⇐ spawn LM M in return ()
L giveV W M = send (inl LV M) LW M

L takeV M = let selfPid⇐ self in
send (inr selfPid) LV M;
receive

selfPid is a fresh variable

L newCh M = spawn (body ([ ], [ ]))

Translation on configurations

L C1 ‖ C2 M = L C1 M ‖ L C2 M
L (νa)C M = (νa)L C M

LM M = (νa)(〈a, LM M, ε〉) a is a fresh name

L a(
−→
V ) M = 〈a, body (L

−→
V M, [ ]), ε〉

where L
−→
V M = LV0 M :: . . . :: LVn M :: [ ]

Fig. 14: Translation from λch into λact

Translation on Types. Figure 14 shows the translation from λch into λact.
The translation function on types L− MC takes the type of all channels C as its
argument, and is used to annotate all function arrows and to assign a parameter
to ActorRef types. The (omitted) translations on sums, products, and lists are
homomorphic. The translation of Chan is ActorRef(LC MC + ActorRef(LC MC)),
meaning an actor which can receive a request to either store a value of type LC MC,
or to dequeue a value and send it to a process ID of type ActorRef(LC MC).

Translation on Communication and Concurrency Primitives. We omit
the translation on values and functional terms, which are homomorphisms. Pro-
cesses in λch are anonymous, whereas all actors in λact are addressable; to emulate
fork, we therefore discard the reference returned by spawn. The translation of
give wraps the translated value to be sent in the left injection of a sum type, and
sends to the translated channel name LW M.

To emulate take, self is firstly used to retrieve the process ID of the actor.
Next, the process ID is wrapped in the right injection and sent to the actor
emulating the channel, and the actor waits for the response message.

Finally, the translation of newCh spawns a new actor to execute body.

Translation on Configurations. The translation function L− M is homomor-
phic on parallel composition and name restriction. Unlike λch, a term cannot
exist outwith an enclosing actor context in λact. Consequently, the translation of
a process evaluating term M is an actor with some fresh name a and an empty
mailbox evaluating LM M, enclosed in a name restriction.



20 Fowler, Lindley, and Wadler

The translation of a λch buffer requires a term-level list to be constructed
from a meta-level sequence; the mailbox is required for requests to queue and
dequeue values. Moreover, the translation of a buffer is an actor with an empty
mailbox which evaluates body with a state containing the (term-level) list of
values, and an empty request queue.

In contrast to the global transformation in the previous section, although the
translation from λch into λact, is much more verbose, it is (once all channels have
the same type) a local transformation [11].

6.4 Properties of the Translation

We firstly define translations on typing environments. Since all channels in the
source language of the translation have the same type, we can assume that each
entry in the codomain of ∆ is the same type A. Importantly, each entry in the
translated environment refers to the name of a channel, and thus has the same
type as the translation of Chan.

Definition 22 (Translation of typing environments).

1. If Γ = α1:A1, . . . , αn : An, define (LΓ MB) = α1 : LA1 MB, . . . , αn : LAn MB.
2. Given a ∆ = a1 : A, . . . , an : A, define L∆ MA =

a1 : (LA MA+ ActorRef(LA MA)), . . . , an : (LA MA+ ActorRef(LA MA)).

We can now begin to state our final set of results. The translation on terms
preserves typing.

Lemma 23 (L− M preserves typing (terms and values)).

1. If {B} Γ ` V :A, then LΓ MB ` LV M:LA MB.
2. If {B} Γ `M :A, then LΓ MB | LB MB ` LM M:LA MB.

The translation on configurations also preserves typeability. We write Γ � ∆
if for each a : A ∈ ∆, we have that a : ChanRef(A) ∈ Γ ; for closed configurations
this is ensured by Chan. This is necessary since the typing rules for λact require
that the local actor name is present in the term environment to ensure preservation
in the presence of self, but there is no such restriction in λch.

Theorem 24 (L− M preserves typeability (configurations)).
If {A} Γ ;∆ ` C with Γ � ∆, then LΓ MA; L∆ MA ` L C M.

It is clear that reduction on translated λch terms can simulate reduction in
λact; in fact, we obtain a tighter (lockstep) simulation result than the translation
from λact into λch since β-reduction only requires one reduction instead of two.

Lemma 25.
If {B} Γ `M1 : A and M1 −→M M2, then LM1 M −→M LM2 M.
Finally, we show that λact can simulate λch.

Lemma 26. If Γ ;∆ ` C and C ≡ D, then L C M ≡ LD M.

Theorem 27 (Simulation (λact configurations in λch)).
If {A} Γ ;∆ ` C1, and C1 −→ C2, then there exists some D such that L C1 M −→∗ D
with D ≡ L C2 M.
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Additional types, terms, and configuration reduction rule

Types ::= ActorRef(A,B) | . . . Terms ::= waitV | . . .

〈a,E[wait b],
−→
V 〉 ‖ 〈b, returnV ′,

−→
W 〉 −→ 〈a,E[returnV ′],

−→
V 〉 ‖ 〈b, returnV ′,

−→
W 〉

(νa)(〈a, returnV,
−→
V 〉) ‖ C ≡ C

Modified typing rules for terms Γ | A,B `M : A

Sync-Spawn

Γ | A,B `M : B

Γ | C,C′ ` spawnM : ActorRef(A,B)

Sync-Wait

Γ ` V : ActorRef(A,B)

Γ | C,C′ ` waitV : B

Sync-Self

Γ | A,B ` self : ActorRef(A,B)

Modified typing rules for configurations Γ ;∆ ` C
Sync-Actor

Γ, a:ActorRef(A,B) `M :B
(Γ, a:ActorRef(A,B) ` Vi:A)i

Γ, a : ActorRef(A,B); a:(A,B) ` 〈a,M,
−→
V 〉

Sync-Nu

Γ, a : ActorRef(A,B);∆, a : (A,B) ` C
Γ ;∆ ` (νa)C

Fig. 15: Extensions to Add Synchronisation to λact

7 Extensions and Future Work

In this section, we discuss common extensions to channel- and actor-based
languages. Firstly, we discuss synchronisation, which is ubiquitous in practical
implementations of actor-inspired languages. Adding synchronisation simplifies
the translation from channels to actors, and relaxes the restriction that all channels
must have the same type. Secondly, we discuss how to nondeterministically choose
a message from a collection of possible sources. Thirdly, we discuss what the
translations tell us about the nature of behavioural typing disciplines for actors.
Establishing exactly how the latter two extensions fit into our framework is the
subject of ongoing and future work.

7.1 Synchronisation

While communicating with an actor via asynchronous message passing suffices
for many purposes, the approach can become cumbersome when implementing
“call-response” style interactions. Practical implementations such as Erlang and
Akka implement some way of synchronising on a result: Erlang achieves this by
generating a unique reference to send along with a request, selectively receiving
from the mailbox to await a response tagged with the same unique reference.
Another method of synchronisation embraced by the Active Object community [9,
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Modified translation on types

LChanRef(A) M = ActorRef(LA M + ActorRef(LA M, LA M),1)
LA→ B M = LA M→C,1 LB M

Modified translation of take

L takeV M = let requestorPid⇐ spawn (
let selfPid⇐ self in
send (inr selfPid) LV M;
receive) in

wait requestorPid

Fig. 16: Translation from λch into λact Using Synchrony

25, 26] as well as the Akka framework is to generate a future variable which is
populated with the result of the call.

Figure 15 details an extension of λact with a synchronisation primitive, wait.
In this extension, we replace the unary type constructor for process IDs with a
binary type constructor ActorRef(A,B), where A is the type of messages that
the process can receive from its mailbox, and B is the type of value to which the
process will eventually evaluate. We assume that the remainder of the primitives
are modified to take the additional effect type into account. A variation of the
wait primitive is implemented as part of the Links [8] concurrency model to
address the type pollution problem.

We now adapt the previous translation from λch to λact, making use of wait
to avoid the need for the coalescing transformation. Figure 16 shows the modified
translation from λch into λact with wait. Channel references are translated into
actor references which can either receive a value of type A, or a process which
can receive a value of type A and will eventually evaluate to a value of type
A. Note that the unbound annotation C, 1 on function arrows reflects that the
mailboxes can be of any type, since the mailboxes are unused in the actors
emulating threads.

The key idea behind the modified translation is to spawn a fresh actor which
makes the request to the channel and blocks waiting for the response. Once the
actor spawned to make the request has received the result, the result can be
retrieved synchronously using wait without reading from the mailbox.

The previous soundness theorems adapt to the new setting.

Theorem 28. If Γ ;∆ ` C with Γ � ∆, then LΓ M; L∆ M ` L C M.

Theorem 29. If Γ ;∆ ` C1 and C1 −→ C2, then there exists some D such that
L C M −→∗ D with D ≡ L C2 M.

Translation in the other direction requires named threads and a join construct
in λch, but is otherwise unsurprising.
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Γ ` V : ChanRef(A) Γ `W : ChanRef(B)

Γ ` chooseV W : A+B

E[choose a b] ‖ a(W1 ·
−→
V1) ‖ b(

−→
V2) −→ E[return (inlW1)] ‖ a(

−→
V1) ‖ b(

−→
V2)

E[choose a b] ‖ a(
−→
V1) ‖ b(W2 ·

−→
V2) −→ E[return (inrW2)] ‖ a(

−→
V1) ‖ b(

−→
V2)

Fig. 17: Additional Typing and Evaluation Rules for λch with Choice

7.2 Choice

The calculus λch only supports blocking receive from channels. A more powerful
mechanism when dealing with channels is selective communication, where given
two channels a and b, a value is taken nondeterministically from a or b. An
important use case is receiving a value when either channel could be empty.

Here we have only considered the most basic case of selective choice over
two channels. More generally, it can be extended to arbitrary regular data
types [36]. Since Concurrent ML [37] embraces rendezvous-based synchronous
communication, it provides generalised selective communication where a process
can synchronise on a mixture of input or output communication events. Similarly,
the join patters of join calculus [12] and the selective receive operation on
mailboxes of Erlang also provide general abstractions for selective communication.

As we are working in the asynchronous setting where a give operation can
reduce immediately, we consider only input-guarded choice. Input-guarded choice
can be added straightforwardly to λch, as shown in Figure 17. Emulating such a
construct satisfactorily in λact is nontrivial, because data must be received from
a local message queue as opposed to a separate entity. One approach could be to
use the work of Chaudhuri [7] which shows how to implement generalised choice
using synchronous message passing, but implementing this in λch may be difficult
due to the asynchrony of give. We leave a more thorough investigation to future
work.

7.3 Behavioural Types

Behavioural types allow the type of an object (e.g. a channel) to evolve as a
program executes. A widely studied behavioural typing discipline is that of session
types [20, 21] which supports channel types that are sufficiently rich to describe
communication protocols between participants. As an example, the session type
for a channel which sends two integers and receives their sum could be defined
as follows:

!Int.!Int.?Int.end

where !A.S is the type of a channel which sends a value of type A before continuing
with behaviour S. Session types are particularly suited to channels, whereas
current work on session-typed actors concentrates on runtime monitoring [33].
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A natural question to ask is whether one can combine the benefits of actors
and of session types. Indeed, this was one of our original motivations for wanting
to better understand the relationship between actors and channels in the first
place. A session-typed channel may support both sending and receiving (at
different points in the protocol it encodes). But communication with another
processes mailbox is one-way. We have studied several variants of λact with
polarised session types which capture such one-way communication, but they
seem too weak to simulate session-typed channels. In future, we would like to
find a natural extension of λact with behavioural types that admits a similar
simulation result to the ones in this paper.

8 Related Work

Our formulation of concurrent λ-calculi is inspired by λ(fut) [34], a concurrent λ-
calculus with threads and future variables, as well as reference cells and an atomic
exchange construct. In the presence of a list construct, futures are sufficient to
encode asynchronous channels. In λch, we concentrate on asynchronous channels
as primitive entities to better understand the correspondence with actors. Channel-
based concurrent λ-calculi have been used as a formalism for the design of channel-
based languages with session types, richer type systems which are expressive
enough to encode protocols such as SMTP [13, 28].

Channel-based programming languages are inspired by CSP [19] and the
π-calculus [31]; the name restriction and parallel composition operators in λch
and λact are directly inspired by analogous constructs in the π-calculus. Con-
current ML [37] extends Standard ML with a rich set of concurrency constructs
centred around synchronous channels, which again, can emulate asynchronous
channels. A core notion in Concurrent ML is nondeterministically synchronising
on multiple synchronous events, such as sending or receiving messages; relating
such a construct to an actor calculus is nontrivial, and remains an open problem.

The actor model was designed by Hewitt et al. [18] and examined in the context
of distributed systems by Agha [2]. Agha describes an operational semantics
on systems of actors, with a denotational interpretation of actor behaviours. In
the object-oriented setting, the actor model inspires active objects [26]: objects
supporting asynchronous method calls which return responses using futures.
De Boer et al. [9] describe a language and proof system for active objects
with cooperatively scheduled threads within each object. Core ABS [25] is a
specification language based on active objects. Using futures for synchronisation
sidesteps the type pollution problem inherent in call-response patterns with
actors, although our translations work in the absence of synchronisation. By
working in the functional setting, we have smaller calculi.

Links [8] is a programming language designed for developing web applications
which includes an implementation of typed message-passing concurrency built on
an effect type system. The design of λact was inspired by Links.

Hopac [22] is a channel-based concurrency library for the F# programming lan-
guage, based on Concurrent ML. The Hopac documentation includes a discussion
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of CML-style synchronous channels and actors[1], providing an implementation
of actor-style concurrency primitives using channels, and an implementation of
channel-style concurrency primitives using actors. The implementation of channels
using actors uses shared-memory concurrency in the form of ML-style references
in order to implement the take function, whereas our translation achieves this
using message passing. Additionally, our translation is formalised and we prove
that the translations are type- and semantics-preserving.

9 Conclusion

Inspired by languages such as Go which take channels as core constructs for
communication, and languages such as Erlang which are based on the actor
model of concurrency, we have presented translations back and forth between a
concurrent λ-calculus λch with channel-based communication constructs and a
concurrent λ-calculus λact with actor-based communication constructs. We have
proved that λact can simulate λch and vice-versa.

The translation from λact to λch is straightforward, whereas the translation
from λch to λact requires considerably more effort. The discrepancy is illustrated in
Figure 18. Any process can send and receive messages along a channel (Figure 18a),
whereas, although any process can send a message to a mailbox, only one process
can receive from that mailbox (Figure 18b). Viewed this way, it is apparent that
the restrictions imposed on the communication behaviour of actors are exactly
those captured by Merro and Sangiorgi’s localised π-calculus [29].

P1 P1

P2 P2

P3 P3

sender receiver

(a) Channel

P1 P1

P2 P2

P3 P3

sender receiver

(b) Mailbox

Fig. 18: Mailboxes as Pinned Channels
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A Coalescing Transformation

Our translation from λch into λact relies on the assumption that all channels
have the same type, which is rarely the case in practice. Here, we sketch a
sample type-directed transformation which we call coalescing, which transforms
an arbitrary λch program into an λch program which has only one type of
channel. To encode such a translation, we use an extension of the language with
equirecursive types.

The transformation works by encapsulating each type of message in a variant
type, and ensuring that give and take use the correct variant injections. Although
the translation necessarily loses type information, thus introducing partiality,
we can show that terms and configurations that are the result of the coalescing
transformation never reduce to an error.

We say that a type A is a base carried type in a configuration Γ ;∆ ` C if
there exists some subterm Γ ` V : ChanRef(A), where A is not of the form
ChanRef(B).

In order to perform the coalescing transformation, we require an environment
σ which maps each base carried type A to a unique token `, which we use as an
injection into a variant type.

We write σ ^ Γ ;∆ ` C if σ contains a bijective mapping A 7→ ` for each base
carried type in Γ ;∆ ` C. We extend the relation analogously to judgements on
values and computation terms.

Next, we define the notion of a coalesced channel type, which can be used to
ensure that all channels in the system have the same type.

Definition 30 (Coalesced channel type).
Given a token environment σ = A0 7→ `0, . . . An 7→ `n, we define the coalesced
channel type cct(σ) as

cct(σ) = µX.〈`0 : A0, . . . , `n : An, `c : ChanRef(X)〉

where

1 = 1
A→ B = A→ B
A×B = A×B

A+B = A+B
List(A) = List(A)

ChanRef(A) = ChanRef(X)

which is the single channel type which can receive values of all possible types
sent in the system.

Note that the definition of a base carried type excludes the possibility of a type
of the form ChanRef(A) appearing in σ. To handle the case of sending channels,
we require cct(σ) to be a recursive type; a distinguished token `c denotes the
variant case for sending a channel over a channel.

Retrieving a token from the token environment σ is defined by the following
inference rules. Note that ChanRef(A) maps to the distinguished token `c.
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(A 7→ `) ∈ σ
σ(A) = ` σ(ChanRef(A)) = `c

With the coalesced channel type defined, we can define a function mapping
types to coalesced types.

Definition 31 (Type coalescing).

|1|σ = 1
|A→ B|σ = |A|σ →|B|σ
|A×B|σ = |A|σ ×|B|σ

|A+B|σ = |A|σ +|B|σ∣∣List(A)
∣∣σ = List(|A|σ)∣∣ChanRef(A)
∣∣σ = ChanRef(cct(σ))

We then extend |−|σ to typing environments Γ , taking into account that we
must annotate channel names.

Definition 32 (Type coalescing on environments).

1. For Γ :
(a)

∣∣∅∣∣σ = ∅
(b) |x : A,Γ |σ = x : |A|σ ,|Γ |σ.
(c)

∣∣a : ChanRef(A), Γ
∣∣σ = aA : ChanRef(cct(σ)),|Γ |σ.

2. For ∆:
(a)

∣∣∅∣∣σ = ∅
(b) |a : A,∆|σ = aA : cct(σ),|∆|σ

Figure 19 describes the coalescing pass from λch with multiple channel types
into λch with a single channel type. Judgements are of the shape {σ} Γ ` V :
A V ′ for values; {σ} Γ `M : A M ′ for computations; and {σ} Γ ` C  C′
for configurations, where σ is an bijective mapping from types to tokens, and
primed values are the results of the coalescing pass. We omit the rules for values
and functional terms, which are homomorphisms.

Of particular note are the rules for give and take. The coalesced version
of give ensures that the correct token is used to inject into the variant type.
The translation of take retrieves a value from the channel, and pattern matches
to retrieve a value of the correct type from the variant. As we have less type
information, we have to account for the possibility that pattern matching fails
by introducing an error term, which we define at the top-level of the term:

let error = (rec f(x) . f x) in . . .

The translation on configurations ensures that all existing values contained
within a buffer are wrappen in the appropriate variant injection.

The coalescing step necessarily loses typing information on channel types.
To aid us in stating an error-freedom result, we annotate channel names a with
their original type; for example, a channel with name a carrying values of type A
would be translated as aA. It is important to note that annotations are irrelevant
to reduction, i.e.:
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Coalescing of channel names {σ} Γ ` V  V ′

Ref

a : ChanRef(A) ∈ Γ
{σ} Γ ` a : ChanRef(A) aA

Coalescing of communication and concurrency primitives {σ} Γ `M  M ′

Give

{σ} Γ ` V : A V ′

{σ} Γ `W : ChanRef(A) W ′ σ(A) = `

{σ} Γ ` giveV W : 1 give 〈` = V ′〉W ′

Take

{σ} Γ ` V : ChanRef(A) V ′ σ(A) = `j

{σ} Γ ` takeV : A letx⇐ takeV ′ in

case x {
〈`0 = y〉 . . . 〈`j−1 = y〉 7→ error

〈`j = y〉 7→ y

〈`j+1 = y〉 . . . 〈`n = y〉 7→ error }

NewCh

{σ} Γ ` newCh : ChanRef(A) newChA

Fork

{σ} Γ `M : 1 M ′

{σ} Γ ` forkM : 1 forkM ′

Coalescing of configurations {σ} Γ ` C  C′

Par

{σ} Γ ;∆ ` C1  C′1 {σ} Γ ;∆ ` C2  C′2
{σ} Γ ;∆ ` C1 ‖ C2  C′1 ‖ C′2

Chan

{σ} Γ, a : ChanRef(A);∆, a : A ` C  C′

{σ} Γ ;∆ ` (νa)C  (νaA)C′

Term

{σ} Γ `M : A M ′

{σ} Γ ; · `M  M ′

Buf

({A, σ} Γ ` Vi : A V ′i )i

{σ} Γ ; a : A ` a(
−→
V ) aA(

−→
V ′)

Coalescing of buffer values {A, σ} Γ ` V : A V ′

{σ} Γ ` V : A V ′ σ(A) = `

{A, σ} Γ ` V : A 〈` = V 〉

Fig. 19: Type-directed coalescing pass
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E[give aAW ] ‖ aB(
−→
V ) −→ E[return ()] ‖ aB(

−→
V ·W )

As previously discussed, the coalescing pass means that channel types are
less specific, with the pass introducing partiality in the form of an error term,
error. However, since we began with a type-safe program in λch, we can show
that programs that have been coalesced from well-typed λch configurations never
reduce to an error term.

Definition 33 (Error configuration).
A configuration C is an error configuration if C ≡ G[error] for some configuration
context G.

Definition 34 (Error-free configuration).
A configuration C is error-free if it is not an error configuration.

We can straightforwardly see that the initial result of a coalescing pass is
error-free:

Lemma 35. If σ ^ Γ ` C  C′, then C′ is error-free.

Proof. By induction on the derivation of Γ ` C  C′. ut

Next, we show that error-freedom is preserved under reduction. To do so, we
make essential use of the fact that the coalescing pass annotates each channel
with its original type.

Proposition 36 (Error-freedom (coalesced λch)).
If Γ ;∆ ` C  C′1, and C′1 −→∗ C′2, then C′2 is error free.

Proof. By preservation in λch, we have that Γ ;Ψ ` C′2, and by Lemma 35, we
can assume that C′1 is error-free.

We show that an error term can never arise. Suppose that C′2 was an error
configuration, meaning that C′2 ≡ G[error] for some configuration context G. As
we have decreed that the error term does not appear in user programs, we know
that error must have arisen from the refinement pass. By observation of the
refinement rules, we see that error is introduced only in the refinement rule for
Take.

Stepping backwards through the reduction sequence introduced by the Take
rule, we have that:

case 〈`k = W 〉 {
〈`0 = y〉 . . . 〈`j−1 = y〉 7→ error

〈`j = y〉 7→ y
〈`j+1 = y〉 . . . 〈`n = y〉 7→ error

}

for some k 6= j.
Stepping back further, we have that:
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let x⇐ take aB in
case x {
〈`0 = y〉 . . . 〈`j−1 = y〉 7→ error

〈`j = y〉 7→ y
〈`j+1 = y〉 . . . 〈`n = y〉 7→ error

}

Now, inspecting the premises of the refinement rule for Take, we have that
Γ ;Ψ ` aB : ChanRef(A) V ′ and σ(A) = `j . Examining the refinement rule for
Name, we have that Γ ;Ψ ` a : ChanRef(A) aA, thus we have that B = A.

However, we have that σ(A) = `j and σ(A) = `k but we know that k 6= j,
thus leading to a contradiction since σ is bijective. ut

Since annotations are irrelevant to reduction, it follows that C′ has identical
reduction behaviour with all annotations erased.
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B Selected full proofs

B.1 λch Preservation

Lemma 37 (Replacement). If Γ ` E[M ] : A, Γ ` M : B, and Γ ` N : B,
then Γ ` E[N ] : A.

Proof. By induction on the structure of E. ut

Theorem 4 (Preservation (λch configurations)
If Γ ;∆ ` C1 and C1 −→ C2, then Γ ;∆ ` C2.

Proof. By induction on the derivation of C −→ C′. We use Lemma 37 implicitly
throughout.

Case Give
From the assumption Γ ;∆ ` E[giveW a] ‖ a(

−→
V ), we have that Γ ; · ` E[giveW a]

and Γ ; a : A ` a(
−→
V ). Consequently, we know that ∆ = a : A.

From this, we know that Γ ` giveW a : 1 and thus Γ ` W : A and Γ `
a : ChanRef(A). We also have that Γ ; a : A ` a(

−→
V ), thus Γ ` Vi : A for all

Vi ∈
−→
V . By Unit we can show Γ ; · ` E[return ()] and by Buf we can show

Γ ; a : A ` a(
−→
V ·W ); recomposing, we arrive at Γ ;∆ ` E[return ()] ‖ a(

−→
V W ) as

required.

Case Take
From the assumption Γ ;∆ ` E[take a] ‖ a(W ·

−→
V ), we have that Γ ; · ` E[take a]

and that Γ ; a : A ` a(W ·
−→
V ). Consequently, we know that ∆ = a : A.

From this, we know that Γ ` take a : A, and thus Γ ` a : ChanRef(A).

Similarly, we have that Γ ; a : ChanRef(A) ` a(W ·
−→
V ), and thus Γ `W : A.

Consequently, we can show that Γ ; · ` E[returnW ] and Γ ; a : A ` a(
−→
V );

recomposing, we arrive at Γ ;∆ ` E[returnW ] ‖ a(
−→
V ) as required.

Case NewCh
By Buf we can type Γ ; a : A ` a(ε), and since Γ ` newCh : ChanRef(A), it is also
possible to show Γ, a : ChanRef(A) ` a : ChanRef(A), thus Γ, a : ChanRef(A) `
E[return a].

Recomposing by Par we have Γ, a : ChanRef(A); a : A ` E[return a] ‖ a(ε),
and by Chan we have Γ ; · ` (νa)(E[return a] ‖ a(ε)) as required.

Case Fork
From the assumption Γ ;∆ ` E[forkM ], we have that ∆ = ∅ and Γ ` M : 1.
By Unit we can show Γ ; · ` E[return ()], and by Term we can show Γ ; · ` M .
Recomposing, we arrive at Γ ;∆ ` E[return ()] ‖M as required.

Case Lift
Immediate by the inductive hypothesis.
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Case LiftV
Immediate by Lemma 1. ut
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B.2 λact Preservation

Lemma 38 (Replacement). If Γ | C ` E[M ] : A, Γ | C ` M : B, and
Γ | C ` N : B, then Γ | C ` E[N ] : B.

Proof. By induction on the structure of E. ut

Theorem 12 (Preservation (λact configurations))
If Γ ;∆ ` C1 and C1 −→ C2, then Γ ;∆ ` C2.

Proof. By induction on the derivation of C1 −→ C2, making implicit use of
Lemma 38.

Case Spawn
From the assumption that Γ ;∆ ` 〈a,E[spawnM ],

−→
V 〉, we have that ∆ = a : C,

that Γ | C ` spawnM : ActorRef(A) and Γ | A `M : 1.
We can show Γ, b : ActorRef(A) ` b : ActorRef(A); and therefore that Γ, b :

ActorRef(A) ` E[return b] : 1. By Actor, it follows that Γ, b : ActorRef(A); a :

C ` 〈a,E[return b],
−→
V 〉.

By Actor, we can show Γ, b : ActorRef(A); b : A ` 〈b,M, ε〉.
Finally, by Pid and Par, we have Γ ;∆ ` (νb)(〈a,E[return b],

−→
V 〉 ‖ 〈b,M, ε〉)

as required.

Case Send
From the assumption that Γ ;∆ ` 〈a,E[sendV ′ b],

−→
V 〉 ‖ 〈b,M,

−→
W 〉, we have that

Γ ; a : A ` 〈a,E[sendV ′ b],
−→
V 〉 and Γ ; b : C ` 〈b,M,

−→
W 〉. Consequently, we can

write ∆ = a : A, b : C. From this, we know that Γ | A ` sendV ′ b : 1, so we
can write Γ = Γ ′, b : ActorRef(C), and Γ ` V ′ : C. Additionally, we know that

Γ ; b : C ` 〈b,M,
−→
W 〉 and thus that (Γ `Wi : C) for each entry Wi ∈

−→
W .

As Γ ` V ′ : C, it follows that Γ `
−→
W · V ′ and therefore that Γ ; b : C `

〈b,M,
−→
W ·V 〉. We can also show that Γ | C ` return () : 1, and therefore it follows

that Γ ; a : A ` 〈a,E[return ()],
−→
V 〉.

Recomposing, we have that Γ ;∆ ` 〈a,E[return ()],
−→
W 〉 ‖ 〈b,M,

−→
W · V ′〉 as

required.

Case Receive
By Actor, we have that Γ ;∆ ` 〈a,E[receive],W ·

−→
V 〉. From this, we know that

Γ | A ` E[receive] : 1 (and thus Γ | A ` receive : A) and Γ `W : A.
Consequently, we can show Γ ` E[returnW ] : 1. By Actor, we arrive at

Γ ;∆ ` 〈a,E[returnW ],
−→
V 〉 as required.

Case Self
By Actor, we have that Γ ;∆ ` 〈a,E[self],

−→
V 〉, and thus that Γ | A ` E[self] : 1

and Γ | A ` self : ActorRef(A). We also know that Γ = Γ ′, a : ActorRef(A), and
that ∆ = a : A.
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Trivially, we can show Γ ′, a : ActorRef(A) ` a : ActorRef(A). Thus it
follows that Γ ′, a : ActorRef(A) ` E[return a] : 1 and thus it follows that

Γ ;∆ ` 〈a,E[return a],
−→
V 〉 as required.

Case Lift
Immediate by the inductive hypothesis.

Case LiftV
Immediate by Lemma 9. ut
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B.3 Translation: λact into λch

Lemma 23

1. If Γ ` V : A in λact, then JΓ K ` JV K : JA K in λch.

2. If Γ | B ` M : A in λact, then JΓ K, α : ChanRef(JB K) ` JM K α : JA K in
λch.

Proof. By simultaneous induction on the derivations of Γ ` V : A and Γ | B `
M : A.

Premise 1

Case Γ ` x : A
By the definition of J− K, we have that Jα K = α. By the definition of JΓ K, we
have that α : JA K ∈ JΓ K. Consequently, it follows that JΓ K ` α : JA K.

Case Γ ` λx.M : A→ B
From the assumption that Γ ` λx.M : A →C B, we have that Γ, x : A | C `
M : B. By the inductive hypothesis (premise 2), we have that JΓ K, x : JA K, ch :
ChanRef(JC K) ` JM K ch : JB K.

By two applications of Abs, we have JΓ K ` λx.λch.JM K ch : JA K →
ChanRef(JC K)→ JB K as required.

Case Γ ` () : 1
Immediate.

Case Γ ` (V,W ) : (A×B)
From the assumption that Γ ` (V,W ) : (A,B) we have that Γ ` V : A and
Γ ` W : B. By the inductive hypothesis (premise 1) and Pair, we can show
JΓ K ` (JV K, JW K) : (JA K× JB K) as required.

Premise 2

Case Γ | C ` V W : B
From the assumption that Γ | C ` V W : B, we have that Γ ` V : A→C B and
Γ `W : B. By the inductive hypothesis (premise 1), we have that JΓ K ` JV K :
JA K→ ChanRef(JC K)→ JB K, and JΓ K ` JW K : JB K.

By extending the context Γ with a ch : ChanRef(JC K), we can show that
JΓ K, ch : ChanRef(JC K) ` JV K JW K ch : JB K as required.
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Case Γ | C ` let x⇐M in N : B

From the assumption that Γ | C ` let x ⇐ M in N : B, we have that
Γ | C `M : A and that Γ, x : A | C ` N : B.

By the inductive hypothesis (premise 2), we have that JΓ K, ch : ChanRef(JC K) `
JM K ch : JA K and JΓ K, x : JA K, ch : ChanRef(JC K) ` JN K ch : JB K.

By EffLet, it follows that JΓ K, ch : ChanRef(JC K) ` let x⇐ JM K ch in JN K ch :
JB K as required.

Case Γ | C ` returnV : A
From the assumption that Γ | C ` returnV : A, we have that Γ ` V : A.

By the inductive hypothesis (premise 1), we have that JΓ K ` JV K : JA K.
By weakening (as we do not use the mailbox channel), we can show that

JΓ K, y : ChanRef(JC K) ` return JV K : JA K as required.

Case Γ | C ` sendV W : 1
From the assumption that Γ | C ` sendV W : 1, we have that Γ ` V : A and
Γ `W : ChanRef(A).

By the inductive hypothesis (premise 1) we have that JΓ K ` JV K : JA K and
JΓ K ` JW K : ChanRef(JA K).

By Give, we can show that JΓ K ` give JV K JW K : 1, and by weakening we
have that JΓ K, y : ChanRef(JC K) ` give JV K JW K : 1 as required.

Case Γ | C ` receive : C
Given a ch : ChanRef(JC K), we can show that JΓ K, ch : ChanRef(JC K) ` ch :
ChanRef(JC K) and therefore that JΓ K, ch : ChanRef(JC K) ` take ch : JC K as
required.

Case Γ | C ` spawnM : ActorRef(A)
From the assumption that Γ | C ` spawnM : ActorRef(A), we have that Γ | A `
M : A.

By the inductive hypothesis (premise 2), we have that JΓ K, chMb : ChanRef(JA K) `
JM K chMb : JA K. By Fork and Return, we can show that JΓ K, chMb :
ChanRef(JA K) ` fork (JM K chMb); return chMb : ChanRef(JA K).

By NewCh and EffLet, we can show that JΓ K ` let chMb⇐ newCh in fork (JM K chMb); return chMb :
ChanRef(JA K).

Finally, by weakening, we have that

JΓ K, ch : ChanRef(JC K) ` let chMb⇐ newCh in (fork JM K chMb); return chMb : ChanRef(JA K)

as required.

Case Γ | C ` self : ActorRef(C)
Given a ch : ChanRef(JC K), we can show that JΓ K, ch : ChanRef(JC K) `
return ch : ChanRef(JC K) as required.

ut
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Theorem 18 If Γ ;∆ ` C, then JΓ K; J∆ K ` JC K.

Proof. By induction on the derivation of Γ ` C.

Case Par
From the assumption that Γ ;∆ ` C1 ‖ C2, we have that ∆ splits as ∆1, ∆2 such
that Γ ;∆1 ` C1 and Γ ;∆2 ` C2. By the inductive hypothesis, we have that
JΓ K; J∆1 K ` J C1 K and JΓ K; J∆2 K ` J C2 K. Recomposing by Par, we have that
JΓ K; J∆1 K, J∆2 K ` J C1 K ‖ J C2 K as required.

Case Pid
From the assumption that Γ ;∆ ` (νa)C, we have that Γ, a : ActorRef(A);∆, a :
A ` C. By the inductive hypothesis, we have that JΓ K, a : ChanRef(JA K); J∆ K, a :
JA K ` J C K. Recomposing by Pid, we have that JΓ K ` (νa)J C K as required.

Case Actor
From the assumption that Γ, a : ActorRef(A); a : A ` 〈a,M,

−→
V 〉, we have

that Γ, a : ActorRef(A) | A ` M : 1. By Lemma 17, we have that JΓ K, a :
ChanRef(JA K) ` JM K a : 1. It follows straightforwardly that JΓ K, a : ChanRef(JA K); · `
JM K a.

We can also show that JΓ K, a : ChanRef(JA K); a : JA K ` a(J
−→
V K) (where

J
−→
V K = JV1 K · . . . · JVn K), by repeated applications of Lemma 17.

By Term and Par, we have that JΓ K, a : ChanRef(JA K); a : JA K ` a(J
−→
V K) ‖

JM K a as required.
ut

Theorem 21
If Γ ` C1 and C1 −→ C2, then there exists some D such that J C1 K −→∗ D, with
D ≡ J C2 K.

Proof. By induction on the derivation of C −→ C′.
Case Spawn

Assumption J 〈a,E[spawnM ],
−→
V 〉 K (1)

Definition of J− K a(J
−→
V K) ‖ (JE K[let c⇐ newCh in fork (JM K c); return c] a) (2)

newCh reduction a(J
−→
V K) ‖ (νb)((JE K[let c⇐ return b in fork (JM K c); return c] a) ‖ b(ε)) (3)

Let reduction a(J
−→
V K) ‖ (νb)((JE K[fork (JM K b); return b] a) ‖ b(ε)) (4)

Fork reduction a(J
−→
V K) ‖ (νb)((JE K[return (); return b] a) ‖ (JM K b) ‖ b(ε)) (5)

Let reduction a(J
−→
V K) ‖ (νb)((JE K[return b] a) ‖ (JM K b) ‖ b(ε)) (6)

≡ (νb)(a(J
−→
V K) ‖ (JE K[return b] a) ‖ b(ε) ‖ (JM K b)) (7)

= J (νb)(〈a,E[return b],
−→
V 〉 ‖ 〈b,M, ε〉) K (8)
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Case Self

Assumption J 〈a,E[self],
−→
V 〉 K (1)

Definition of J− K a((J
−→
V K)) ‖ (JE K[return a] a) (2)

= J 〈a,E[return a],
−→
V 〉 K

Case Send

Assumption J 〈a,E[sendV ′ b],
−→
V 〉 ‖ 〈b,M,

−→
W 〉 K (1)

Definition of J− K a(J
−→
V K) ‖ (JE K[give JV ′ K b] a) ‖ b(J

−→
W K) ‖ (JM K b) (2)

Give reduction a(J
−→
V K) ‖ (JE K[return ()] a) ‖ b(J

−→
W K · JV ′ K) ‖ (JM K b) (3)

= J 〈a,E[return ()],
−→
V 〉 ‖ 〈b,M,

−→
W · V ′〉 K (4)

Case Receive

Assumption J 〈a,E[receive],W ·
−→
V 〉 K (1)

Definition of J− K a(JW K · J
−→
V K) ‖ (JE K[take a] a) (2)

Take reduction a(J
−→
V K) ‖ (JE K[return JW K] a) (3)

= J 〈a,E[returnW ],
−→
V 〉 K (4)

Lift is immediate from the inductive hypothesis, and LiftV is immediate from
Lemma 19. ut
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B.4 Translation: λch into λact

Lemma 23

1. If {B} Γ ` V : A, then LΓ MB ` LV M : LA MB.

2. If {B} Γ `M : A, then LΓ MB | LB MB ` LM M : LA MB.

Proof. By simultaneous induction on the derivations of {B} Γ ` V : A and
{B} Γ `M : A.

Premise 1

Case Var
From the assumption that {B} Γ ` α : A, we know that α : A ∈ Γ . By the
definition of LΓ MB, we have that α : LA MB ∈ LΓ MB. Since Lα M = α, it follows
that LΓ MB ` α : LA MB as required.

Case Abs
From the assumption that {C} Γ ` λx.M : A → B, we have that {C} Γ, x :
A ` M : B. By the inductive hypothesis (Premise 2), we have that LΓ MC, x :
LA MC | LC MC ` LM M : LA MC. By Abs, we can show that LΓ MC | LC MC `
λx.LM M : LA MC →LC MC LB MC as required.

Case Rec
Similar to Abs.

Case Unit
Immediate.

Case Pair
From the assumption that {C} Γ ` (V,W ) : A×B, we have that {C} Γ ` V : A
and that {C} Γ `W : B.

By the inductive hypothesis (premise 1), we have that LΓ MC ` LV M : LA MC
and that LΓ MC ` LW M : LB MC.

It follows by Pair that LΓ MC ` (LV M, LW M) : (LA MC × LB MC) as required.

Cases Inl, Inr, and ListCons
Similar to Pair.

Case EmptyList
Immediate.

Premise 2
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Case App
From the assumption that {C} Γ ` V W : B, we have that {C} Γ ` V : A→ B
and {C} Γ ` W : A. By the inductive hypothesis (premise 1), we have that
LΓ MC ` LV M : LA MC →LC MC LB MC and that LΓ MC ` LW M : LA MC.

By App, it follows that LΓ MC | LC MC ` LV M LW M : LB MC as required.

Case Return
From the assumption that {C} Γ ` returnV : A, we have that {C} Γ ` V : A.
By the inductive hypothesis we have that LΓ MC ` LV M : LA MC and thus by
Return we can show that LΓ MC | LC MC ` return LV M : LA MC as required.

Case EffLet
From the assumption that {C} Γ ` let x ⇐ M in N : B, we have that
{C} Γ `M : A and {C} Γ, x : A ` N : B.

By the inductive hypothesis (premise 2), we have that LΓ MC | LC MC `
LM M : LA MC and LΓ MC, x : LA MC | LC MC ` LN M : LB MC. Thus by EffLet
it follows that LΓ MC | LC MC ` let x⇐ LM M in LN M : LB MC.

Case LetPair
Similar to EffLet.

Case Case
From the assumption that {C} Γ ` case V {inlx 7→M ; inr y 7→ N} : B, we have
that {C} Γ ` V : A+A′, that {C} Γ, x : A `M : B, and that {C} Γ, y : A′ `
N : B.

By the inductive hypothesis (premise 1) we have that LΓ MC ` LV M : LA MC+
LA′ MC, and by premise 2 we have that LΓ MC, x : LA MC | LC MC ` LM M : LB MC
and LΓ MC, y : LA′ MC | LC MC ` LM M : LB MC.

By ListCase, it follows that LΓ MC | LC MC ` caseLV M{inlx 7→ LM M; inr y 7→
LN M} : LB MC.

Case ListCase
Similar to Case.

Case Fork
From the assumption that {A} Γ ` forkM : 1, we have that {A} Γ `M : 1. By
the inductive hypothesis, we have that LΓ MC | LA MA ` LM M : 1.

We can show that LΓ MA | LA MA ` spawn LM M : ActorRef(1) and also show
that LΓ MA, x : ActorRef(1) ` return () : 1.

Thus by EffLet, it follows that LΓ MA | LA MA ` let x⇐ spawn LM M in return () :
1 as required.

Case Give
From the assumption that {A} Γ ` giveV W : 1, we have that {A} Γ ` V : A
and {A} Γ ` W : Chan. By the inductive hypothesis, we have that LΓ MA `
LV M : LA MA and LΓ MA ` LW M : ActorRef(LA MA+ ActorRef(LA MA)). We can
show that LΓ MA ` inl LV M : LA MA+ ActorRef(LA MA), and thus it follows that
LΓ MA | LA MA ` send inlV LW M : 1 as required.
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Case Take
From the assumption that {A} Γ ` takeV : A, we have that {A} Γ ` V : Chan.

By the inductive hypothesis (premise 1), we have that LΓ MA ` LV M :
ActorRef(LA MA+ ActorRef(LA MA)).

We can show that:

– LΓ MA | LA MA ` self : ActorRef(LA MA)

– LΓ MA | LA MA ` inr self : L M + ActorRef(LA MA)

– LΓ MA, selfPid : ActorRef(LA MA) | LA MA ` send inr selfPid LV M : 1

– LΓ MA, selfPid : ActorRef(LA MA), z : 1 | LA MA ` receive : LA MA

Thus by two applications of EffLet (noting that we desugar M ;N into
let z ⇐M in N , where z is fresh), we arrive at:

LΓ MA | LA MA ` let selfPid⇐ self in send (inr selfPid) LV M; receive : LA MA

as required.

Case NewCh
We have that {A} Γ ;∆ ` newCh : Chan.

Our goal is to show that LΓ MA | LA MA ` spawn body ([ ], [ ]) : ActorRef(LA MA+
ActorRef(LA MA)). To do so amounts to showing that LΓ MA | LA MA+ActorRef(LA MA) `
body ([ ], [ ]) : 1.

We sketch the proof as follows. Firstly, by the typing of receive, recvVal must
have type LA MA+ ActorRef(LA MA). By inspection of both case branches and
LetPair, we have that state must have type List(LA MA)×List(ActorRef(LA MA)).

We expect drain to have type

List(LA MA)×List(ActorRef(LA MA))→LA MA List(LA MA)×List(ActorRef(LA MA))

since we use the returned value as a recursive call to g, which must have the
same type of state. Inspecting the case split in drain, we have that the empty
list case for values returns the input state, which of course has the same type.
The same can be said for the empty list case of the readers case split.

In the case where both the values and readers lists are non-empty, we have
that v has type LA MA and pid has type ActorRef(LA MA). Additionally, we have
that vs has type List(LA MA) and pids has type List(ActorRef(LA MA)). We can
show via send that send v pid has type 1. After desugaring M ;N into an EffLet,
we can show that a recursive call to f is well-typed.

ut

Theorem 24 If {A} Γ ;∆ ` C with Γ � ∆, then LΓ MA; L∆ MA ` L C M.

Proof. By induction on the derivation of {A} Γ ;∆ ` C.
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Case Par
From the assumption that {A} Γ ;∆ ` C1 ‖ C2, we have that ∆ splits as ∆1, ∆2

such that {A} Γ ;∆1 ` C1 and {A} Γ ;∆2 ` C2.
By the inductive hypothesis, we have that LΓ MC; L∆1 MC ` L C1 M and

LΓ MC; L∆2 MC ` L C2 M. By the definition of L− MC on linear configuration envi-
ronments, it follows that L∆1 MC, L∆2 MC = L∆ MC. Consequently, by Par, we
can show that LΓ MC; L∆ MC ` LC M1 ‖ LC M2 as required.

Case Chan
From the assumption that {A} Γ ;∆ ` (νa)C, we have that {A} Γ, a : ChanRef(A);∆, a :
A ` C. By the inductive hypothesis, we have that LΓ MA, a : ActorRef(LA MA+
ActorRef(LA MA)); L∆ MA, a : LA MA+ ActorRef(LA MA) ` LC M.

By Pid, it follows that LΓ MC; L∆ MA ` (νa)L C M as required.

Case Term
From the assumption that {A} Γ ; · `M , we have that {A} Γ `M : 1.

By Lemma 23, we have that LΓ MA | LA MA ` LM M : 1. By weakening, we
can show that LΓ MA, a : ActorRef(LA MA) | LA MA ` LM M : 1.

It follows that, by Actor, we can construct a configuration of the form
LΓ MA, a : ActorRef(LA MA); a : LA MA ` 〈a, LM M, ε〉, and by Pid, we arrive at

LΓ MA; · ` (νa)(〈a, LM M, ε〉)

as required.

Case Buf
We assume that {A} Γ ; a : A ` a(

−→
V ), and since Γ � ∆, we have that we can

write Γ = Γ ′, a : ChanRef(A).

From the assumption that {A} Γ ′, a : ChanRef(A); a : A ` a(
−→
V ), we have

that {A} Γ ′, a : ChanRef(A) ` Vi : A for each Vi ∈
−→
V .

By repeated application of Lemma 23, we have that {A} LΓ MA, a : ActorRef(LA MA+

ActorRef(LA MA)) ` LVi M : LA MA for each Vi ∈
−→
V , and by ListCons and

EmptyList we can construct a list LV0 M :: . . . :: LVn M :: [ ] with type List(LA MA).
Relying on our previous analysis of the typing of body, we have that L body M

has type:

(List(LA MA)× List(ActorRef(LA MA)))→LA MA+ActorRef(LA MA) 1

Thus it follows that

LΓ ′ MB, a : ActorRef(LA MA+ ActorRef(LA MA)) | LA MA+ ActorRef(LA MA) `
body (L

−→
V M, [ ]) : 1

By Actor, we can see that
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LΓ ′ MA, a : ActorRef(LA MA+ ActorRef(LA MA)); a : LA MA+ ActorRef(LA MA) `
〈a, body (L

−→
V M, [ ]), ε〉

as required.
ut

Theorem 27
If {A} Γ ;∆ ` C1, and C1 −→ C2, then there exists some D such that L C1 M −→∗ D
with D ≡ L C2 M.

Proof.
By induction on the derivation of Γ ;∆ ` C1.

Case Give

Assumption E[giveW a] ‖ a(
−→
V )

Definition of L− M (νb)(〈b, LE M[send (inl LW M) a], ε〉) ‖ 〈a, body ([L
−→
V M], [ ]), ε〉

≡ (νb)(〈b, LE M[send (inl LW M) a], ε〉 ‖ 〈a, body ([L
−→
V M], [ ]), ε〉)

−→ (Send) (νb)(〈b, LE M[return ()], ε〉 ‖ 〈a, body ([L
−→
V M], [ ]), inl LW M〉)

Now, let G[−] = (νb)〈b, LE M[return ()], ε〉 ‖ [−]).
We now have

G[〈a, body ([L
−→
V M], [ ]), (inl LW M)〉]

which we can expand to

G[〈a, (rec g(state) .
let recvV al⇐ receive in
let (vals, readers) = state in
case recvVal {
inl v 7→ let newVals⇐ vals++ [v] in

let state′ ⇐ drain (newVals, readers) in
body (state′)

inr pid 7→ let newReaders⇐ readers++ [pid] in
let state′ ⇐ drain (vals,newReaders) in

body (state’)}) (L
−→
V M, [ ])

, inl LW M〉]

Applying the arguments to the recursive function f ; performing the receive,
and the let and case reductions, we have:
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G[〈a, let newVals⇐ L
−→
V M ++ [LW M] in

let state′ ⇐ drain (newVals, [ ]) in
body (state′)

, ε〉]

Next, we reduce the append operation, and note that since we pass a state
without pending readers into drain, that the argument is returned unchanged:

G[〈a, let state′ ⇐ return (L
−→
V M :: LW M :: [ ]) in

body state′
, ε〉]

Next, we apply the let-reduction and expand the evaluation context:

(νb)(〈b, LE M[return ()], ε〉 ‖ 〈a, body (L
−→
V M :: LW M :: [ ]), ε〉)

which is structurally congruent to

(νb)(〈b, LE M[return ()], ε〉) ‖ 〈a, body (L
−→
V M :: LW M :: [ ]), ε〉

which is equal to

LE[return ()] ‖ a(L
−→
V ·W M) M

as required.

Case Take

Assumption E[take a] ‖ a(W ·
−→
V )

Definition of L− M (νb)(〈b, LE M[ let selfPid⇐ self in
send (inr selfPid) a;
receive]

, ε〉) ‖ 〈b, body (LW M :: L
−→
V M, [ ]), ε〉

≡ (νb)(〈b, LE M[ let selfPid⇐ self in
send (inr selfPid) a;
receive]

, ε〉 ‖ 〈b, body (LW M :: L
−→
V M, [ ]), ε〉)

−→ (Self) (νb)(〈b, LE M[ let selfPid⇐ return b in
send (inr selfPid) a;
receive]

, ε〉 ‖ 〈b, body (LW M :: L
−→
V M, [ ]), ε〉)

−→M (Let) (νb)(〈b, LE M[ send (inr b) a;
receive]

, ε〉 ‖ 〈b, body (LW M :: L
−→
V M, [ ]), ε〉)

−→ (Send) (νb)(〈b, LE M[return (); receive], ε〉 ‖ 〈b, body (LW M :: L
−→
V M, [ ]), (inr b)〉)

−→M (Let) (νb)(〈b, LE M[receive], ε〉 ‖ 〈b, body (LW M :: L
−→
V M, [ ]), (inr b)〉)

Now, let G[−] = (νb)(〈b, LE M[receive], ε〉 ‖ [−]).
Expanding, we begin with:
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G[〈a, (rec g(state) .
let recvV al⇐ receive in
let (vals, readers) = state in
case recvVal {
inl v 7→ let newVals⇐ vals++ [v] in

let state′ ⇐ drain (newVals, readers) in
g (state′)

inr pid 7→ let newReaders⇐ readers++ [pid] in
let state′ ⇐ drain (vals,newReaders) in

g (state’)}) (LW M :: L
−→
V M, [ ])

, (inr b)〉]

Reducing the recursive function, receiving from the mailbox, splitting the
pair, and then taking the second branch on the case statement, we have:

G[〈a, let newReaders⇐ [ ] ++ [b] in
let state′ ⇐ drain (vals,newReaders) in
body state′

, ε〉]

Reducing the list append operation, expanding drain, and re-expanding G,
we have:

(νb)(〈b, E[receive], ε〉 ‖ 〈a, let state′ ⇐ (rec f(x).
let (vals, readers) = x in
case vals {

[ ] 7→ return (vals, readers)
v :: vs 7→

case readers {
[ ] 7→ return (vals, readers)
pid :: pids 7→ send v pid;

f (vs, pids)}}) (LW M :: L
−→
V M, [b]) in

body state′

, ε〉

Next, we reduce the recursive function and the case statements:

(νb)(〈b, E[receive], ε〉 ‖ 〈a, let state′ ⇐ send LW M b;
drain (L

−→
V M, [ ]))

body state′

, ε〉

We next perform the send operation, and note that the recursive call to drain

will return the argument unchanged, since (L
−→
V M, [ ]) has no pending requests.

Thus we have:

(νb)(〈b, E[receive], LW M〉 ‖ 〈a, body ((L
−→
V M, [ ])), ε〉
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Finally, we perform the receive and apply a structural congruence to arrive at

(νb)(〈b, E[LW M], ε〉) ‖ 〈a, body ((L
−→
V M, [ ])), ε〉

which is equal to

LE[returnW ] ‖ a(
−→
V ) M

as required.

Case NewCh

Assumption E[newCh]
Definition of L− M (νa)(〈a, LE M[spawn (body ([ ], [ ]))], ε〉)

−→ (νa)(νb)(〈a, LE M[return b], ε〉 ‖ 〈b, body ([ ], [ ]), ε〉)
≡ (νb)(νa)(〈a, LE M[return b], ε〉) ‖ 〈b, body ([ ], [ ]), ε〉)
= L (νb)(E[return b] ‖ b(ε)) M

as required.

Case Fork

Assumption E[forkM ]
Definition of L− M (νa)(〈a, LE M[let x⇐ spawn LM M in return ()], ε〉)

−→ (νa)(νb)(〈a, LE M[let x⇐ return b in return ()], ε〉 ‖ 〈a, LM M, ε〉)
−→M (νa)(νb)(〈a, LE M[return ()], ε〉 ‖ 〈b, LM M, ε〉)
≡ (νa)(〈a, LE M[return ()], ε〉) ‖ (νb)(〈b, LM M, ε〉)
= LE[return ()] ‖M M

as required.

Case Lift
Immediate by the inductive hypothesis.

Case LiftV
Immediate by Lemma 25.

ut
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