
Algebraic Effects and Effect Handlers for Idioms and Arrows

Sam Lindley
The University of Edinburgh

Abstract
Plotkin and Power’s algebraic effects combined with Plotkin and
Pretnar’s effect handlers provide a foundation for modular pro-
gramming with effects. We present a generalisation of algebraic
effects and effect handlers to support other kinds of effectful com-
putations corresponding to McBride and Paterson’s idioms and
Hughes’ arrows.

Categories and Subject Descriptors D.1.1 [Applicative (Func-
tional) Programming]; D.3.3 [Language Constructs and Fea-
tures]; F.3.2 [Semantics of Programming Languages]: Operational
semantics

Keywords algebraic effects; effect handlers; idioms; arrows;
monads; applicative functors; call-by-push-value

1. Introduction
In previous work [8] we advocated Plotkin and Power’s algebraic
effects [21, 22] and effect handlers [23] as a foundation for modular
programming with effects. We introduced a statically typed effect
handler calculus λeff along with a sound, terminating, small-step
operational semantics, and used it as the basis for practical imple-
mentations of handlers in Haskell, ML, and Racket.

Our calculus λeff (and standard algebraic effects and handlers)
provide a means for programming with monadic effects [18], sup-
porting generic effectful computations that can be handled in mul-
tiple ways. In this work, we adapt λeff to accommodate other kinds
of effectful computations corresponding to McBride and Paterson’s
idioms (also known as applicative functors) [17] and Hughes’ ar-
rows [7]. The resulting calculus, λflow, extends λeff with flow ef-
fects, which explicitly track dependencies between the result of an
effectful operation and subsequent effectful computation, allowing
us to encode idiom and arrow computations. Crucially, λflow sup-
ports effect handlers for idiom and arrow computations.

A key reason why arrow programs and idiom programs are of
interest to functional programmers is that they admit a wider range
of implementations than corresponding monadic programs. Every
monad is an arrow and every monad is also an idiom. But there
exist arrows that are not monads and idioms that are not monads.
For instance, non-monadic arrows are often used in functional reac-
tive programming, and non-monadic idioms in parser combinators,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WGP ’14, August 31 2014, Gothenburg, Sweden.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3042-8/14/08. . . $15.00.
http://dx.doi.org/10.1145/2633628.2633636

in both cases providing more space and time efficient implementa-
tions than monadic alternatives.

The λflow calculus combines the benefits of λeff (modular sup-
port for handling multiple effects) and our earlier work on the arrow
calculus [13, 14] (providing a uniform foundation for programming
with idioms, arrows, and monads with a single effect). It allows us
to use the same syntax for idiom, arrow, and monad computations.
Thus, we can write generic effectful combinators in λflow that can
be used in idiom, arrow, and monad computations.

Just as λeff gave us a firm basis for building practical implemen-
tations of standard effect handlers, we hope that λflow can provide
a firm basis for building practical implementations of idiom and ar-
row handlers, and in particular support generic effectful programs,
combining idiom, arrow, and monad computations.

Our main contributions are as follows:

• We introduce flow effects as a means for distinguishing abstract
idiom, arrow, and monad computations.

• We provide a uniform foundation for programming with id-
ioms, arrows, and monads with multiple effects, generalising
both λeff and the arrow calculus.

• An immediate consequence of our formulation is that the in-
clusions between abstract idiom and abstract arrow computa-
tions, and abstract arrow and abstraction monad computations
of Lindley et al. [14] are strict. Abstract monad programs are
strictly more expressive than abstract arrow programs, which
are in turn strictly more expressive than abstract idiom pro-
grams.

• We introduce idiom and arrow handlers, as variations on stan-
dard monadic effect handlers.

• We illustrate the use of an extension of λflow for writing generic
parser combinators.

The remainder of the paper is structured as follows. Section 2
introduces the key ideas of our approach by first characterising ab-
stract effectful computations as computation trees, and then defin-
ing flow effects in terms of computation trees. Section 3 describes
λeff , first focusing on abstract computations, and then on effect han-
dlers. Section 4 presents flow effects and Core λflow, the fragment
of λflow for expressing abstract idiom, arrow, and monad compu-
tations. Section 5 presents handlers in λflow for idiom, arrow, and
monad computations. Section 6 presents a parser combinator im-
plementation using an extension of λflow. Section 7 discusses re-
lated work. Section 8 discusses future work.

2. Effects as Computation Trees
2.1 What is an Effectful Computation?
Plotkin and Power [21, 22] introduced algebraic effects for mod-
elling the semantics of effectful computations. They gave an ab-
stract categorical treatment. We will be much more concrete, and
after our initial example consider only free algebras.

An algebraic effect is given by a signature of operations along
with a set of equations on those operations. For example, we might
define an algebraic effect for read only boolean state with the
following signature:

{get : 1→ Bool}
and equations:

get()(get()(p, q), r) = get()(p, r) = get()(p, get()(q, r))
get()(p, p) = p

When specifying equations in the algebraic approach, opera-
tions are typically written in a continuation passing style (CPS),
exposing their algebraic structure. Thus get()(p, q) corresponds to
a term that a functional programmer would typically write in direct
style as let x ← get () in if x then p else q. This continuation
passing style corresponds directly to a view of algebraic computa-
tions as (possibly infinitely branching) trees, such that:

• nodes are labelled with operations;
• there is an edge labelled with each possible return value in the

domain of the operation associated with a parent node;
• each such edge is connected to the corresponding continuation

of the computation;
• leaves are labelled with final return values; and
• trees are quotiented modulo the equations.

For example, the CPS term get()(get()(1, 2), 3) is given by the
computation tree:

get ()

get ()

1

True

2

False

True

3

False

which by the first equation is equivalent to the CPS term get()(1, 3),
whose computation tree is:

get ()

1

True

3

False

Following our previous work [8] on handlers for algebraic ef-
fects, we consider only algebraic effects for which there are no
equations. We call these abstract effects and algebraic computa-
tions over them abstract computations. Thus an abstract computa-
tion is a plain unquotiented tree.

Abstract effects are closely related to monads, which Moggi
successfully advocated [18] as a tool for modelling the semantics
of effectful computation. Indeed, an abstract effect over an effect
signature Σ is exactly the free monad construction over the functor
generated by Σ [25].

2.2 Idioms are Oblivious, Arrows are Meticulous, Monads
are Promiscuous

In previous work [14], we analysed the relative expressiveness
of abstract idiom, arrow, and monad computations, proving that
abstract idiom computations are less expressive than abstract arrow
computations, which in turn are less expressive than abstract monad
computations. We also gave an informal characterisation of the
differences in terms of control flow and data flow, which we will

control flow data flow
idiom static static
arrow static dynamic
monad dynamic dynamic

Table 1. Flow for Idioms, Arrows, and Monads

now develop into a crisp characterisation in terms of constraints on
abstract computation trees.

We say that data flow is dynamic if the value passed to an
operation can depend on the results of prior operations. We say that
control flow is dynamic if which operation to invoke (or whether
to invoke an operation at all) can depend on the results of prior
operations. The nature of data flow and control flow for idioms,
arrows, and monads is given in Table 1. Idioms are entirely static.
Arrows have static control flow but dynamic data flow. Monads are
entirely dynamic.

Now we consider how this characterisation relates to abstract
computation trees. First let us define some effect signatures:

GB = {get : 1→ Bool
beep : 1→ 1 }

State S = {get : 1 → S
put : S→ 1 }

Monad trees are just abstract computation trees, as monads
impose no restrictions on dependencies. For example, the CPS
term, noisey = get(True, beep(False)), over effect signature GB,
represents monad tree:

get ()

True

True

beep ()

False

()

False

Arrow trees are those monad trees for which control flow
is static. Concretely, this means that the tree must be com-
pletely balanced, and at each level of the tree each node
must be labelled with the same operation (though the parame-
ters to the operations may differ). For example, the CPS term,
flip = get(putFalse(True), putTrue(False)), over effect signature
State Bool, represents the arrow tree:

get ()

put False

True

()

True

put True

False

()

False

Idiom trees are those arrow trees for which not only is the con-
trol flow static, but so is the data flow. Concretely, this means
at each level of the tree the parameters of the operations on
each node are identical. For example, the CPS term, reset =
get(putFalse(True), putFalse(False)), over effect signature State Bool,
represents the idiom tree:

get ()

put False

True

()

True

put False

False

()

False

Freedom Just as abstract monadic effects correspond exactly
with the free monad construction over an effect signature, so ab-
stract arrow effects correspond exactly with the free arrow con-
struction over an effect signature, and abstract idiom effects cor-
respond exactly with the free idiom construction over an effect
signature.

Strange Computations An obvious omission from Table 1 is
the case where control flow is dynamic, but data flow is static.
We are not aware of a corresponding structure in the literature,
and it seems rather strange to have dynamic control flow without
dynamic data flow as well, so we will refer to such computations
as strange. We can give a characterisation of strange computations
in terms of abstract computation trees. Strange trees are those
abstract computation trees for which control flow is dynamic, but
data flow is static. Concretely, this means that the tree must be
completely balanced, and at each level of the tree the parameters
of the operations on each node must be identical.

Memory Flow From the structure of abstract computation trees, it
is apparent that there is one other place that results may flow to: the
leaves of the tree. We refer to this kind of flow as memory. We say
that memory flow is dynamic if the values at the leaves depend on
the results of prior computations and static if they do not. Idiom,
arrow, and monad computations all have dynamic memory flow.
One might conceive of explicitly distinguishing effectful computa-
tions that have static memory flow. The leaves of the corresponding
computation trees are all the same; hence they must always have the
same return value. This notion does not seem particularly useful, as
we can always achieve the same behaviour via computations with
unit return type paired up with the constant return value.

2.3 Flow Effects
In order to distinguish static and dynamic control and data flow, we
will introduce special effect annotations which we call flow effects.
The two flow effects are c, for dynamic control flow, and d, for
dynamic data flow. We explain how they fit into λflow in Section 4.

3. An Effect Calculus
As a starting point for a calculus of effects and handlers for id-
ioms, arrows, and monads, we take the λeff -calculus [8], which pro-
vides an effect type system and operational semantics for standard
monadic algebraic effects and effect handlers, providing a founda-
tion for generic effectful programming. In this section, we recapit-
ulate the details of λeff .

3.1 Abstract Effects
In this subsection, we introduce Core λeff , the fragment of λeff that
describes abstract effects in isolation from their handlers. This sub-
language allows us to write abstract computations over an effect
signature. We deviate slightly from our previous presentation [8].
Apart from superficial differences in lexical syntax, we omit com-
putation products and unit, as they are orthogonal to the current
work, and we adopt direct-style (as opposed to CPS) operations as
primitive.

The syntax of types is as follows:

(values) A,B ::= 1 | A1 ×A2

| 0 | A1 +A2

| {C}E
(computations) C ::= [A] | A→ C
(effect signatures) E ::= {op : A→ B}] E | ∅
(environments) Γ ::= x1 : A1, . . . , xn : An

Following Levy’s call-by-push-value [10], types are partitioned
into value types (A,B) and computation types (C). The primary
benefit we gain from a call-by-push-value approach is that it makes
an explicit distinction between supplying an argument to a function
and forcing a suspended computation. Effects are associated only
with the latter action.

Value types (V,W) comprise unit (1), product (A1 × A2),
empty (0), sum (A1 + A2), and thunk types ({C}E). In {C}E , the
computation type C is allowed to perform operations in the effect
signature E. Computation types (C) comprise returners ([A]),
which yields values of typeA, and function types A→ C, from an
argument of typeA to a computation of typeC. An effect signature
comprises a collection of operation signatures {opi : Ai → Bi}i.
Operations in a signature must have distinct names, but order is not
important. Type environments (Γ) are standard.

Intuitively, one can think of a returner type [A] as being in-
habited by computation trees. The structure of such trees can be
quite rich. For a start, given a node for operation op : A → B, it
has n children, where n is the number of inhabitants of B. If we
simply add a base type of natural numbers, then this means that
our trees can be infinitely wide. More interestingly, an operation
may take a suspended returner computation as a parameter, which
yields a kind of “hyper tree” structure in which internal nodes may
themselves contain further trees. Amongst other things, operations
with computation parameters are useful for implementing a binary
choice between two computations (see Section 6) and certain forms
of aspect-oriented programming patterns [6, 12].

The syntax of terms is as follows:

(values) V,W ::= x | () | (V1, V2) | inji V | {M}
(computations) M,N ::= split(V, x1.x2.M) | case0(V)

| case(V, x1.M1, x2.M2) | V !
| return V | let x ←M in N
| λx .M |M V
| op V

As with types, the terms are partitioned into value terms and com-
putation terms. Value terms comprise variables (x), unit (()), pairs
((V1, V2)), injections (inji V), and thunks ({M}). Value terms are
inert, in that all computation takes place in computation terms.
Thus, all of the value constructs apart from variables are intro-
duction forms. Computation terms comprise elimination forms
for pairs (split(V, x1.x2.M)), the empty type (case0(V)), sum
types (case(V, x1.M1, x2.M2)), and thunks (V !) , introduction
(return V) and elimination (let x ←M inN) forms for returners,
introduction (λx .M) and elimination (M V) forms for functions,
and operation applications (op V).

The typing rules for Core λeff are given in Figure 1. The value
judgement Γ ` V : A asserts that value term V has type A in
type environment Γ. The computation judgement Γ `E M : C
asserts that computation term M has type C with effects E in type
environment Γ. The small-step operational semantics for Core λeff

is given in Figure 2.

Γ ` V : A

VAR
(x : A) ∈ Γ

Γ ` x : A

UNIT

Γ ` () : 1

PAIR
Γ ` V1 : A1 Γ ` V2 : A2

Γ ` (V1, V2) : A1 ×A2

INJi
Γ ` V : Ai

Γ ` inji V : A1 +A2

THUNK
Γ `E M : C

Γ ` {M} : {C}E

Γ `E M : C

SPLIT
Γ ` V : A1 ×A2

Γ, x1 : A1, x2 : A2 `E M : C

Γ `E split(V, x1.x2.M) : C

CASEZERO
Γ ` V : 0

Γ `E case0(V) : C

CASE
Γ ` V : A1 +A2

Γ, x1 : A1 `E M1 : C
Γ, x2 : A2 `E M2 : C

Γ `E case(V, x1.M1, x2.M2) : C

RETURN
Γ ` V : A

Γ `E return V : [A]

LET
Γ `E M : [A]

Γ, x : A `E N : C

Γ `E let x ←M in N : C

ABS
Γ, x : A `E M : C

Γ `E λx .M : A→ C

APP
Γ `E M : A→ C

Γ ` V : A

Γ `E M V : C

FORCE
Γ ` V : {C}E
Γ `E V ! : C

OP
(op : A→ B) ∈ E

Γ ` V : A

Γ `E op V : [B]

Figure 1. Typing Rules for Core λeff

(β.×) split((V1, V2), x1.x2.M1) −→M [V1/x1, V2/x2]
(β.+) case(inji V , x1.M1, x2.M2) −→Mi[V/xi]
(β.{}) {M}! −→M

(β.[]) let x ← return V inM −→M [V/x]
(β.→) (λx .M) V −→M [V/x]

M −→ N

E[M] −→ E[N]

E ::= [] | E V | let x ← E in N

Figure 2. Operational Semantics for Core λeff

Syntactic Sugar We will use the following syntactic sugar:

M ;N ≡ let x ←M in N, x fresh
Bool ≡ 1 + 1
True ≡ inj1 ()
False ≡ inj2 ()

if V thenM else N ≡ case(V, x .M, y .N), x, y fresh
¬V ≡ if V then return True else return False

Examples Figure 3 presents the four example abstract computa-
tions from Section 2 as λeff terms.

3.2 Effect Handlers
Core λeff allows us to write abstract computations over arbitrary
effect signatures. An effect handler provides an interpretation of
an abstract computation.

We extend the grammar for Core λeff as follows.
Handler types

R ::= A E⇒E′
C

Handlers

H ::= {return x 7→M} | H] {op p k 7→ N}
Handling

M ::= · · · | handleM withH

A handler type A E⇒E′
C interprets a returner computation of

type [A] with effects E as a computation of type C with effects

noisey : {[Bool]}GB
noisey = {let x ← get() in

if x then return x else (beep(); return x)}

flip : {[Bool]}State Bool

flip = {let x ← get() in
let y ← ¬x in

put(y); return x}

reset : {[Bool]}State Bool

reset = {let x ← get() in
put(False); return x}

Figure 3. Core λeff examples

E′. A handler is defined by a return clause return x 7→ M and a
collection of operation clauses {opi p k 7→ Ni}i. The return clause
defines how to handle final return values. The returned value is
bound to the variable x in M . The operation clauses define how
to handle each operation. The operation parameter is bound to p,
and the continuation is bound to k in N . Providing direct access
to the whole continuation allows it to be used non-linearly, which
is important for implementing effects such as exceptions, and non-
deterministic choice, for instance.

For any handler:

H = {return x 7→M}] {opi p k 7→ Ni}i
we define the action of H on return values as follows:

H(return, V) = M [V/x]

and the action of H on operations handled by H as follows:

H(opi, V,W) = Ni[V/p,W/k]

The typing rules for handlers are given in Figure 4. The opera-
tional semantics for handlers is given in Figure 5.

Reifying Handlers In essence, the type A E⇒E′
C behaves like

a suspended function of type {{[A]}E → C}E′ . Indeed we can
reify a handler H as a value as follows:

Γ ` H : A E⇒E′
C

Γ ` {λx .handle x ! withH} : {{[A]}E → C}E′

Γ `E M : C Γ ` H : A E⇒E′
C

. . .

HANDLE

Γ `E M : [A] Γ ` H : A E⇒E′
C

Γ `E′ handleM withH : C

HANDLER
E = {opi : Ai → Bi}i H = {return x 7→M}] {opi p k 7→ Ni}i

[Γ, p : Ai, k : {Bi → C}E′ `E′ Ni : C]i Γ, x : A `E′ M : C

Γ ` H : A E⇒E′
C

Figure 4. Typing Rules for Handlers

(handle.[]) handle (return V) withH −→H(return, V)
(handle.op) handleD[op V] withH −→H(op, V, {λz.handleD[return z] withH})

(delimited computation contexts) D ::= [] | D V | let x ← D in N
(evaluation contexts) E ::= [] | E V | let x ← E in N | handle E withH

Figure 5. Operational Semantics for Handlers

Examples As a basic example, consider a handler for stateful
computations:

evalState : A State S⇒∅ (S → [A])
evalState = return x 7→ λs.return x

get p k 7→ λs.k s s
put p k 7→ λs.k () p

This handler interprets a stateful computation of type [A] over
state type S as a pure function of type S → [A]. The state is
threaded through the computation such that it can be read and writ-
ten using get and put, but is discarded when the computation re-
turns. Now if we instantiate S to Bool, then we can apply evalState
to flip:

handle flip! with evalState

yielding a function of type Bool→ [Bool] that flips its argument.
An important property of abstract computations is that they are

generic in the sense that they do not commit to a particular inter-
pretation of the operations. For instance, we can define alternative
handlers for state. A mild variation on the evalState handler is a
handler that interprets get and put in the same way, but returns the
final state along with the final return value of the computation.

runState : A State S⇒∅ (S → [A× S])
runState = return x 7→ λs.return (x, s)

get p k 7→ λs.k s s
put p k 7→ λs.k () p

A slightly more interesting variation is the following handler, which
logs each put operation, returning the list of all values written to the
state cell in a list alongside the final return value.

logState : A State S⇒∅ (S → [A× List S])
logState = return x 7→ λs.return (x,Nil)

get p k 7→ λs.k s s
put p k 7→ λs.let z ← k () p in

split(z, x.ss.(x,Cons s ss))

For this example, we have assumed a standard extension of λeff

with list types List X and corresponding list constructors Nil :
List X and Cons : X → List X → List X .

3.3 Effect Forwarding
In our prior work [8], we considered a number of practical exten-
sions and variations on handlers, including shallow handlers, pa-
rameterised handlers, open handlers, effect forwarding, and effect
polymorphism. Perhaps the most important extension is effect for-
warding in conjunction with open handlers.

The idea is that an open handler handles all of the operations
explicitly specified by its type, but it also supports other operations,
which are forwarded to be handled by an outer handler. A key
advantage of open handlers is that they compose. We might, for
instance, define an open handler for state and an open handler
for exceptions. We can then handle a computation that uses state,
exceptions, and possibly other effects as well by first handling it
with the state handler, and then handling the resulting computation
with the exception handler, or vice-versa.

It is straightforward to adapt λeff to support open handlers. The
typing rule for open handlers is:

OPENHANDLER
E = E′ ⊕ {opi : Ai → Bi}i
H = {return x 7→M}] {opi p k 7→ Ni}i
[Γ, p : Ai, k : {Bi → C}E′ `E′ Ni : C]i

Γ, x : A `E′ M : C

Γ ` H : A E⇒E′
C

The only difference from the vanilla HANDLER rule is that the input
effects areE′⊕E instead of justE, whereE′⊕E is the extension
of E′ by E (where any clashes are resolved in favour of E).

As far as the semantics goes, we simply extend the action of a
handler to forward operations with no operation clause:

H(op, V,W) = let x ← op V inW ! x , op 6= opi for any i

4. Flow Effects
In this section we introduce Core λflow, a variation of Core λeff that
supports abstract idiom, arrow, and monad computations using a
uniform syntax, and thus supporting generic effectful programming
over all three kinds of effectful computation. The grammar of types
is as follows:
(values) A,B ::= 1 | A1 ×A2 | 0 | A1 +A2 | {C}E
(computations) C ::= [A] | A→ C
(effect signatures) E ::= {op : A→ B}] E | {f}] E | ∅
(flow effects) f ::= c | d
(environments) Γ ::= Γ, x : A | Γ, x? : A | ·

The differences are highlighted in grey. As well as the usual opera-
tions, effect signatures can also include flow effects c and d, which
denote dynamic control and data flow. In λflow, type environments
distinguish between active (x? : A) and inactive (x : A) variables.
Only active variables can be directly used. The flow effects allow
inactive variables to be activated appropriately in order to realise
dynamic control and data flow.

Γ ` V : A

VAR?

(x? : A) ∈ Γ

Γ ` x : A

UNIT

Γ ` () : 1

PAIR
Γ ` V1 : A1 Γ ` V2 : A2

Γ ` (V1, V2) : A1 ×A2

INJi
Γ ` V : Ai

Γ ` inji V : A1 +A2

THUNK
Γ `E M : C

Γ ` {M} : {C}E

Γ `E M : C

SPLIT?

Γ? ` V : A1 ×A2

Γ, x1 : A1, x2 : A2 `E M : C

Γ `E split(V, x1.x2.M) : C

CASEZERO?

Γ? ` V : 0

Γ `E case0(V) : C

CASE
Γ ` V : A1 +A2

Γ, x1 : A1 `E M1 : C
Γ, x2 : A2 `E M2 : C

Γ `E case(V, x1.M1, x2.M2) : C

RETURN?

Γ? ` V : A

Γ `E return V : [A]

LET
Γ `E M : [A]

Γ, x : A `E N : C

Γ `E let x ←M in N : C

ABS
Γ, x : A `E M : C

Γ `E λx .M : A→ C

APP?

Γ `E M : A→ C
Γ? ` V : A

Γ `E M V : C

FORCE
Γ ` V : {C}E
Γ `E V ! : C

OP
(op : A→ B) ∈ E

Γ ` V : A

Γ `E op V : [B]

OP?

d ∈ E (op : A→ B) ∈ E
Γ? ` V : A

Γ `E op V : [B]

FORCE?

c, d ∈ E
Γ? ` V : {C}E
Γ `E V ! : C

RETURNC?

E′ ⊆ {c,d}
Γ? `E′ M : [A]

Γ `E returnM : [A]

Figure 6. Typing Rules for Core λflow

We define two meta operations on type environments. The first,
activation (Γ?), activates all of the variables in Γ.

·? = ·
(Γ, x : A)? = Γ?, x? : A

(Γ, x? : A)? = Γ?, x? : A

The second, flushing (Γ†), removes all of the inactive variables
from Γ.

·† = ·
(Γ, x : A)† = Γ†

(Γ, x? : A)† = Γ†, x? : A

The typing rules for Core λflow are given in Figure 6. The dif-
ferences from Core λeff are again highlighted in grey. The variable
rule restricts access to active variables.

VAR?

(x? : A) ∈ Γ

Γ ` x : A

The application rule, activates all variables in the argument value.
APP?

Γ `E M : A→ C Γ? ` V : A

Γ `E M V : C

This is always sound because β-reduction will always bind the
argument value to an inactive variable. The elimination rules for
products and empty sums are amended in order to activate the type
environment in the eliminated value.

SPLIT?

Γ? ` V : A1 ×A2

Γ, x1 : A1, x2 : A2 `E M : C

Γ `E split(V, x1.x2.M) : C

CASEZERO?

Γ? ` V : 0

Γ `E case0(V) : C

This is sound because decomposing a product or an empty sum has
no impact on control or data flow. The rule for returning a value
activates all variables in the value.

RETURN?

Γ? ` V : A

Γ `E return V : [A]

Activating the type environment supports dynamic memory flow.
In order to support dynamic data flow, we add a variant of the rule
for operations that only applies if the d effect is present.

OP?

d ∈ E (op : A→ B) ∈ E
Γ? ` V : [A]

Γ `E op V : [B]

As well as the standard return V construct, we introduce a special
return M construct, which yields the value returned by the pure
returner computation M .

RETURNC?

E′ ⊆ {c, d} Γ? `E′ M : [A]

Γ `E returnM : [A]

This rule allows final return values to be computed from any vari-
ables in the type environment using an arbitrary pure computation
(E′ can only include flow effects, so it must be pure). Finally, we
include a special rule for forcing thunks, that only applies to thun-
ked computations with the c and d flow effects.

FORCE?

c, d ∈ E Γ? ` V : {C}E
Γ `E V ! : C

This rule activates all of the variables in a type environment when
forcing a thunk.

If c,d ∈ E then the following derivation applies:

Γ? `E M : C

Γ? ` {M} : {C}E
Γ `E {M}! : C

FORCE?
THUNK

Hence in the presence of all flow effects we can systematically
activate all variables in the type environment and λflow degenerates
into λeff , which explains why both the data flow and control flow
effects appear in the (FORCE?) rule.

The operational semantics for λflow is given in Figure 7. The
only differences from Core λeff (highlighted in grey) are the addi-
tional evaluation context for computing inside returned values and

(β.×) split((V1, V2), x1.x2.M1) −→M [V1/x1, V2/x2]
(β.+) case(inji V , x1.M1, x2.M2) −→Mi[V/xi]
(β.{}) {M}! −→M

(β.[]) let x ← return V inM −→M [V/x]
(β.→) (λx .M) V −→M [V/x]

(ret .ret) return (return V) −→ return V

M −→ N

E[M] −→ E[N]

E ::= [] | E V | let x ← E in N | return E

Figure 7. Operational Semantics for Core λflow

the (ret .ret) rule for converting the result of a pure computation
into a plain value.

Examples Figure 8 presents the four example abstract computa-
tions of Section 2 and Figure 3 as λflow terms. The terms noisey
and flip differ from the corresponding terms in Figure 3. The term
reset is identical because it does not involve dynamic data or con-
trol flow.

In λflow we explicitly list the c and d effects in the type of
noisey and we explicitly list the d effect in the type of flip. The
λeff version of noisey does not type check in λflow because x is
not active in the conditional test position. Thunking and forcing the
conditional activates it. The λeff version of flip does not type check
in λflow because x is not active in the negation. We take advantage
of λflow’s ability to treat pure computations like values in order to
activate it.

5. Handling Flow
In this section we present effect handlers for λflow. As there are two
flow effects (c and d), there are four possible kinds of computation
we might try to handle: monads ({c, d}), arrows ({d}), idioms
(∅), and something strange ({c}). As λflow does not have adequate
support for writing computations of the latter kind, we will only
consider handlers for the other three kinds.

As we have the inclusions ∅ ⊆ {d} ⊆ {c, d}, monad handlers
can handle arrow and idiom computations, and arrow handlers can
handle idiom computations. However, there exist interpretations of
arrow computations that cannot be specified using monad handlers
and interpretations of idiom computations that cannot be specified
using arrow or monad handlers.

The typing rules for monad, arrow, and idiom handlers are given
in Figure 9. The operational semantics is given in Figure 10. We use
the syntactic sugar:

λ(x , y).M ≡ λz .split(z , x .y .M), z fresh

We now describe in detail the design of the different kinds of
handler. Each kind of handler has the same syntax as standard han-
dlers. The differences are in the typing rules, operational semantics,
and the handle constructs.

5.1 Monad Handlers
We already know how to handle arbitrary monadic computations.
The typing rules are the same as for standard handlers, except the
effects of a handled computation may additionally include arbitrary
flow effects. As abstract arrow and idiom computations are just
restricted monad computations, it is sound for a monad handler to
handle an abstract arrow or idiom computation. The operational
semantics is unchanged. We annotate monad handlers and monad
handler types with a T subscript.

noisey : {[Bool]}GB∪{c,d}
noisey = {let x ← get() in

{if x then return x else (beep(); return x)}!}

flip : {[Bool]}State Bool∪{d}
flip = {let x ← get() in

let y ← return ¬x in
put(y); return x}

reset : {[Bool]}State Bool

reset = {let x ← get() in
put(False); return x}

Figure 8. Core λflow examples

5.2 Arrow Handlers
The challenge of adapting conventional effect handlers to interpret
arrow computations is that each operation clause must bind a con-
tinuation representing the rest of the computation, but in general
this continuation need not inhabit the usual function space. Indeed,
a key feature of arrows is that they abstract over computations with
input and output, that is continuations, in such a way that the input
need not be provided up-front.

For a monad T , a continuation is exactly a Kleisli arrow of type
A → T B (or A → [B] in λflow). But arrows generalise Kleisli
arrows, and thus continuations. For instance, for any state type S, a
state transformer [19] of type:

{S → [A]}{c,d} → [{S → [B]}{c,d}]

is an arrow with input type A and output type B.
Recall that an effect handler is a compositional interpreter for an

abstract computation. An arrow handler provides an interpretation
of an arrow computation with an input and an output. Arrow han-
dler syntax is exactly the same as standard handler syntax. Arrow
handler types do however differ from standard handler types.

We let X range over type variables, which we will use in order
to ensure that arrow handlers are parametric in the input type. This
is crucial, as it allows us to manually thread a context through arrow
computations.

Arrow handler types have the following shape:

R ::= A E⇒E′
 G

where G is a unary type operator mapping types to types. The
idea is that this interprets an abstract arrow computation of type
X → [A] as a computation of type G X , where X can be
instantiated at any type, and the interpretation is parametric in
X . We will sometimes write type operators as type-level lambda
functions of the form λX.C, where the type variable X is bound
in C.

The (ARROWHANDLE) rule describes how to handle an arrow
computation with an arrow handler. The type environment Γ is
flushed in M meaning that all dynamic input to the computation
must be packaged up in z . As the handled computation has an input
z , it is written as a lambda λz .M . The return type of the conclusion
is GB.

The (ARROWHANDLER) rule follows a similar structure to the
(MONADHANDLER) rule. The key differences arise because arrow
handlers handle computations with inputs. Thus the type of x in the
return clause is a function from the input typeX toA and similarly
the type of the parameter p in an operation clause is a function from
X toAi. The computation type of the continuation k isG (X×Bi)
instead of Bi → C. The idea is that G models the type of an arrow
computation: the argument to G is the input type, and the result

Γ `E M : C

. . .

MONADHANDLE

Γ `E M : [A] Γ ` H : A E⇒E′
T C

Γ `E′ handleT M withH : C

ARROWHANDLE

Γ†, z : B `E M : [A] Γ ` H : A E⇒E′
 G

Γ `E′ handle (λz .M) withH : GB

IDIOMHANDLE

Γ†, z : B `E M : [A] Γ ` H : A E⇒E′
I G

Γ `E′ handleI (λz .M) withH : GB

Γ ` H : A E⇒E′
T C

MONADHANDLER
E = {opi : Ai → Bi}i ∪ {fj}j
H = {return x 7→M}] {opi p k 7→ Ni}i

[Γ, p : Ai, k : {Bi → C}E′ `E′ Ni : C]i Γ, x : A `E′ M : C

Γ ` H : A E⇒E′
T C

Γ ` H : A E⇒E′
 G

ARROWHANDLER

X fresh E = {opi : Ai → Bi}i ∪ {fj}j c /∈ E
H = {return x 7→M}] {opi p k 7→ Ni}i

[Γ, p : {X → [Ai]}E′ , k : {G (X ×Bi)}E′ `E′ Ni : GX]i Γ, x : {X → [A]}E′ `E′ M : GX

Γ ` H : A E⇒E′
 G

Γ ` H : A E⇒E′
I G

IDIOMHANDLER

X fresh E = {opi : Ai → Bi}i ∪ {fj}j c, d /∈ E
H = {return x 7→M}] {opi p k 7→ Ni}i

[Γ, p : Ai, k : {G (X ×Bi)}E′ `E′ Ni : GX]i Γ, x : {X → [A]}E′ `E′ M : GX

Γ ` H : A E⇒E′
I G

Figure 9. Typing Rules for λflow Handlers

(handleT.[]) handleT (return V) withH −→H(return, V)
(handleT.op) handleT D[op V] withH −→H(op, V, {λx .handleD[return x] withH})
(handle .[]) handle (λz .return P) withH −→H(return, {λz .return P})
(handle .op) handle (λz .D[op V]) withH −→H(op, {λz .return V }, {handle (λ(z , x).D[return x]) withH})
(handleI.[]) handleI (λz .return P) withH −→H(return, {λz .return P})
(handleI.op) handleI (λz .D[op V]) withH −→H(op, V, {handleI (λ(z , x).D[return x]) withH})

(value or computation term) P ::= V |M
(delimited computation contexts) D ::= [] | D V | let x ← D in N
(evaluation contexts) E ::= [] | E V | let x ← E in N | return E

| handleT E withH | handle (λz .E) withH | handleI (λz .E) withH

Figure 10. Operational Semantics for λflow Handlers

of applying G to a type is the output type. In the continuation, the
current input type is paired up with the return type of the operation.

The operational semantics is similar to that for monadic han-
dlers. The differences are all related to explicitly threading the
context through the handler. When handling a return clause (han-
dle .[]), the returned term is a function of the input. (Note that
we must account for the possibility that P is a computation term
M as z may appear free in M , in which case return M may be
stuck.) When handling an operation (handle .op), the parameter
is a function of the input, and the continuation extends the context
with the return value of the operation.

It is not sound to apply an arrow handler to a monadic compu-
tation and thus the (ARROWHANDLER) rule prevents arrow han-
dlers from being applied to computations with dynamic control
flow. Concretely, this constraint ensures that closed terms do not
get stuck. For instance, it disallows the term:

handle (λz .{case(z , x1.M1, x2.M2)}!) withH

which reduces to the stuck term:

handle (λz .case(z , x1.M1, x2.M2)) withH

As every abstract idiom computation is just a restricted abstract
arrow computation, it is perfectly sound to handle an abstract idiom
computation with an arrow handler.

Reifying Arrow Handlers Just as standard handlers can be reified
as values, so can arrow handlers. In essence, for any type X , the
arrow handler type A E⇒E′

 G behaves like a suspended function
of type {{X → [A]}E → GX}E′ . Indeed, for any type X , we
can reify an arrow handler H as a value as follows:

Γ ` H : A E⇒E′
 G

Γ `{λy .handle (λx .y ! x)withH} :{{X→[A]}E→GX}E′

Examples We can systematically transform any monad handler
into a corresponding arrow handler. For instance, evalState can be
rewritten as an arrow handler as follows.

evalState : A State S]{d}⇒{c,d} λX.X → S → [A]
evalState = return x 7→ x !

get p k 7→ λz.λs.k! (z, s) s
put p k 7→ λz.λs.let p′ ← p z in k! (z, ()) p′

However, we can also provide other interpretations that are
not possible with monad handlers. As a simple, albeit slightly
contrived, example, we can write an alternative arrow handler for
state that determines statically whether a computation performs a
put operation or not.

puts : A State S]{d}⇒{c,d} λX.[Bool]
puts = return x 7→ return False

get p k 7→ k !
put p k 7→ return True

As a computation handled by puts must be an abstract arrow
computation, in which the operations performed are independent
of the values returned by intermediate operations, it is possible to
compute the result statically without actually supplying any state.
This is not possible for any monad handler for state as the number
of times that put is performed is in general a dynamic property in
a monadic computation.

Let us now consider an effect signature for failure:

Fail = {fail : ∀X.1→ X}

The universal quantifier indicates that fail is a polymorphic opera-
tion. Effectively it defines an infinite family of operations param-
eterised by X . Correspondingly, an operation clause for fail de-
fines an infinite family of operation clauses parameterised by X .
Polymorphic operations and corresponding polymorphic operation
clauses are a straightforward extension that applies just as well to
λflow as it does λeff [8]. We could give fail the signature 1 → 0,
but we choose to make it polymorphic because doing so is more
convenient for writing example code. We can handle failure as an
option type in the standard way:

maybe : A Fail]{d}⇒{c,d} λX.[{X → A}{c,d} + 1]
maybe = return x 7→ return (inj1 x)

fail p k 7→ return (inj2 ())

Alternatively, we can write a non-standard handler that in the event
of failure counts the total number of failures (a quantity which is
fixed for an abstract arrow computation, but not for an abstract
monad computation):

fails : A Fail]{d}⇒{c,d} λX.[{X → A}{c,d} + Nat]
fails = return x 7→ return (inj1 x)

fail p k 7→ let r ← k! in
case(r,

x.return (inj2 (S Z)))
n.return (inj2 (S n)),

where we assume a data type of natural numbers Nat with con-
structors S and Z. If we define:

twoFail : {[A×B]}Fail]{d}
twoFail = {let x← fail () in let y ← fail () in return (x, y)}

then:

(handle (λz .twoFail!) with maybe) () −→∗ return ()

and:

(handle (λz .twoFail!) with fails) () −→∗ return (S (S Z))

5.3 Idiom Handlers
The IDIOMHANDLER rule is similar to the ARROWHANDLER rule.
The difference is that the context is not threaded through param-
eters in operation clauses — directly capturing the property that
idiom computations do not have the data flow effect. The (han-
dleI.[]) rule is identical to the (handle .[]) rule. The (handleI.op)
rule is similar to the (handle .op) rule; the only difference is that
the context is not threaded through operation parameters.

It is not sound to apply an idiom handler to an abstract monad
or arrow computation and thus the (IDIOMHANDLER) rule prevents
idiom handlers from being applied to computations with dynamic
data flow. Concretely, this constraint ensures that closed terms do
not become open. For instance, if we were to allow dynamic data
flow then we could write:

M = handleI (λy .op y) withH

Now suppose:

H(op, y , {handleI ((λ(z , x).D[return x])) withH}) = return y

then M reduces to the open term return y .

Reifying Idiom Handlers Just as monadic and arrow handlers can
be reified as values, so can idiom handlers. For any type X , we can
reify an idiom handler H as a value as follows:

Γ ` H : A E⇒E′
I G

Γ `{λy .handleI (λx .y ! x)withH} :{{X→[A]}E→GX}E′

Examples Just as we can transform any monad handler into an
corresponding arrow handler, we can systematically transform any
arrow handler (or monad handler) into a corresponding idiom han-
dler. For instance, evalState and puts can be written as idiom
handlers as follows.

evalStateI : A State S⇒{c,d}I λX.X → S → [A]
evalStateI = return x 7→ λz.λs.x ! z

get p k 7→ λz.λs.k! (z, s) s
put p k 7→ λz.λs.k! (z, ()) p

putsI : A State S⇒{c,d}I λX.[Bool]
putsI = return x 7→ return False

get p k 7→ k !
put p k 7→ return True

The only difference between the definition of evalState and
evalStateI is that the latter does not apply p to the context in the
clause that handles put, as it cannot depend on the context. The
definitions of puts and putsI are identical because the operation
parameters are never used in either.

Here is another idiom handler for state that statically sums all
of the values that will be written to the state cell by an abstract
computation:

putSumI : A State Nat⇒{c,d}I λX.[Nat]
putSumI = return x 7→ return Z

get p k 7→ k !
put p k 7→ let x← k! in return p+ x

This is not possible for any arrow handler for state, as in an ab-
stract arrow computation the parameters to put operations can be
dynamic.

For the following example, we assume λflow has been extended
with a List data type with constructors Nil and Cons and String ≡
List char. Let us consider a variation on failure in which an error
message is reported alongside failure:

Error = {Err : ∀X.String→ X}

We can straightforwardly write idiom handlers that have analo-
gous behaviour to maybe and fails . We can also define a han-
dler that, in the case of error, aggregates all possible error messages.

errsI : A Error⇒{c,d}I λX.[{X → A}{c,d} + (List String)]
errsI = return x 7→ return (inj1 x)

Err s k 7→ let r ← k! in
case(r,

ss.return (inj2 (Cons s ss)),
x.return (inj2 (Cons s Nil)))

This is not possible for any arrow handler for state, as in an ab-
stract arrow computation the parameters to Err operations can be
dynamic.

5.4 Forwarding for Arrow and Idiom Handlers
As the continuation of an operation handled by an arrow or an
idiom handler may not be in the standard function space, we cannot
use the universal definition of forwarding that works for monadic
handlers. One possibility is to add a special forwarding clause:

default p k 7→ N ′

where

H(op, V,W) = N ′[{λx .op x}/default , V/p,W/k],
op 6= opi for any i

We leave it to future work to investigate how this idea pans out in
practice.

6. Example: Parser Combinators
As a larger example, we now build a collection of generic effectful
parser combinators. We choose parser combinators [24] as there ex-
ist monad, arrow and idiom variations, each with different practical
tradeoffs. Monad parser combinators are the most general, admit-
ting fully context-sensitive grammars. Arrow parser combinators
admit a small amount of context-sensitivity, for instance supporting
parsing of XML, where a close tag must match the corresponding
open tag. Idiom parser combinators capture context-free grammars.

In λflow each of these can be constructed using the same sig-
nature of parser operations. An important benefit of restricting the
power of parser combinators is that doing so admits more efficient
implementations. Rather than focusing on the intricacies of such
implementations (which are discussed in detail elsewhere [24]),
we present the necessary infrastructure to support generic parsers,
without committing to a particular concrete implementation.

We make use of a number of extensions to λflow in order
to make the example more realistic: recursive functions, pattern
matching, effect polymorphism, and effect forwarding. We also
make use of additional syntactic sugar for writing code in a more
concise call-by-value style.

• In the presence of control and data flow effects we automati-
cally activate the entire type environment (so we never need to
write {M}!).

• We allow return V to be written as simply V when doing so is
not ambiguous.

• We allow forcing to be omitted when applying a function to an
argument, writing V W for V ! W .

• We allow top-level definitions to be written directly without
curly braces. For instance: id x = x means id = {λx.x}.

• We allow computation terms to appear anywhere a value term
is normally required within a computation term, in which case
we desugar by binding such computations to values in left-to-
right order. For instance M N means let x ← N inM x and
(M,N) means let x ← M in let y ← N in return (x, y),
where x, y are fresh variables.

Let us begin with some primitive parsing operations:

any : 1→ Char char : Char→ Char

The any operation parses any character and the char operation
parses a specific character. We do not need to define a special
operation for the constant parser as it is simply return. Similarly,
we do not need a special operation for sequential composition
of parsers, as let binding gives us this functionality for free. For
instance, the following invokes parsers p and q in sequence and
then combines their results by function application:

let f ← p in let x← q in return (f x)

We make use of a failure operation:

fail : ∀X.1→ X

along with an operation to choose between two parsers:

choose : ∀X.({[X]}E , {[X]}E)→ X

where we will need to instantiate E appropriately. The idea is that
this operation takes two parsers returning type X as arguments,
tries running both, and then returns an answer of type X; exactly
how it does so depends on how the operation is handled. A handler
might return a list of all matches, or it might just return the first
match; it might run the parsers sequentially, or it might run them
in parallel. The effect signature E must include all of the opera-
tions we intend to support for parsing — including choose itself.
(The fail and choose operations together allow us to variously im-
plement the behaviour of the Haskell type classes Alternative,
ArrowChoice, and MonadPlus, which add additional monoidal
structure respectively to idioms, arrows, and monads.)

Let us now define a suitable effect signature, Parse:

Parse ε= {any : 1→ Char,
char : Char→ Char
fail : ∀X.1→ X
choose : ∀X.({[X]}Parse ε, {[X]}Parse ε)→ X}

] ε
It is parameterised by an effect variable ε that can be instantiated
with any of the flow effects in order to choose between idiom,
arrow, and monad interpretations.

Using the choose operation and a recursive function call, we
can define a composite parser that applies its argument zero or more
times:

many : {{[X]}Parse ε → [List X]}Parse ε

many p = choose (Nil,Cons p (many p))

We parse digits as follows:

digit : {[char]}Parse ε

digit = choose(char ′0′,
choose(char ′1′, . . . , choose(char ′9′) . . .))

Let us suppose that we have a function for converting a sequence
of digits into a natural number:

digitsToNat : {String→ [Nat]}{c,d}

The following parser parses natural numbers:

num : {[Nat]}Parse ε

num = let x← many digit in digitsToNat

Here is a function that parses a comma delimited list of natural
numbers terminated by an at sign (@):

nums : {Nat→ [List Nat]}Parse {c,d}
nums Z = char ‘@’; Nil
nums (S n) = let x← num () in char ‘,’; Cons x (nums n)

Because it performs a case split on its argument, nums is context-
sensitive and can only be handled by a monad handler. However,
by separating out the computation into two stages, we can define a
variant that generates a context-free parser computation that can be
handled by arrow or even idiom handlers:

nums′ : {Nat→ [{[List Nat]}Parse ε]}{c,d}
nums′ Z = {char ‘@’; Nil}
nums′ (S n) = let ys ← nums′ n in

{let x← num () in char ‘,’; Cons x (ys!)}
The outer computation performs the recursion on n. The generated
parser computation is independent of n.

Here is a context-sensitive parser that parses a single number
delimited by a character read dynamically from the input:

delim : {[Nat]}Parse {d}
delim = let c← any () in

char ‘ ’; let x← num () in char ‘ ’; char c;x

As c does not affect control flow, delim can be handled by an arrow
handler.

Here is a context-sensitive parser that parses a number n fol-
lowed by a list of n numbers:

nnums : {[Nat]}Parse {c,d}
nnums = let x← num () in char ‘:’; nums n

This is a truly dynamic parser, that can only be handled by a monad
handler.

In order to implement a handler for abstract parser computa-
tions, we will make use of effect signatures for reading characters,
state, and failure:

Read = {getc : 1→ char}
State S = {get : 1→ S, put : S → 1}
Fail = {fail : ∀X.1→ X}

Let us define an idiom handler for parsing (reified as a function):

parseI : {{[X]}Parse ∅ → [X]}Read]Fail]{c,d}
parseI =
handleI (λm.m!)with
return x 7→ x !
any () k 7→ let c← getc () in λz .k (z , c)
char c k 7→ if c == getc () thenλz .k (z , c)

elseλz .fail ()
fail () k 7→ λz .fail ()
choose (p, q) k 7→ case maybe (parseI p) of

Just v → λz .k (z, v)
Nothing→

case maybe (parseI q) of
Just v → λz .k (z, v)
Nothing→ λz .fail ()

The most interesting operation clause is the one for choose. Given
two parsers p and q, we first try to parse with p, and if that fails
then we try with q. In order to test for failure, we recursively
invoke parse and handle the result with maybe, a straightforward
handler that interprets failure as an option data type MaybeX with

constructors Just and Nothing:

maybe : {{X}Fail]{c,d}]ε → [Maybe X]}{c,d}]ε
maybe m = handleTm!with

return x 7→ Just x
fail () k 7→ Nothing

We now define a handler for reading characters:

read : {{[X]}Read]{c,d}]ε → [X]}State String]Fail{c,d}]ε
read cs m = handleTm!with

return x 7→ x
getc () k 7→ case get () of Nil 7→ fail ()

Cons c cs 7→ put cs; c

This handler interprets getc in terms of state and failure. We can
handle state with evalState:

state : {{X}State S]{c,d}]ε → S → [X]}{c,d}
state m = handleT m with evalState

and use maybe for failure. Finally we compose all of these handlers
together:

runIdiomParser : {{[X]}Parse ∅ → String→ [Maybe X]}{c,d}
runIdiomParser p cs = state (maybe (read (parseI p))) cs

Now:

let p← nums′ 3 in runIdiomParser p “42,21,7,@”

evaluates to Just (Cons 42 (Cons 21 (Cons 7 Nil))) and:

let p← nums′ 4 in runIdiomParser p “42,21,7,@”

evaluates to Nothing.
We can abstract over the parseI handler, in particular allowing it

to be replaced by arrow or monad handlers:

runParser : {{{[X]}Parse ε → [X]}Read]Fail]{c,d} →
{[A]}Parse ε → String→ [Maybe X]}{c,d}

runParser h p cs = state (maybe (read (h p))) cs

Let us define arrow and monad analogues of parseI:

parse : {{[X]}Parse {d} → [X]}Read]Fail]{c,d}
parse =

handle (λm.m!)with
return x 7→ x !
any () k 7→ let c← getc () in λz .k (z , c)
char c k 7→ λz.if c z == getc () then k (z , c)

else fail ()
fail () k 7→ λz .fail ()
choose (p, q) k 7→ λz.case maybe (parse (p z)) of

Just v → λz .k (z, v)
Nothing→

case maybe (parse (q z)) of
Just v → λz .k (z, v)
Nothing→ λz .fail ()

parseT : {{[X]}Parse {c,d} → [X]}Read]Fail]{c,d}
parseT = λm.

handleTm!with
return x 7→ x !
any () k 7→ let c← getc () in k c
char c k 7→ if c == getc () then k c

else fail ()
fail () k 7→ fail ()
choose (p, q) k 7→ case maybe (parseT p) of

Just v → k v
Nothing→

case maybe (parseT q) of
Just v → k v
Nothing→ fail ()

Now, both:

runParser parse delim “* 42,21,7 *”

and:
runParser parseT nnums “3:42,21,7,@”

type check and evaluate to Just (Cons 42 (Cons 21 (Cons 7 Nil))).
We can use parseT to handle any arrow or idiom parsers (such

as the nums′ and delim examples above). We can use parse to
handle any idiom parsers (such as the nums′ example above). In
practice, we would write optimised handlers for arrow and idiom
parsers [24]. A key advantage of using a language like λflow is
that we can write code that is generic in the choice of concrete
implementation while using a uniform direct-style syntax.

7. Related Work
There has been a recent spate of work on practical languages and
libraries for effect handlers. Apart from our own libraries, Kiselyov
et al [9] has a similar library for Haskell, and Brady [3] has an effect
handlers library for his dependently-typed language Idris. Two
programming languages that build in algebraic effects and handlers
as primitives are Bauer and Pretnar’s Eff [1, 2] and McBride’s
Frank [15, 16]. None of these systems support algebraic effects or
handlers for idioms or arrows.

Capriotti and Kaposi explore free idioms [4]. Free idioms cor-
respond to abstract idiom computations. Yallop’s thesis [26, Chap-
ter 2] provides an in-depth analysis of idioms, arrows, and monads,
expanding on the work of Lindley et al [14], and characterising the
normal forms for idioms and arrows. We have implemented both
free idiom and free arrow constructions in Haskell [11] directly in-
spired by the normal forms of Yallop.

Petricek and Syme [20] describe a novel use of F# computation
expression syntax to write idiom computations using let notation,
which is partly inspired by syntax for formlets [5], an abstraction
for building web forms that is an idiom.

8. Future Work
This paper focuses on the theory of algebraic effects and handlers
for arrows and idioms. In order to evaluate the practice of algebraic
effects and handlers for arrows and idioms we would like to build
an implementation.

One can implement handlers on top of our existing free idiom
and free arrow constructions in Haskell. However, programming
with free idioms and free arrows in Haskell requires the program-
mer to use a different syntax. Idioms only support a pointless syn-
tax. Arrows support a direct-style syntax, but it is not quite the same
as the do notation used for monads. Given that F# computation ex-
pressions are already expressive enough to cover a range of compu-
tation types including monads and idioms, it might be interesting to
try to use computation expressions as a basis for building a source
language for λflow. It may, however, be difficult to adequately en-
code an effect type system on top of F#. Ultimately, we expect the
most fruitful path may be to build a new language, or extend a cus-
tom language like Frank or Eff.

On the theoretical side, it would be interesting to explore de-
notational semantics for λflow and to consider how the story is af-
fected by reintroducing equations to the picture. Another direction
is to explore algebraic effects and handlers for other variations on
the basic theme, such as for linear and dependent types.

Acknowledgments
We would like to thank Bob Atkey, Pierre-Evariste Dagand, and the
anonymous referees for helpful feedback. This work was supported
by EPSRC grants EP/J014591/1 and EP/K034413/1.

References
[1] A. Bauer and M. Pretnar. Programming with algebraic effects and

handlers. CoRR, abs/1203.1539, 2012.
[2] A. Bauer and M. Pretnar. An effect system for algebraic effects and

handlers. In CALCO, volume 8089 of Lecture Notes in Computer
Science, pages 1–16. Springer, 2013.

[3] E. Brady. Programming and reasoning with algebraic effects and
dependent types. In ICFP. ACM, 2013.

[4] P. Capriotti and A. Kaposi. Free applicative functors. CoRR,
abs/1403.0749, 2014.

[5] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. The essence of
form abstraction. In G. Ramalingam, editor, APLAS, volume 5356 of
Lecture Notes in Computer Science, pages 205–220. Springer, 2008.

[6] B. C. d. S. Oliveira, T. Schrijvers, and W. R. Cook. MRI: Modular
reasoning about interference in incremental programming. J. Funct.
Program., 22(6):797–852, 2012.

[7] J. Hughes. Generalising monads to arrows. Sci. Comput. Program.,
37(1-3):67–111, 2000.

[8] O. Kammar, S. Lindley, and N. Oury. Handlers in action. In G. Mor-
risett and T. Uustalu, editors, ICFP, pages 145–158. ACM, 2013.

[9] O. Kiselyov, A. Sabry, and C. Swords. Extensible effects: an alterna-
tive to monad transformers. In Haskell, pages 59–70. ACM, 2013.

[10] P. B. Levy. Call-By-Push-Value: A Functional/Imperative Synthesis,
volume 2 of Semantics Structures in Computation. Springer, 2004.

[11] S. Lindley. Free idioms and free arrows in haskell, 2013.
https://github.com/slindley/dependent-haskell/tree/
master/Free.

[12] S. Lindley. Aspect oriented programming with handlers, 2013.
https://github.com/slindley/effect-handlers/blob/
master/Examples/AOP.hs.

[13] S. Lindley, P. Wadler, and J. Yallop. The arrow calculus. J. Funct.
Program., 20(1):51–69, 2010.

[14] S. Lindley, P. Wadler, and J. Yallop. Idioms are oblivious, arrows are
meticulous, monads are promiscuous. Electr. Notes Theor. Comput.
Sci., 229(5):97–117, 2011.

[15] C. McBride. How might effectful programs look? In Workshop on
Effects and Type Theory, 2007.
http://cs.ioc.ee/efftt/mcbride-slides.pdf.

[16] C. McBride. Frank (0.3), 2012.
http://hackage.haskell.org/package/Frank.

[17] C. McBride and R. Paterson. Applicative programming with effects.
J. Funct. Program., 18(1):1–13, 2008.

[18] E. Moggi. Computational lambda-calculus and monads. In LICS,
pages 14–23. IEEE Computer Society, 1989.

[19] R. Paterson. A new notation for arrows. In B. C. Pierce, editor, ICFP,
pages 229–240. ACM, 2001.

[20] T. Petricek and D. Syme. The F# computation expression zoo. In
M. Flatt and H.-F. Guo, editors, PADL, volume 8324 of Lecture Notes
in Computer Science, pages 33–48. Springer, 2014.

[21] G. D. Plotkin and J. Power. Adequacy for algebraic effects. In
F. Honsell and M. Miculan, editors, FoSSaCS, volume 2030 of Lecture
Notes in Computer Science, pages 1–24. Springer, 2001.

[22] G. D. Plotkin and J. Power. Semantics for algebraic operations. Electr.
Notes Theor. Comput. Sci., 45:332–345, 2001.

[23] G. D. Plotkin and M. Pretnar. Handling algebraic effects. Logical
Methods in Computer Science, 9(4), 2013.

[24] S. D. Swierstra. Combinator parsing: A short tutorial. In LerNet ALFA
Summer School, volume 5520 of Lecture Notes in Computer Science,
pages 252–300. Springer, 2008.

[25] W. Swierstra. Data types à la carte. J. Funct. Program., 18(4):423–
436, 2008.

[26] J. Yallop. Abstraction for web programming. PhD thesis, The Univer-
sity of Edinburgh, 2010.

https://github.com/slindley/dependent-haskell/tree/master/Free
https://github.com/slindley/dependent-haskell/tree/master/Free
https://github.com/slindley/effect-handlers/blob/master/Examples/AOP.hs
https://github.com/slindley/effect-handlers/blob/master/Examples/AOP.hs
http://cs.ioc.ee/efftt/mcbride-slides.pdf
http://hackage.haskell.org/package/Frank

	Introduction
	Effects as Computation Trees
	What is an Effectful Computation?
	Idioms are Oblivious, Arrows are Meticulous, Monads are Promiscuous
	Flow Effects

	An Effect Calculus
	Abstract Effects
	Effect Handlers
	Effect Forwarding

	Flow Effects
	Handling Flow
	Monad Handlers
	Arrow Handlers
	Idiom Handlers
	Forwarding for Arrow and Idiom Handlers

	Example: Parser Combinators
	Related Work
	Future Work

