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Abstract
Computing systems have become increasingly complex with the
emergence of heterogeneous hardware combining multicore CPUs
and GPUs. These parallel systems exhibit tremendous computa-
tional power at the cost of increased programming effort. This re-
sults in a tension between performance and code portability. Typi-
cally, code is either tuned in an low-level imperative language us-
ing hardware-specific optimizations to achieve maximum perfor-
mance or is written in a high-level, possibly functional, language to
achieve portability at the expense of performance.

We propose a novel approach aiming to combine high-level pro-
gramming, code portability, and high-performance. Starting from a
high-level functional expression we apply a simple set of rewrite
rules to transform it into a low-level functional representation close
to the OpenCL programming model from which OpenCL code is
generated. Our rewrite rules define a space of possible implementa-
tions which we automatically explore to generate hardware-specific
OpenCL implementations. We formalise the system with a core
dependently-typed λ-calculus along with a denotational semantics
which we use to prove the correctness of the rewrite rules.

We test our design by describing a subset of the OpenCL pro-
gramming model in a functional style and by implementing a
compiler which generates high performance imperative OpenCL
code. Our experiments show that we can automatically derive high-
performance hardware-specific implementations from simple func-
tional high-level algorithmic expressions. The performance of the
generated OpenCL code is on a par with highly tuned implementa-
tions for multicore CPUs and GPUs written by experts.

Categories and Subject Descriptors D3.2 [Programming Lan-
guages]: Language Classification – Applicative (functional) lan-
guages; Concurrect, distributed, and parallel languages; D3.4
[Processors]: Code generation, Compilers, Optimization

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction
In recent years, graphics processing units (GPUs) have emerged as
the power horse of high-performance computing. These devices of-
fer enormous raw performance but require programmers to have a
deep understanding of the hardware in order to maximize perfor-
mance. This means software is written and tuned on a per-device
basis and needs to be adapted frequently to keep pace with ever
changing hardware.

Programming models such as OpenCL offer the promise of
functional portability of code across different parallel processors.
However, performance portability usually remains elusive; code
achieving high performance for one device might only achieve a
fraction of the available performance on a different device. Fig-
ure 1 illustrates this problem by showing how a parallel reduc-
tion implementation, written and optimized for one particular de-
vice, performs on other devices. Three implementations have been
tuned to maximize performance on each device: the Nvidia_opt
and AMD_opt implementations are tuned for the Nvidia and AMD
GPU respectively, implementing a tree-based reduction using an
iterative approach with carefully specified synchronization prim-
itives. The Nvidia_opt version utilizes the local (a.k.a. shared)
memory to store intermediate results and exploits a hardware fea-
ture of Nvidia GPUs to avoid certain synchronization barriers. The
AMD_opt version does not perform these two optimizations but in-
stead uses vectorized operations. The Intel_opt parallel implemen-
tation, tuned for an Intel CPU, also relies on vectorized operations.
However, it uses a much coarser form of parallelism with fewer
threads, in which each thread performs more work.

Nvidia opt AMD opt Intel opt
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Figure 1: Performance is not portable across devices. Each bar rep-
resents the device-specific optimised implementation of a parallel
reduction implemented in OpenCL and tuned for an Nvidia GPU,
AMD GPU, and Intel CPU respectively. Performance is normalized
with respect to the best implementation on each device.
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Figure 1 shows the performance achieved by each implementa-
tion on three different devices. Running an implementation which
has been optimized on a different device leads to sub-optimal per-
formance in all cases. Consider the AMD_opt implementation, for
instance, where we see that the performance loss is 20% when run-
ning on the Nvidia GPU and 90% (i.e., 10× slower) when running
on the CPU. The CPU optimized version, Intel_opt, achieves less
than 20% (i.e., 5× slower) when run on a GPU. Finally, it is worth
noting that the Nvidia_opt version, which performs quite badly on
the AMD GPU, actually fails to execute correctly on the CPU. This
is due to a low-level optimization which removes synchronization
barriers which can be avoided on the GPU, but are required on the
CPU for correctness.

This lack of performance portability is mainly due to the low-
level nature of the programming model; the dominant programming
interfaces for parallel devices such as GPUs exposes programmers
to many hardware-specific details. As a result, programming be-
comes complex, time-consuming, and error prone.

Several high-level programming models have been proposed
to tackle the programmability issue and shield programmers from
low-level hardware details. High-level dataflow programming lan-
guage such as StreamIt [21] and LiquidMetal [15] allow the pro-
grammer to easily express different implementations at the algo-
rithm level. Nvidia’s NOVA [9] language takes a more functional
approach in which higher-order functions such as map and reduce
are expressed as primitives recognized by the backend compiler.
Similarly, Accelerate [7] allows the programmer to write high-level
functional code in a DSL embedded in Haskell, and automatically
generate CUDA code for the GPU. For instance, the parallel reduc-
tion discussed earlier would be written in Accelerate as:

aboveskipsum xs = let xs’ = use xs
aboveskip in fold (+) 0 xs’

These kind of approaches hide the complexity of parallelism
and low-level optimizations from the user. However, they rely on
hard-coded device-specific implementations or heuristics to drive
the optimization process. When targeting different devices, the li-
brary implementation or backend compiler has to be re-tuned or
even worst re-engineered. In order to address the performance
portability issue, we aim to develop mechanisms that can effec-
tively explore device-specific optimizations. The core idea is not
to commit to a specific implementation or set of optimizations but
instead to let a tool automate the process.

In this paper we present an approach which compiles a high-
level functional expression – similar to the one written in Accel-
erate – into highly optimized device-specific OpenCL code. We
show that we achieve performance on a par with expert-written im-
plementations on an Intel multicore CPU, an AMD GPU, and an
Nvidia GPU. Central to our approach is a set of rewrite rules that
systematically translate high-level algorithmic concepts into low-
level hardware paradigms, both expressed in a functional style. The
rewrite rules are used to systematically derive semantically equiv-
alent low-level expressions from high-level algorithms written by
the programmer. Once derived, we can automatically generate high
performance code based on these expressions.

The power of our technique lies in the rewrite rules, written
once by an expert system designer. These rules encode the different
algorithmic choices and low-level hardware specific optimizations.
The rewrite rules play the dual role of enabling the composition
of high-level algorithmic concepts and enabling the mapping of
these onto hardware paradigms. They enable a clear separation of
concerns between high-level algorithmic concepts and low-level
hardware paradigms while using a unified framework. The rewrite
rules define an implementation space that can be automatically
searched to produce high performance code.
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Figure 2: The programmer expresses the problem with high-level
algorithmic primitives. These are systematically transformed into
low-level primitives using a rule rewriting system. OpenCL code
is generated by mapping the low-level primitives directly to the
OpenCL programming model representing hardware paradigms.

This paper demonstrates that our approach yields high-performance
code with OpenCL as our target hardware platform. We compare
the performance of our approach with highly-tuned linear alge-
bra functions extracted from the state-of-the-art libraries and with
benchmarks such as BlackScholes. We express them as composi-
tions of high-level algorithmic primitives which are systematically
mapped to low-level OpenCL primitives from which OpenCL code
is generated.

The primary contributions of our paper are as follows:

• a collection of high-level functional algorithmic primitives
for the programmer and low-level functional OpenCL primi-
tives representing the OpenCL programming model;

• a core dependently-typed calculus and denotational semantics;
• we develop a set of rewrite rules that systematically express

algorithmic and optimization choices, bridging the gap between
high-level functional programs and OpenCL;

• we prove the soundness of the rewrite rules with respect to the
denotational semantics;

• we achieve performance portability by systematically apply-
ing rewrite rules to yield device-specific implementations, with
performance on a par with the best hand-tuned versions.

The remainder of the paper is structured as follows. Section 2
provides an overview of our technique. Sections 3 and 4 present
our functional primitives and rewrite rules. Section 5 presents a
core language and denotational semantics, which we use to jus-
tify the rewrite rules. Section 6 explains our automatic search strat-
egy, while Section 7 introduces our benchmarks. Our experimental
setup and performance results are shown in Sections 8 and 9. Fi-
nally, Section 10 discusses related work and Section 11 concludes.

2. Overview
The overview of our approach is presented in Figure 2. The pro-
grammer writes a high-level expression composed of algorithmic
primitives. Using rewriting rules, we map this high-level expres-
sion into a low-level expression consisting of OpenCL primitives. In
the rewriting stage, different algorithmic and optimization choices
can be explored. The generated low-level expression is then fed
into our code generator that emits an OpenCL program compiled
to machine code by the vendor provided OpenCL compiler.
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λ xs . map (λ x . x ∗ 3) xs

(a) High-level expression written by the programmer.

rewrite rules

λ xs . (join ◦ mapWorkgroup (joinVec ◦
mapLocal (mapVec 4 (λ x . x ∗ 3))

◦ splitVec 4) ◦ split 1024) xs

(b) Low-level expression derived using rewrite rules.

code generator

1 int4 mul3(int4 x) { return x * 3; }
2 kernel vectorScal(global int* in,out, int len){
3 for (int i=get_group_id; i < len/1024;
4 i+=get_num_groups) {
5 global int* grp_in = in+(i*1024);
6 global int* grp_out = out+(i*1024);
7 for (int j=get_local_id; j < 1024/4;
8 j+=get_local_size) {
9 global int4* in_vec4 =(int4*)grp_in+(j*4);

10 global int4* out_vec4=(int4*)grp_out+(j*4);
11 *out_vec4 = mul3(*in_vec4);
12 } } }

(c) OpenCL program produced by our code generator.

Figure 3: Pseudo-code representing vector scaling. The user maps
a function multiplying an element by 3 over the input array (a). This
high-level expression is transformed into a low-level expression (b)
using rewrite rules. Finally, our code generator turns the low-level
expression into an OpenCL program (c).

We illustrate the mechanisms of our approach using a simple
vector scaling example shown in Figure 3. The user expresses
the computation by writing a high-level expression using our map
primitive as shown in Figure 3a. Our expressions are glued together
with lambda abstractions and functions composition; we formally
define the syntax in Section 5.

Our technique first rewrites the high-level expression into a
low-level expression closer to the OpenCL programming model.
This is achieved by applying the rewrite rules presented later in
Section 4. Figure 3b shows one possible derivation of the original
high-level expression. Starting from the last line, the input (xs) is
split into chunks of 1024 elements. Each chunk is mapped onto a
group of threads, called workgroup, with the mapWorkgroup low-
level primitive. Within a workgroup, we group 4 elements into a
SIMD vector, each mapped to a local thread inside a workgroup
via the mapLocal primitive. Finally, the mapVec primitive applies
the vectorized form of the user defined function. The exact meaning
of our primitives will be given later in Section 3.

The last step consists of traversing the low-level expression
and generating OpenCL code for each low-level primitive encoun-
tered (Figure 3c). The two map primitives generate the for-loops
(line 3–4 and 7–8) that iterate over the input array assigning work
to the workgroups and local threads. The information of how many
chunks each workgroup and thread processes comes from the corre-
sponding split. In line 11 the vectorized version of the user defined
function (mul3 defined in line 1) is finally applied to the input array.

To summarize, our approach is able to generate OpenCL code
starting from a high-level program representation. This is achieved
by systematically transforming the high-level expression into a
low-level form suitable for code generation. The next two sections
present our high-level and low-level primitives, the code generation
mechanism and the rewrite rules.

mapA,B,I : (A→ B)→ [A]I → [B]I
zipA,B,I : [A]I → [B]I → [A×B]I

reduceA,I : ((A×A)→ A)→ A→ [A]I → [A]1
splitA,I : n→ [A]n×I → [[A]n]I

joinA,I,J : [[A]I ]J → [A]I×J
iterateA,I,J : n→ (m→ [A]I×m → [A]m)→

[A]In×J → [A]J
reorderA,I : [A]I → [A]I

Figure 4: High-level algorithmic primitives.

3. Algorithmic and OpenCL Primitives
A key idea of this paper is to expose algorithmic choices and
hardware-specific program optimizations in a functional style. This
allows for systematic transformations using a collection of rewrite
rules (Section 4). The high-level algorithmic primitives can either
be used by the programmer directly, as a stand-alone language (or
embedded DSL), or be used as an intermediate representation tar-
geted by another language. Once a program is represented by our
high-level primitives, we can automatically transform it into low-
level hardware primitives. These represent hardware-specific fea-
tures in a programming model such as OpenCL, the target chosen
for this paper. Following the same approach, a different set of low-
level primitives might be designed to target other low-level pro-
gramming models such as MPI.

In this section we give a high-level account of the primitives;
Section 5 gives a more formal account. Figure 4 and 5 present our
algorithmic and OpenCL primitives. The type system we present
here is monomorphic (largely to keep the formal presentation in
Section 5 simple), however, we do rely on a restricted form of
dependent types. The only kind of type-dependency we allow is
for array types, whose size may depend on a run-time value. Type
inference is beyond the scope of this paper, but in the future we
intend to apply ideas from systems such as DML [39] to our setting.

We let I range over sizes. A size can be a size variable m,n, a
natural number i, or a product I × J or power IJ of sizes I and J .
We letA,B range over types. We writeA→ B for a function from
type A to type B and n → B for a dependent function from size
n to type B (where B may include array types whose sizes depend
on n). We write A×B for the product of types A and B and 1 for
the unit type. We write [A]I for an array of size I with elements of
type A. The primitives are annotated with type and size subscripts.
Thus, formally each one actually represents a type-indexed family
of primitives. We often omit subscripts when they are not relevant
or can be inferred.

3.1 Algorithmic Primitives
Similar to Accelerate we deliberately restrict ourselves to a set of
primitives for which we know that high performance CPU and GPU
implementations exist. Figure 4 presents the high-level primitives
used to define programs at the algorithmic level. The map and zip
primitives are standard.

The reduce primitive is a special case of a fold and performs a
reduction returning the reduced element in an array of size 1. We
assume the given reduction function is associative and commutative
in order to admit efficient parallel implementations.

The split and join primitives transform the shape of array data.
The expression split n xs transforms array xs of size n × I , with
elements of type A, into an array of size I with elements that are
A arrays of size n; join is the inverse of split. (In practice A itself
may be an array type, in which case we can view split as adding a
dimension to and join as subtracting a dimension from a matrix.)
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mapWorkgroupA,B,I : (A→ B)→ [A]I → [B]I
mapLocalA,B,I : (A→ B)→ [A]I → [B]I

mapGlobalA,B,I : (A→ B)→ [A]I → [B]I
mapSeqA,B,I : (A→ B)→ [A]I → [B]I

toLocalA,I : (A→ B)→ (A→ B)
toGlobalA,I : (A→ B)→ (A→ B)

reduceSeqA,B,I : ((A×B)→ A)→ A→ [B]I → [A]1
reducePartA,I : ((A×A)→ A)→ A→ n→

[A]I×n → [A]n
reorderStrideA,I : n→ [A]n×I → [A]n×I

mapVecA,B : (A→ B)→ 〈A〉n → 〈B〉n
splitVecA,I : n→ [A]n×I → [〈A〉n]I

joinVecA,I,J : [〈A〉I ]J → [A]I×J

Figure 5: Low-level OpenCL primitives used for code generation.

The iterate primitive repeatedly applies a given function. The
expression iteraten f applies the function f repeatedly n times.
The type of iterate is instructive. The function f may change the
length of the processed array at each iteration step. We currently
restrict the length to stay the same or shrink in each iteration by a
fixed factor (given by the implicit subscript I), which is sufficient
to express, e.g., iterative reduction (see Section 4). We intend to lift
this restriction in the future, which will probably require a richer
type system. Given n the type of iterate expresses that the input
array will shrink by a factor of In.

Finally, the reorder primitive allows the programmer to express
that the order of elements in an array is unimportant, allowing
a number of useful optimisations—as we will see in Section 4.
This primitive bares obvious similarities to the unordered operation
of the Ferry query language [17], which asserts that the order of
elements in a list is unimportant.

3.2 OpenCL-specific Primitives
In order to achieve high performance on manycore CPUs and
GPUs, programmers often use a set of rules of thumb to drive
the optimization of their application. Each hardware vendor pro-
vides optimization guides [1, 27] that extensively cover hardware
idiosynchrasies and optimizations. The main idea behind our work
is to identify common optimization patterns and express them with
the help of low-level primitives coupled with a rewrite system. Fig-
ure 5 lists the OpenCL-specific primitives we have identified.

Maps Each mapX primitive has the same high-level semantics
as plain map, but represents a specific way of mapping computa-
tions to the hardware and exploiting parallelism in OpenCL. The
mapWorkgroup primitive assigns work to a group of threads, called
workgroup in OpenCL, with every workgroup applying the given
function on an element of the input array. Similarly, the mapLocal
primitive assigns work to a local thread inside a workgroup. As
workgroups are optional in OpenCL mapGlobal assigns work to a
thread not organized in a workgroup. This allows us to map com-
putations in different ways to the thread hierarchy. The mapSeq
primitive performs a sequential map within a single thread.

Generating OpenCL code for all of these primitives is simi-
lar; we describe this using mapWorkgroup as an example. A loop
is generated, where the iteration variable is determined by the
workgroup-id function from the OpenCL API. Inside the loop, a
pointer is generated to partition the input array, so that every work-
group calls the given function f on a different chunk of data. An
output pointer is generated similarly. We continue with the body of
the loop by generating the code for the function f recursively. Fi-
nally, an appropriate synchronization mechanism is added for the

given map primitive. For instance, after a mapLocal we add a bar-
rier synchronization for the threads inside the workgroup.

Local/Global The toLocal and toGlobal primitives are used to
determine where the result of the given function f should be
stored. OpenCL defines two distinct address spaces: global and
local. Global memory is the commonly used large but slow mem-
ory. On GPUs, the small local memory has a high bandwidth with
low latency and is used to store frequently accessed data or for effi-
cient communication between local threads (shared memory). With
these two primitives, we can in effect exploit the memory hierar-
chy defined in OpenCL. These primitives act similarly to a typecast
(their high-level semantics is that of the identity function) and are
in fact implemented as such, so that no code is emitted directly.

In our design, every function reads its input and writes its output
using pointers provided by the callee function. As a result, we can
simply force a store to local memory by wrapping any function with
the toLocal function. In the code generator, this will simply change
the output pointer of function f to an area in local memory.

Sequential Reduction The reduceSeq primitive performs a se-
quential reduction within a single thread. The generated code con-
sists of an accumulation variable which is initialized with the given
initial value. A loop is generated iterating over the array and call-
ing the given function which stores its intermediate result in the
accumulation variable. Note, that we require the function passed to
reduce to be associative and commutative in order to enable an ef-
ficient parallel implementation. We do not impose the same restric-
tion for the reduceSeq function, as here we guarantee a sequential
order of execution. Therefore, reduceSeq has a more general type.

Partial Reduction The reducePart primitive performs a partial
reduction, i.e., an array of n elements is reduced to an array of
m elements where 1 ≤ m ≤ n. While not directly used to
generate OpenCL code, reducePart is useful as an intermediate
representation for deriving different implementations of reduction
as we will see in the next section.

Reorder Stride The high-level semantics of reorderStrideA,I n is
just like reorderA,I . The low-level implementation actually per-
forms a specific reordering in which the array is reordered with
a stride n, that is, element i is mapped to element i/I+ i%I . In the
generated OpenCL code this primitive ensures that after splitting
the workload, consecutive threads access consecutive memory ele-
ments (i.e., coalesce memory access), which is beneficial on mod-
ern GPUs as it maximizes memory bandwidth.

Our implementation does not produce code directly, but gener-
ates instead an index function, which is used when accessing the
array the next time. While beyond the scope of this paper, our de-
sign supports user-defined index functions as well.

Vectorization The OpenCL programming model supports SIMD
vector data types such as int4 where any operations on this type
will be executed in the hardware vector units. In the absence of
vector units in the hardware, the OpenCL compiler scalarizes the
code automatically.

At a high-level, vectors are just a special case of arrays. We
write 〈A〉I for the type of a vector of size I with elements of type
A. The mapVec, splitVec, and joinVec primitives behave just like the
corresponding operations on arrays, though at a low-level they are
of course compiled differently. Concretely, the mapVec primitive
vectorizes a function by simply converting all of its operations that
apply to vector types into vectorized operations. Our current im-
plementation can only vectorize functions containing simple arith-
metic operations such as + or −. For more complex functions, we
rely on external tools [23] for vectorizing the operations, without
performing further analysis.
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iterate (m+ n) f → iterate m f ◦ iterate n f

(a) Iterate decomposition

map f ◦ reorder → reorder ◦ map f
reorder ◦ map f → map f ◦ reorder

(b) Reorder commutativity

map f → join ◦ map (map f) ◦ split n
(c) Split-join

reduce f z → reduce f z ◦ reducePart f z m

reducePart f z m → reduce f z
| reducePart f z m ◦ reorder
| join ◦ map (reducePart f z m) ◦ split n
| iterate n (reducePart f z)

(d) Reduction

join ◦ split n → id
joinVec ◦ splitVec n → id

(e) Simplification rules

map f ◦ map g → map (f ◦ g)
reduceSeq f z ◦mapSeq g →

reduceSeq (λ acc,x . f acc (g x)) z

(f) Fusion rules

Figure 6: Algorithmic rules. Bold functions are known to the code
generator.

4. Rewrite Rules
This section presents our rewrite rules, which transform high-level
expressions written using the algorithmic primitives into semanti-
cally equivalent expressions. One goal of our approach is to keep
each rule as simple as possible and only express one fundamental
concept at a time. For instance the vectorization rule, as we will
see, is the only place where we express vectorization. This con-
trasts with many prior approaches that provide special vectorized
versions of different algorithmic primitives such as map and re-
duce. By the power of composition many rules can be applied suc-
cessively to produce expressions that compose hardware concepts
or optimizations. In Section 5 we show that the rules are sound.

As with the primitives, we distinguish between algorithmic and
low-level rules. Algorithmic rules produce derivations that repre-
sent the different algorithmic choices and are shown in Figure 6.
Figure 7 shows our OpenCL-specific rules which map expressions
to OpenCL patterns. Once an expression is in its lowest-level form,
it is possible to produce OpenCL code for each single pattern easily
with our code generator as described in the previous section.

4.1 Algorithmic Rules
Iterate decomposition The rule 6a expresses the fact that an iter-
ation can be decomposed into several iterations.

Reorder commutativity Figure 6b shows that if the data can be
reordered arbitrarily it does not matter if we apply a function f to
each element before or after the reordering.

Split-join The split-join rule in Figure 6c partitions a map into
two maps. This allows us to nest map primitives in each other and,
thus, maps the computation to the thread hierarchy of the OpenCL
programming model.

Reduction The reduction (and associated partial reduction) in
Figure 6d is currently our most complex rule but also the most

map f → mapWorkgroup f | mapLocal f
| mapGlobal f | mapSeq f

(a) Map

reduce f z → reduceSeq f z

(b) Reduction

reorder → reorderStride n | id

(c) Stride accesses or normal accesses

mapLocal f → toGlobal (mapLocal f)
mapLocal f → toLocal (mapLocal f)

(d) Local/Global memory

map f → joinVec ◦ map (mapVec f) ◦ splitVec n
(e) Vectorization

Figure 7: OpenCL-specific rules. Bold functions are known to the
code generator.

powerful one. It expresses the reduction function as a composition
of other primitive functions, which is a fundamental aspect of our
work. The reduction can be derived in a partial reduction combined
with a full reduction which ensures we end up with one unique ele-
ment. The first possible derivation for partial reduction leads to the
full reduction. The next possible derivation expresses the fact that
it is possible to reorder the elements to be reduced, exploiting the
commutativity property which we require from the given reduction
function. The third derivation is actually the only place where par-
allelism is expressed in the definition of our reduction pattern. This
rule expressed the fact that it is valid to partition the input elements
first and then reduce them independently. This exploits the asso-
ciativity property we require from the reduction function. Finally,
the last possible derivation expresses the notion that it is possible
to perform a partial reduction with an iterative process by repeti-
tively applying the same partial reduction function. This concept
is very important when considering how the reduction function is
commonly implemented on a GPU (iteratively reducing within a
workgroup using the local memory).

Simplification Rules Figure 6e shows our simplification rules.
They express the fact that consecutive split-join pairs and splitVec-
joinVec pairs are equivalent to the identity.

Fusion Rules Finally, our fusion rules are shown in Figure 6f.
The first rule fuses the functions applied by two consecutive maps.
The second rule fuses the map-reduce pattern by creating a lambda
abstraction that is the result of merging functions f and g from
the original reduction and map respectively. This rule only applies
to the sequential version since this is the only implementation not
requiring the associativity property required by the more generic
reduce pattern. When generating code, these rules in effect allow us
to fuse the implementation of different functions and avoid having
to store temporary results. The functional programming community
has studied more sophisticated and generic rules for fusion [10,
22, 26]. However, for our current restricted set of benchmarks our
simpler fusion rules have proven to be sufficient. We intend to
incorporate related work into our approach in the future.

4.2 OpenCL-Specific Rules
Figure 7 shows our OpenCL-specific rules that are used to apply
OpenCL optimizations and to lower high-level concepts down to
OpenCL-specific ones. Primitives that are known to the code gen-
erator are shown in bold.
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Maps The rule in Figure 7a is used to produce OpenCL-specific
map implementations that match the OpenCL thread hierarchy.
Our implementation maintains context information (not shown
for space reason) to ensure the OpenCL thread hierarchy is re-
spected. For instance, it is only legal to nest a mapLocal inside a
mapWorkgroup.

Reduction There is only one low-level rule for reduction (Fig-
ure 7b), which expresses the fact that the only implementation
known to the code generator is a sequential reduction. Parallel im-
plementations are defined at a higher level by composition of other
algorithmic primitives. Most existing approaches treat the reduc-
tion directly as an irreducible primitive operation. With our ap-
proach it is possible to explore different implementations for the
reduction by simply applying different rules.

Reorder Figure 7c presents the rule that reorders elements of
an array. In our current implementation, we support two types
of reordering: no reordering, represented by the id function, and
reorderStride, which reorders elements with a certain stride n. As
described earlier, the major use case for the stride reorder is to
enable coalesced memory accesses.

Local/Global Figure 7d shows two rules that enable GPU local
memory usage. They express the fact that the result of a mapLocal
can always be stored in local memory or back in global memory.
This holds since a mapLocal always exists within a mapWorkgroup
for which the local memory is defined. These rules allow us to de-
termine how the data is mapped to the GPU memory hierarchy and
encode the common optimization to load frequently used data from
the slow global into the fast local memory. The search strategy, dis-
cussed in Section 6, applies this rule to explore opportunities for
this optimization.

Vectorization Figure 7e shows the vectorization rule. SIMD vec-
torization is a key aspect of modern hardware architectures. In our
approach vectorization is achieved by using the splitVec and corre-
sponding joinVec primitives, which changes the element type of an
array and adjust the length accordingly. This rule is only allowed to
be applied once to a given map f pattern. This constrain can easily
be checked by looking at the function’s type.

4.3 Summary
In our approach the power of composition allows our rules to pro-
duce complex low-level expressions from simple high-level expres-
sions. Looking back at our example in Figure 3, we see how a sim-
ple algorithmic pattern can effectively be derived into a low-level
expression by applying the rules. This expression matches hard-
ware concepts expressible with OpenCL such as mapping compu-
tation and data to the thread and memory hierarchy. Each single rule
encodes a simple, easy to understand, and provable fact. By com-
position of the rules we systematically derive low-level expressions
which are semantically equivalent to the high-level expressions by
construction. This results in a powerful mechanism to safely ex-
plore the space of possible implementations.

5. Core Language
In this section we formalise a core language for programming
with the primitives of Section 3. We specify a type system and
a denotational semantics for the core language, which we use to
justify the correctness of the rewrite rules of Section 4.

5.1 Typing Rules
Figure 8 presents the typing rules for the core language. The type
schemas for constants are given in Figure 4 in Section 3. A size
environment ∆ is a set of size variables. A type environment Γ

∆ ` I

IVAR
n ∈ ∆

∆ ` n INAT
∆ ` i ITIMES

∆ ` I ∆ ` J
∆ ` I × J

IPOWER
∆ ` I ∆ ` J

∆ ` IJ

∆ ` A

TINT
∆ ` int

TFLOAT
∆ ` float

TUNIT
∆ ` 1

TPRODUCT
∆ ` A ∆ ` B

∆ ` A×B TFUN
∆ ` A ∆ ` B

∆ ` A→ B

TFUNI
∆, n ` B

∆ ` n→ B
TARRAY

∆ ` A ∆ ` I
∆ ` [A]I

∆; Γ `M : A

CONST
c : A ∈ Γ

∆; Γ ` c : A
VAR

x : A ∈ Γ

∆; Γ ` x : A

UNIT
∆; Γ ` () : 1

PAIR
∆; Γ `M : A ∆; Γ ` N : B

∆; Γ ` (M,N) : A×B

LAM
∆; Γ, x : A `M : B

∆; Γ ` λxA.M : A→ B

APP
∆; Γ `M : A→ B ∆; Γ ` N : A

∆; Γ `M N : B

LAMI
∆, n; Γ `M : B

∆; Γ ` λn.M : n→ B

APPI
∆; Γ `M : n→ B ∆ ` I

∆; Γ `M I : B

Figure 8: Typing Rules for the Core Language

is a map from term variables to types. The judgement ∆ ` I
states that in size environment ∆ the size I is well-formed. The
judgement ∆ ` A states that in size environment ∆ the type A is
well-formed. The typing judgement ∆; Γ ` M : A states that in
size environment ∆ and type environment Γ, the term M has type
A. The typing rules are straightforward.

5.2 Semantics
We give a set-theoretic denotational semantics for the core lan-
guage. It is presented in Figure 9. Sizes are interpreted straightfor-
wardly as natural numbers. Types are interpreted as sets. We write
F for the set of floating point numbers in the meta language. We
overload some of the type constructors in the object language as the
corresponding set constructors in the meta language, for instance,
X → Y denotes the set of functions from the set X to the set Y .
Size-dependent functions are interpreted as size-dependent func-
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Sizes
JnKι = ι(n)
JiKι = i

JI × JKι = JIKι × JJKι
JIJKι = JIKJIKι

ι

Types

JintKι = Z
JfloatKι = F

J1Kι = 1
JA×BKι = JAKι × JBKι

JA→ BKι = JAKι → JBKι
Jn→ BKι = (i : N)→ JBKι[n7→i]

J[A]IKι = [0..JIKι)→ JAKι
Size environments

J·K = ∅
J∆, nK = J∆K[n 7→ N]

Type environments

J·Kι = ∅
JΓ, x : AKι = JΓK[x 7→ JAKι]

Terms
JxKι,ρ = ρ(x)
J()Kι,ρ = ()

J(M,N)Kι,ρ = (JMKι,ρ, JNKι,ρ)
JλxA.MKι,ρ = λv.JMKι,ρ[x7→v]

JM NKι,ρ = JMKι,ρ(JNKι,ρ)
Jλn.MKι,ρ = λi.JMKι[n 7→i],ρ

JM IKι,ρ = JMKι,ρ(JIKι)

Primitives
JmapA,B,IKι,ρ = λf x i.f x i
JreduceA,IKι,ρ = λ(⊕) e x i.

x(0)⊕ (x(1)⊕ (. . .⊕ (x(JIKι − 1)⊕ e) . . . ))
JzipA,B,IKι,ρ = λx y i.(x(i), y(i))

JsplitA,I,JKι,ρ = λnx i j.x((i× n) + j)
JjoinA,I,JKι,ρ = λx i.x(i/JIKι)(i%JIKι)

JiterateA,I,JKι,ρ = λn f x i.f(i1) (f(i2)(. . . (f(in)x i) . . . ))
where ij = JIKn−jι × JJKι

Figure 9: Denotational Semantics for the Core Language

tions in the meta language. Arrays are interpreted in the obvious
way as functions from sizes to elements.

Size environments are interpreted as size maps, partial maps
from size variables to natural numbers. Type environments are
interpreted as type maps, partial maps from term variables to sets.

Sizes, types, type environments, terms and primitives are all
interpreted with respect to a partial map ι from size variables to
natural numbers (that is, the interpretation of a size environment).
Similarly, terms are interpreted with respect to a partial map ρ from
term variables to values. We overload λ-abstraction, pairing, and
unit in the obvious way in the meta language.

The interpretation of terms is standard. The interpretations of
the primitives are also quite straightforward. Note that for sim-
plicity we here ascribe a fixed evaluation order to the operation of
reduce, but when we actually apply the rewrite rules we ensure that
the operation is associative and commutative, allowing it to be re-
ordered. The iterate operation supplies a successively smaller size
for each iteration.

We define function composition in the standard way, both in the
object and meta language:

M ◦N ≡ λx.M (N x) f ◦ g ≡ λv.f(g(v))

Theorem 1 (Type soundness).

∆; Γ `M : A⇒ JMKJ∆K,(JΓKJ∆K) ∈ JAKJ∆K

Proof. By induction on the derivation ∆; Γ `M : A.

Our core language can be naturally extended to include all of
the primitives of Figures 4 and 5. One can model reorder by lifting
the entire semantics to model non-determinism by returning sets of
values rather a single value. Many of the low-level primitives have
the same denotation as the corresponding high-level primitives:

JmapWorkgroupK = JmapLocalK = JmapGlobalK =
JmapSeqK = JmapWorkgroupK = JmapVecK = JmapK

JreduceSeqK = JreduceK
JtoLocalK = JtoGlobalK = λx.x
JsplitVecK = JsplitK
JjoinVecK = JjoinK

The semantics of the remaining two primitives is as follows.

JreducePartA,IKι,ρ = λ(⊕) e n x i.
x(j)⊕ (x(j + 1)⊕ (. . .⊕ (x(j + JIKι − 1)⊕ e) . . . ))

where j = i× JIKι
JreorderStrideA,IKι,ρ = λnx i.x(i/JIKι + n× (i%JIKι))

5.3 Correctness of Rewrite Rules
Using the denotational semantics along with a small amount of
equational reasoning, it is straightforward to prove the correctness
of the rewrite rules of Section 4. We illustrate the nature of these
proofs by giving a proof for the split-join rule (Figure 6c) as an
example:

Jjoin ◦ map (map f) ◦ splitnKι,ρ
= (definition of J−K and ◦)
λx i.x(i/JIKι)(i%JIKι)

(
λf x i.f(x(i)) (λx i.(ρ(f))(x(i))) (λx i j.x((i× ι(n)) + j))

)
= (β-reduction)
λx.(λi j.(ρ(f))(x((i× ι(n)) + j)) (i/JIKι) (i%JIKι))

= (β-reduction)
λx i.(ρ(f))(x(((i/JIKι)× ι(n)) + (i%JIKι)))

= (i < JIKι)
λx i.(ρ(f))(x(i))

= (definition of J−K)
Jmap fKι,ρ

5.4 Applying Rewrite Rules
We now illustrate how the rewrite rules can be applied to derive
optimized implementations. To achieve good performance it is in
general beneficial to avoid storing intermediate results. Our rewrite
rule 6f allows us to apply this principle and fuse two patterns into
one, thus, avoiding intermediate results. Figure 10 shows how we
can derive a fused version for calculating the sum of absolute value,
asum, from the high-level expression written by the programmer.
We write the derivation as a sequence of equations. The numbers
above the equality sign refer to the rules applied.

We start by applying the reduction rule 6d twice: first to replace
reduce with reduce ◦ part-red and then a second time to expand
par-red. To get (2) we expand map, which can be simplified by
removing the two corresponding join and split patterns. In the step
from (3) to (4) two map patterns are fused and in the next step
the nested map is transformed into the map-seq pattern to obtain
(5). By first transforming part-red back into reduce (using rule 6d)
and then applying the rule 7b we get (6). Finally, we apply rule 6f
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asum = reduce (+) 0 ◦ map abs
6d
= reduce (+) 0 ◦ join ◦ map (reducePart (+) 0) ◦ split n ◦ map abs (1)

6c
= reduce (+) 0 ◦ join ◦ map (reducePart (+) 0) ◦ split n ◦ join ◦ map (map abs) ◦ split n (2)
6e
= reduce (+) 0 ◦ join ◦ map (reducePart (+) 0) ◦ map (map abs) ◦ split n (3)
6f
= reduce (+) 0 ◦ join ◦ map (reducePart (+) 0 ◦ map abs) ◦ split n (4)
7a
= reduce (+) 0 ◦ join ◦ map (reducePart (+) 0 ◦ mapSeq abs) ◦ split n (5)

6d&7b
= reduce (+) 0 ◦ join ◦ map (reduceSeq (+) 0 ◦ mapSeq abs) ◦ split n (6)
6f
= reduce (+) 0 ◦ join ◦ map (reduceSeq (λ acc, a . acc+ (abs a)) 0) ◦ split n (7)

Figure 10: Derivation for asum to a fused parallel version. The numbers refer to the rules from Figure 6 and Figure 7.

to fuse the map-seq and reduce-seq into a single reduce-seq. This
sequence of transformations results in expression (7), which allows
for a more optimal implementation since no temporary storage is
required for the intermediate result.

6. Searching for Good Derivations
We now present an automatic search strategy to find good expres-
sions by applying the rules presented in Section 4.

6.1 Automatic Search
The rules presented earlier define a search space of possible imple-
mentations. In order to find the best possible low-level expression
for a given target device, we have developed a simple automatic
search strategy based loosely on Bandit-based optimization [13].
Our current search strategy is very basic and just designed to prove
that it is possible to find good implementations automatically. We
envision replacing this exploration strategy in the future by using
machine-learning techniques to avoid having to search the space at
all. However, this is orthogonal to the work presented in this paper.

Our search strategy starts with the high-level expression and de-
termines all the valid rules that can be applied. We use a Monte-
Carlo method for evaluating the potential impact of each rule by
randomly walking down the search tree. We execute the code gener-
ated from the randomly chosen expressions and measure its perfor-
mance. The rule that promises the best performance following the
Monte-Carlo descent is chosen and the resulting derivation fixed
and used as a starting point for the next random walk. This process
is repeated until we reach a terminal expression. In addition to se-
lecting the rules, we also search at the same time for the parameters
controlling our primitives such as the parameter for the split n. We
limit the choices for these numerical parameters to a reasonable set
appropriate for our test hardware.

In order to speedup the search process, we added macro rules
to guide the optimization process more efficiently. Macro rules are
rules which perform multiple small steps at once by applying a set
of rules in a predefined order. One example of such a macro rule is
the fusion of map and reduce as discussed in Figure 10. While not
strictly necessary, these macro rules provide shortcuts for the most
commonly used sequences of derivations.

6.2 Found Expressions
Figure 11 shows several low-level expression found by applying
the automatic search technique described in Section 6.1. We started
from the high-level expression for the sum of absolute use-case
(asum) and tested on two GPUs and one CPU (described later in
Section 8). We can make several important observations. First, in
all the expressions the fusion macro rule merging map and reduce
was applied. The second observation is, that none of the versions

make use of the local memory (although our systems fully support
it). It is common wisdom that using local memory on the GPU
enables high performance and in fact the highly tuned hand-written
implementation of asum use local memory on the GPU. However,
as we will see later in the results section, our automatically derived
version is able to perform as well without using local memory.
The third key observation is, that each thread performs a large
sequential reduction independent of all other threads, which does
not require thread synchronization, avoiding overheads.

While these observations are the same for all platforms, there
are also crucial differences between the different low-level expres-
sions. Both GPU versions make use of the reorderStride primitive,
allowing for coalesced memory accesses. The AMD and Intel ver-
sions are vectorized with a vector length of two and four respec-
tively. The Nvidia version does not use vectorization since this
platform does not benefit from vectorized code. On the CPU, the
automatic search picked numbers for partitioning into work groups
and then into work items in such a way that inside each work group
only a single work item is active. This corresponds to the fact that
there is less parallelism available on a CPU compared to GPUs.

Interestingly, the results of our search have some artifacts in
the expressions. For example, we perform unnecessary copies on
AMD and Intel by performing a mapSeq with the identity nested
inside. While this does not seem to affect performance much, a
better search strategy could probably get rid of these artifacts and
achieve a slightly better performance.

6.3 Search Efficiency
We now present some evidence that our search strategy is effective
at finding good derivations. Figure 12 shows how many expressions
were evaluated during the search to achieve the best performance
on two GPUs and one CPU for the asum application. The perfor-
mance of the best expression found is discussed later in Section 9,
here we want to focus on the efficiency of the search. The eval-
uated expressions are grouped from left to right by the number of
fixed derivations in the search tree. The red line connects the fastest
expression found so far.

As can be seen the performance improves steadily for all three
platforms before reaching a plateau. For both GPUs the best perfor-
mance is reached after testing ≈ 40 expressions. At this point we
have fixed five derivations and found a subtree offering good perfor-
mance for some expressions. Nevertheless, even in the later stages
of the search many expressions offer bad performance, which is
partly due to the sensitivity of GPU for selecting appropriate nu-
merical parameters. On the CPU performance converges quicker
and more expressions offer good performance. This shows that the
CPU is easier to optimize for and not as sensitive when selecting
numerical parameters.
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(a) Nvidia
GPU

λx.(reduceSeq ◦ join ◦ join ◦ mapWorkgroup (

toGlobal
(
mapLocal (reduceSeq (λa b. a+ (abs b)) 0)

)
◦ reorderStride 2048

) ◦ split 128 ◦ split 2048) x

(b) AMD
GPU

λx.(reduceSeq ◦ join ◦ joinVec ◦ join ◦ mapWorkgroup (

mapLocal (mapSeq (mapVec 2 id) ◦ reduceSeq (mapVec 2 (λa b. a+ (abs b))) 0 ◦ reorderStride 2048

) ◦ split 128 ◦ splitVec 2 ◦ split 4096) x

(c) Intel
CPU

λx.(reduceSeq ◦ join ◦ mapWorkgroup (join ◦ joinVec ◦ mapLocal (

mapSeq (mapVec 4 id) ◦ reduceSeq (mapVec 4 (λa b. a+ (abs b))) 0

) ◦ splitVec 4 ◦ split 32768) ◦ split 32768) x

Figure 11: Low-level expressions performing the sum of absolute values. These expressions are automatically derived by our system from
the high-level expression asum = reduce (+) 0 ◦ map abs .
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(b) AMD GPU
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(c) Intel CPU

Figure 12: Search efficiency. The vertical partitioning represents the number of fixed derivations in the search tree. The red line connects the
fastest expressions found so far.

7. Benchmarks
We now discuss how applications can be represented as expressions
composed of our high-level algorithmic primitives.

7.1 Linear Algebra Kernels
We choose linear algebra kernels as our first set of benchmarks,
because they are well known, easy to understand, and used as
building blocks in many other applications. Figure 13 shows how
we express vector scaling, sum of absolute values, dot product
of two vectors and matrix vector multiplication using our high-
level primitives. While three benchmarks perform computations on
vectors, matrix vector multiplication illustrates a computation using
a 2D data structures, where we exploit nested parallelism.

For scaling (scal ), the map primitive applies a function to each
element which multiplies it with a constant a. The sum of absolute
values (asum) and the dot product (dot) applications both produce
scalar results by performing a summation, which we express using
the reduce primitive combined with the addition. For dot product, a
pair-wise multiplication of its two input vectors is performed before
applying the reduction expressed using the zip and map primitives.

gemv shows matrix vector multiplication as defined in BLAS:
~y = αA~x + β~y. To multiply matrix A with ~x, the map primi-
tive maps the computation of the dot-product with the input vec-
tor ~x to each row of the matrix A. Notice how we are reusing the
high-level expressions for dot-product. Expressions describing al-
gorithmic concepts can be reused, without committing to a partic-
ular low-level implementation. The dot-product from gemv might
be implemented in a completely different way from the stand-alone
dot-product.

7.2 Mathematical Finance Application
The BlackScholes application uses a Monte-Carlo method for op-
tion pricing and computes for each stock price a pair of call and put
options. Figure 13 shows the BlackScholes implementation, where
the function compCallPut computes the call and put option for a
single stock price. It is applied to all stock prices using the map
primitive.

7.3 Physics Application
Another application we consider is the molecular dynamics (md)
application from the SHOC benchmark suite. It calculates the sum
of all forces acting on a particle from its neighbors. Figure 13 shows
the implementation using our high-level primitives.

The function updateF updates the force f of particle p by
computing and adding the force between a single particle and one
of its neighbors, based on the neighbor’s index nId and the vector
storing all particles p. It only updates the force if the computed
distance between the two particles is below a given threshold t.

For computing the force for all particles ps , we use the zip
primitive to build a vector of pairs, where each pair combines a
single particle with the indices of all of its neighboring particles.
Computing the resulting force exerted by all the neighbors on one
particle is done by applying the reduce primitive on vector ns
storing the neighboring indices and using updateF as reduction
operation.
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scal = λa xs. map (λx.a ∗ x) xs

asum = λxs. (reduce (+) 0 ◦ map abs) xs

dot = λxs ys. (reduce (+) 0 ◦ map (∗)) zip xs ys

gemv = λmat xs ys αβ.

map (+)
(
zip (map (scal α ◦ dot xs) mat)

(scal β ys)
)

blackScholes = map compCallPut

md = λps nbhs t. map
(
λ(p,ns).

reduce (λf nId. updateF f nId p ps t) 0 ns
)

(zip ps nbhs)

Figure 13: Our benchmarks expressed using our high-level algo-
rithmic primitives.

8. Experimental Setup
8.1 Implementation Details
Our system is implemented in C++11 using the LLVM/Clang com-
piler infrastructure and making heavy use of C++ templates. Our
primitives are expressed as C++ functions and expressions as com-
positions of those. When generating code two basic steps are per-
formed: First, the Clang compiler library parses the input expres-
sion and produces an abstract syntax tree for it. Second, we traverse
the tree and emit code for every function call representing one of
our low-level hardware primitives.

As part of the first step, we have developed our own type sys-
tem which plays a dual role. First, it prevents the user producing
incorrect expressions. Secondly, the type system encodes informa-
tion for code generation, such as the array size information used to
allocate memory.

The design of our code generator is straightforward since no
optimization decisions are made at this stage. We avoid perform-
ing complex code analysis which makes our design very different
compared to traditional optimizing compilers.

8.2 Hardware Platforms and Evaluation Methodology
We used three hardware platforms: an Nvidia GeForce GTX 480
GPU, an AMD Radeon HD 7970 GPU and a dual socket Intel Xeon
E5530 server, with 8 cores in total. We used the OpenCL runtimes
from Nvidia (CUDA-SDK 5.5), AMD (AMD-APP 2.8.1), and Intel
(XE 2013 R3). The GPU drivers installed were 310.44 for Nvidia
and 13.1 for AMD.

We use the profiling APIs from OpenCL and CUDA to measure
kernel execution time and the gettimeofday function for the CPU
implementation. Following the Nvidia benchmarking methodol-
ogy [19], the data transfer time to and from the GPU is excluded.
We repeat each experiment 1000 times and report median runtimes.

We have performed experiments with multiple input sizes. For
scal, asum and dot, the small input size corresponds to a vector size
of 16M elements (64MB). The large input size uses 128M elements
(512MB, the maximum OpenCL buffer size for our platforms). For
gemv, we use an input matrix of 4096×4096 elements (64MB) and
a vector size of 4096 elements (16KB) for the small input size.
For the large input size, the matrix size is 8192×16384 elements
(512MB) and the vector size 8192 elements (32KB). For BlackSc-
holes, the problem size is fixed to 4 million elements and for MD it
is 12288 particles.
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Figure 14: Performance of our approach relative to a portable
OpenCL reference implementation (clBLAS). We outperform it on
most benchmarks and platforms.

9. Results
We now evaluate our approach compared to a reference OpenCL
implementations of our benchmarks on all platforms. Furthermore,
we compare the BLAS routines against platform-specific highly
tuned implementations.

9.1 Comparison vs. Portable Implementation
First, we show how our approach performs across three platforms.
We use the clBLAS OpenCL implementations written by AMD
as our baseline for this evaluation since it is inherently portable
across all different platforms. Figure 14 shows the performance of
our approach relative to clBLAS. As can be seen, we achieve better
performance than clBLAS on most platforms and benchmarks. The
speedups are the highest for the CPU, with up to 20× for the asum
benchmark with a small input size. The reason is that clBLAS was
written and tuned specifically for an AMD GPU which usually
exhibit a larger number of parallel processing units. As we saw in
Section 6, our systematically derived expression for this benchmark
is specifically tuned for the CPU by avoiding creating too much
parallelism, which is what gives us such large speedup.

Figure 14 also shows the results we obtain relative to the Nvidia
SDK BlackScholes and SHOC molecular dynamics MD bench-
mark. For BlackScholes, we see that our approach is on par with
the performance of the Nvidia implementation on both GPUs. On
the CPU, we actually achieve a 2.2× speedup due to the fact that
the Nvidia implementation is tuned for GPUs while our implemen-
tation generates different code for the CPU. For MD, we are on par
with the OpenCL implementation on all platforms.

9.2 Comparison vs. Highly-tuned Implementations
We compare our approach with a state of the art implementation
for each platform. For Nvidia, we pick the highly tuned CUBLAS
implementation of BLAS written by Nvidia. For the AMD GPU,
we use the same clBLAS implementation as before given that it
has been written and tuned specifically for AMD GPUs. Finally, for
the CPU we use the Math Kernel Library (MKL) implementation
of BLAS written by Intel, which is known for its high performance.

Figure 15a shows that we actually match the performance of
CUBLAS for scal, asum and dot on the Nvidia GPU. For gemv we
outperform CUBLAS on the small size by 20% while we are within
5% for the large input size. Given that CUBLAS is a proprietary
library highly tuned for Nvidia GPUs, these results show that our
technique is able to achieve high performance.

On the AMD GPU, we are surprisingly up to 4.5× faster than
the clBLAS implementation on gemv small input size as shown
in Figure 15b. The reason for this is found in the way clBLAS is
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Figure 15: Performance comparison with state of the art platform-specific libraries; CUBLAS for Nvidia, clBLAS for AMD, MKL for Intel.
Our approach matches the performance on all three platforms and outperforms clBLAS in some cases.

implemented; clBLAS performs automatic code generation using
fixed templates. In contrast to our approach, they only generate
one implementation since they do not explore different template
compositions.

For the Intel CPU (Figure 15c), our approach beats MKL for one
benchmark and matches the performance of MKL on most of the
other three benchmarks. For the small input sizes for the scal and
dot benchmarks we are within 13% and 30% respectively. For the
larger input sizes, we are on par with MKL for both benchmarks.
The asum implementation in the MKL does not use thread level
parallelism, where our implementation does and, thus, achieves a
speedup of up to 1.78 on the larger input size.

This section has shown that our approach generates perfor-
mance portable code which is competitive with highly-tuned plat-
form specific implementations.

10. Related Work
Algorithmic Patterns Algorithmic pattern (or algorithmic skele-
tons [8]) have been around for more than two decades. Early
work already discussed algorithm skeletons in the context of per-
formance portability [12]. Patterns are parts of popular frame-
works such as Map-Reduce [14] from Google. Current pattern-
based libraries for platforms ranging from cluster systems [33] to
GPUs [35] have been proposed with recent extension to irregular
algorithms [16]. Lee et al., [24] discuss how nested parallel patterns
can be mapped efficiently to GPUs. Compared to our approach,
most prior works rely on hardware-specific implementations to
achieve high performance. Conversely, we systematically generate
implementations using fine-grain OpenCL patterns combined with
our rule rewriting system.

Functional Approaches for GPU Code Generation Accelerate
is a functional domain specific language embedded into Haskell to
support GPU acceleration [7, 26]. Obsidian [36] and Harlan [20]
are earlier projects with similar goals. Obsidian exposes more de-
tails of the underlying GPU hardware to the programmer. Harlan
is a declarative programming language compiled to GPU code.
Bergstrom and Reppy [3] compile NESL, which is a first-order di-
alect of ML supporting nested data-parallelism, to GPU code. Re-
cently, Nvidia introduced NOVA [9], a new functional language tar-
geted at code generation for GPUs, and Copperhead [5], a data par-
allel language embedded in Python. HiDP [40] is a hierarchical data
parallel language which maps computations to OpenCL. All these
projects rely on code analysis or hand-tuned versions of high-level
algorithmic patterns. In contrast, our approach uses rewrite rules

and low-level hardware patterns to produce high-performance code
in a portable way.

Halide [31] is a domain specific approach that targets image pro-
cessing pipelines. It separates the algorithmic description from op-
timization decisions. Our work is domain agnostic and takes a dif-
ferent approach. We systematically describe hardware paradigms
as functional patterns instead of encoding specific optimizations
which might not apply to future hardware generations.

Rewrite-rules for Optimizations Rewrite rules have been used
as a way to automate the optimization process of functional pro-
grams [22]. Recently, rewriting has been applied to HPC appli-
cations [28] as well, where the rewrite process uses user annota-
tions on imperative code. Similar to us, Spiral [30] uses rewrite
rules to optimize signal processing programs and was more recently
adapted to linear algebra [34]. In contrast, our rules and OpenCL
hardware patterns are expressed at a much finer level, allowing for
highly specialized and optimized code generation.

Automatic Code Generation for GPUs A large body of work
has explored how to generate high performance code for GPUs.
Dataflow programming models such as StreamIt [37] or Liq-
uidMetal [15] have been used to produce GPU code. Directive
based approaches such as OpenMP to CUDA [25], OpenACC to
OpenCL [32], or hiCUDA [18] compile sequential C code for the
GPU. X10, a language for high performance computing, can also
be used to program GPUs [11]. However, this remains low-level
since the programmer has to express the same low-level operations
found in CUDA or OpenCL. Recently, researchers have looked
at generating efficient GPU code for loops using the polyhedral
framework [38]. Delite [4, 6], a system that enables the creation
of domain-specific languages, can also target multicore CPUs or
GPUs. Unfortunately, all these approaches do not provide full per-
formance portability since the mapping of the application assumes
a fixed platform and the optimizations and implementations are
targeted at a specific device.

Finally, Petabricks [2] takes a different approach by letting
the programmer specify different algorithms implementations. The
compiler and runtime choose the most suitable one based on an
adaptive mechanism and produces OpenCL code [29]. Compared
to our work, this technique relies on static analysis to optimize
code. Our code generator does not perform any analysis since
optimization happens at a higher level within our rewrite rules.
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11. Conclusion
In this paper, we have presented a novel approach based on rewrite
rules to represent algorithmic principles as well as low-level
hardware-specific optimization. We have shown how these rules
can be systematically applied to transform a high-level expression
into high-performance device-specific implementations. We pre-
sented a formalism, which we use to prove the correctness of the
presented rewrite rules. Our approach results in a clear separation
of concerns between high-level algorithmic concepts and low-level
hardware optimizations which pave the way for fully automated
high performance code generation.

To demonstrate our approach in practice, we have developed
OpenCL-specific primitives and rules together with an OpenCL
code generator. The design of the code generator is straightfor-
ward given that all optimizations decisions are made with the rules
and no complex analysis is needed. We achieve performance on par
with highly tuned platform-specific BLAS libraries on three differ-
ent processors. For some benchmarks such as matrix vector multi-
plication we even reach a speedup of up to 4.5. We also show that
our technique can be applied to more complex applications such as
BlackScholes or for molecular dynamics simulation.
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