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Abstract
We present CORELINKS, a call-by-value variant of System F
with row polymorphism, row-based effect types, and implicit sub-
kinding, which forms the basis for the Links web programming
language. We focus on extensions to CORELINKS for database
programming. The effect types support abstraction over database
queries, while ensuring that queries are translated predictably to
idiomatic and efficient SQL at run-time. Subkinding statically en-
forces the constraint that queries must return a list of records of base
type. Polymorphism over the presence of record labels supports ab-
straction over database queries, inserts, deletes and updates.

Categories and Subject Descriptors D.3.2 [Language Classifica-
tions]: Applicative (functional) languages; D.3.3 [Language Con-
structs and Features]: Polymorphism

General Terms Languages, Theory

Keywords language integrated query, effect types, row types,
polymorphism, normalisation

1. Introduction
Web programming is challenging because it involves coordinating
two, three or more layers, each of which may be controlled by code
written in a different programming language: for example a typical
three-tier web application includes Java or Python code running on
the server, HTML with embedded JavaScript on the client, and SQL
for querying and updating data in a relational database.

Links [11] is a strict, statically typed, functional programming
language for the web. Its main distinguishing feature is that it
allows programmers to use the same programming language to
write all three tiers of a web application: client, server and database.
Links has many facets. This paper focuses on the effect type system
of Links and its application to controlling database access.

1.1 Comprehensions
Links provides native support for list comprehensions, similar to
those found in languages such as Haskell and Python. Furthermore,
database queries in Links are expressed using comprehensions. The
connection between comprehensions and query languages is well-
established [5]. A comprehension in Links is written:

for (x←M)N
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This iterates over the elements of the list expression M , binding
them to x in the list expressionN , and concatenating the results. In
Haskell the above comprehension would be equivalent to [z | x←
M, z ← N ] or concatMap (λx → N) M . (The Links style for
comprehension is more convenient than the classic Haskell style
comprehension for our purposes, as it supports a cleaner rewriting
theory. It is an instance of monadic let binding.)

1.2 A naive approach
The original implementation of Links [11] took a direct, somewhat
ad hoc, approach to database integration. The strategy was simply
to try to syntactically identify comprehensions in a source program
that accessed database tables and translate them into SQL queries.
For instance:

for (e← asList employees)
[〈name = e.name〉]

would be translated to:
select e.name asname
from employees as e

(Lists are introduced with teletype square brackets [], records are
introduced with angle brackets 〈〉, and database tables are coerced
to lists of records with asList. In order to reduce syntactic noise we
deviate slightly from actual Links syntax.)

The direct approach works smoothly if the source comprehen-
sion includes only constructs that can be translated to SQL. If, how-
ever, the comprehension contains other features, such as general re-
cursion, then it is much harder to perform an efficient translation.
The direct approach would load entire database tables into main
memory. Small changes to source code could lead to large and un-
predictable changes in performance. For instance:

for (e← asList employees)
[〈name = reverse(e.name)〉]

would be translated into a query that loads the entire employees
table into memory along with a separate loop executed by the
Links run-time to project out and reverse all the names (because
the reverse operation is not available in SQL).

To make matters worse, it is difficult to see how to effectively
extend the direct approach to support abstraction over queries and
dynamic query generation. In a functional programming language
the abstraction mechanism of choice is the first-class function, or
closure. But SQL does not support closures, so in order to translate
a comprehension containing closures to SQL one would have to
attempt to inline the closures and then decide whether the resulting
term could be translated to SQL. For instance:

for (e← asList employees)
where (p(e))
[〈name = e.name〉]

could be translated to a single query only if p could be inlined.
Otherwise, the entire employees table would have to be loaded into
memory before performing the filtering separately.



1.3 An effective approach
The solution to all these problems adopted by Links 0.5 and later
is to use effect types to restrict the behaviour of database code.
Cooper [10] presents a strongly normalising rewrite system for a
monomorphic nested relational calculus that illustrates the main
idea. A single effect, called wild in Links, is assigned to any code
that cannot be run on the database as part of a query. In particular,
general recursion is wild, but lambda abstractions are not. We say
that code is tame if it does not have the wild effect. Cooper’s key
result is that any tame expression with flat relation type can be
translated to a single SQL query. For instance, suppose we define
the following function:

filterEmployees =
λp. query

(for (e← asList employees)
where (p(e))
[〈name = e.name〉])

A query expression query e asserts that e must be tame and must
have flat relation type. Thus, the predicate p which maps employee
records to booleans must not have the wild effect. We might
invoke:

filterEmployees(λe. (e.salary < 20000))

as the predicate λe. (e.salary < 20000) is tame, and this would be
translated to the SQL query:

select e.name
from employees as e
where e.salary < 20000

However, if we wrote:

filterEmployees(λe. primes(e.salary) > 2000)

where primes(n) computes the number of primes less than n, then
this would result in a type error as the primes function is wild.

Give that queries are normalised before being executed as SQL,
one may consider allowing general recursion inside queries. The
reason we disallow it is that the normalisation procedure necessar-
ily reduces under lambdas and inlines everything. We cannot fully
inline the call to primes without a concrete value for e.salary ,
which is only available after the database has been queried.

Cooper’s language is a monomorphic nested relational calculus.
We extend his approach to a polymorphic language with support for
database update operations.

1.4 Polymorphism
Supporting polymorphism is not quite as straightforward as one
might expect because we need a way of abstracting over the result
types of queries while maintaining the constraint that the rows
returned by a query must be flat. Suppose we wish to generalise
our filtering operation to operate on any table with a name field:

filterName =
λt. λp. query

(for (x← asList t)
where (p(x))
[〈name = x.name〉])

We might give filterName the following polymorphic type:

Table(name : String ; ρ)

→ (〈name : String ; ρ〉 →wild◦ Bool)

→wild◦ List 〈name : String〉
where ρ is a polymorphic row variable ranging over fields other
than name , Table(R) is the type of tables with rows of type 〈R〉,
and the annotation wild◦ denotes the absence of the wild effect.

Now suppose we wish to generalise further by allowing any
table at all in conjunction with a projection function f to apply
to each row that matches the predicate:

filterTable =
λt. λp. λf. query

(for (x← asList t)
where (p(x))
[f(x)])

We might attempt to assign the following type to filterTable:

Table(ρ)

→ (〈ρ〉 →wild◦ Bool)

→ (〈ρ〉 →wild◦ 〈σ〉)
→wild◦ List 〈σ〉

A problem with this type is that although it constrains the argument
functions to be tame, it does not ensure that the result type is flat. In
order to smoothly handle this scenario, we introduce a subkinding
system. We define a kind of base types that is a subkind of ordinary
types, and correspondingly a kind of base rows that is a subkind of
ordinary rows. Thus we constrain σ in the type of filterTable to
range over base rows:

Table(ρ)

→ (〈ρ〉 →wild◦ Bool)

→ (〈ρ〉 →wild◦ 〈σ :: BaseRow〉)
→wild◦ List 〈σ :: BaseRow〉

Cooper’s type system incorporates a standard subsumption rule
for effects, which allows tame expressions to be used in a wild
context, for instance. We instead adopt an approach based on row-
polymorphism. An effect type is a row of effects. This integrates
well with the rest of Links, which also uses row polymorphism for
record and variant types. Making the row polymorphism explicit,
and also explicitly writing the quantifiers, the full CORELINKS type
for filterTable is:

∀ρBaseRow∅ .∀σBaseRow∅ .∀εRow{wild} .∀εRow∅
1 .∀εRow∅

2 .
Table(ρ)

→ε1 (〈ρ〉 →(wild◦:〈〉;ε) Bool)

→ε2 (〈ρ〉 →(wild◦:〈〉;ε) 〈σ〉)
→(wild◦:〈〉;ε) List 〈σ〉

Each row kind is annotated with a set of labels which cannot
appear in an instantiation of the row variable. Readers familiar with
traditional effect polymorphism may be surprised to see the same
row variable ε attached to the predicate, the projection function,
and the result arrow. We discuss the reasons for this in Section 2.3.
The arrow annotations ε1 and ε2 allow filterTable to be partially
applied to the first two arguments in arbitrary contexts.

(In the source language, and in examples, we often omit univer-
sal quantifiers, type annotations on effects: writing wild◦ instead
of wild◦ : 〈〉, and variables such as ε1 and ε2 that only occur once
in a type. Note that the latter convention means that→ is equivalent
to →ε for some fresh ε rather than →· where · denotes an empty
row of effects.)

1.5 Updates
Let us now consider the implications of typing database updates.
In the examples above we have parameterised table types by a row
type which constrains the labels and types of the fields of the table.
The type system we present in the rest of the paper allows us to
refine table types in order to allow further constraints to be imposed
on the table fields. Instead of a single row type, we parameterise
table types by three separate row types: a read row, a write row,
and a needed row.



Suppose our employees table has fields id : Int , name :
String , salary : Int , and isManager : Bool , where id is an auto-
generated primary key and isManager has a default value of false.
We would assign the employees table the type:

Table
((id : Int ; isManager : Bool ; name : String ; salary : Int),

(isManager : Bool ; name : String ; salary : Int),
(name : String ; salary : Int))

All fields appear in the read row, as all fields must always be
readable. The id field is read-only, so it does not appear in the write
row. The needed row includes all fields that need to be present in a
record when inserting it into the table. Clearly only writeable fields
can appear in this row. Furthermore, fields with default values do
not appear in this row. Thus, neither id nor isManager appear in
the needed row.

Another constraint we would ideally like to enforce on table
types is that the fields in the read, write and needed rows should
be consistent in the sense that whenever ` : A appears in one row
and ` : B in another then A = B. It is straightforward to statically
enforce consistency for concrete database tables. However, it is less
straightforward to enforce consistency for polymorphic code that
abstracts over operations on tables. Nevertheless, we make a step
towards static enforcement by adopting a row type system in which
it is possible to specify that a field must have a particular type if it is
present, without committing to whether or not it is actually present.
For instance, we can write the following function, which takes any
table with an integer salary field and a predicate, and doubles the
salary field of every row in the table satisfying the predicate:

doubleSalaries =
λt. λp. query

update (x⇐ t)
where (p(x))
set 〈salary = salary ∗ 2〉

The type of doubleSalaries is:

∀ρBaseRow{salary} .∀εRow{wild} .
Table((salary• : Int ; ρ),

(salary• : Int ; ρ),
(salaryθ : Int ; ρ))

→ (〈ρ〉 →(wild◦;ε) Bool)

→(wild•;ε) 〈〉

This type exhibits presence polymorphism. The presence type vari-
able θ can be instantiated to present (•) or absent (◦) according
to whether or not the salary field is present in the needed row of
the table. If it is present then its type must be Int . We often omit
present (•) annotations.

The wild effect is absent from the predicate because the predi-
cate must be translated to SQL. On the other hand, the wild effect
is present on the final result arrow, as updates cannot appear inside
database queries.

1.6 Concurrency
Another effect type provided by Links, hear, is used for provid-
ing statically-typed asynchronous message-passing concurrency in-
spired by Erlang [1]. The hear effect is parameterised by the type
of messages that the current process is able to receive. The CORE-
LINKS effect system evolved from an early implementation of con-
currency for Links [11], in which arrow types were annotated with
a mailbox type.

In Links, the concurrency design is particularly useful for man-
aging user interfaces on the client-side of web applications. The
implementation is described in detail elsewhere [9, 11].

In the current version of Links, concurrency is handled using the
same effect typing mechanism as database integration. However,
in this paper, we focus on database integration. We are currently
formalising the semantics and type system for Links’ Erlang-style
concurrency, including a proof of type soundness.

1.7 Contributions and outline
The main contributions of this paper are as follows.

• A core language for effects based on System F extended with
row polymorphism and presence polymorphism.

• A refinement of Cooper’s approach to query normalisation
whereby normalisation is decomposed into a standard reduc-
tion relation and a structurally recursive function, which makes
proving termination considerably easier.

• An extension to support query normalisation for a polymorphic
language including a subkinding system to smoothly support
abstraction over flat relations.

• A design for accurately typing insert, delete and update opera-
tions taking advantage of presence polymorphism.

• Operational semantics for CORELINKS extended with database
query and update support along with type soundness proofs.

• A proof of correctness of query evaluation.

The rest of the paper is structured as follows. Section 2 intro-
duces the syntax and static semantics of CORELINKS. Section 3
describes an extension of CORELINKS with database operations.
Section 4 gives the dynamic semantics for CORELINKS extended
with database operations and proves it correct. Section 5 discusses
the implementation of CORELINKS as part of the Links web pro-
gramming language and Section 6 discusses related work. Section 7
concludes.

2. The core language
2.1 Syntax
Types and kinds The syntax of types and kinds is given below.

Ordinary types A,B,C ::= Int | Bool | String
| A→E B | 〈R〉 | [R]
| ∀αK .A | List A | α

Row types R,S,E ::= · | `P : A;R | ρ
Presence types P ::= ◦ | • | θ

Types T ::= A | R | P
Type variables α, ρ, ε, θ

Labels `
Label sets L ::= {`1, . . . , `k}

Kinds K ::= Type | BaseType
| RowL | BaseRowL
| Presence

The base types are integers, booleans and strings. The function type
A →E B takes an argument of type A, returns a value of type B
and has effectsE. The record type 〈R〉 has fields given by the labels
of row R. The variant type [R] admits tagged values given by the
labels of row R. The polymorphic type ∀αK .A is parameterised
over the type variable α of kind K. The type List A is the type of
lists whose elements have type A.

The full version of Links includes equi-recursive types, which
allows us to use variant types as a structural alternative to the alge-
braic datatypes of languages such as ML and Haskell. Our variants
are similar to OCaml’s polymorphic variants. The main differences



are that we use explicit row variables, whereas OCaml uses con-
straints; we support negative presence information, whereas OCaml
does not; and our case construct refines variant types, whereas
OCaml’s equivalent does not. Like OCaml, the full version of Links
also supports subtyping (on records as well as variants) with an ex-
plicit upcast operator. As in OCaml, upcasts are occasionally use-
ful. However, one of the attractions of row-typing is that it allows
many programs that would otherwise require subtyping to be typed
using polymorphism instead.

Effects The key effect we focus on in this paper is the wild
effect. We say that a computation that can be run on the database is
tame and a computation that cannot be run on the database is wild.
In particular, the body of a query expression must be tame.

Rows Records, variants and effect are all defined in terms of
rows. A row type includes a list of distinct labels, each of which
is parameterised by a presence type and an ordinary type. The
presence type indicates whether a label is present • or absent ◦.
The ordinary type indicates the type of values associated with that
label if it is present.

Row types are either closed or open. A closed row type ends in
·. An open row type ends in a row variable ρ. A term of closed row
type can have only the labels explicitly listed in the type. The row
variable in an open row type can be instantiated in order to extend
the row type with additional labels. As usual, we identify rows up
to reordering of labels.

`P1
1 : A1; `P2

2 : A2;R = `P2
2 : A2; `P1

1 : A1;R

Furthermore, absent labels in closed rows are redundant:

`◦ : A; `P1
1 : A1, . . . ; `

Pn
n : An; · = `P1

1 : A1, . . . ; `
Pn
n : An; ·

Presence types Unlike most other row type systems, but like
Remy’s ΠML′ [22], the type of a label is independent of whether
or not it is present. We make essential use of this feature in typing
the database update operations. (It also allows us to implement the
equivalent of OCaml’s < constraints on polymorphic variants [12].)

Kinds Types in CORELINKS are classified into kinds. Ordinary
types have kind Type . Row types R have kind RowL where L is a
set of labels not allowed in R. Presence types have kind Presence .

In addition to the three main kinds, CORELINKS supports a
basic subkinding discipline. Base types have kind BaseType which
is a subkind of Type . Similarly, rows S restricted to base type
have kind BaseRowL where L is a set of labels not allowed in
S, and this is a subkind of RowL. The subkinding discipline is
used to enforce the constraint that database queries must return
a list of records of base type (and similarly the constraint that
values appearing in database inserts and updates must have base
type). Potentially, it could be useful to add general support for user-
defined subkinds, and some sort of overloading mechanism, but that
is beyond the scope of this paper.

Terms The syntax of terms is given below.

L,M,N ::= x | c
| λxA.M | LM
| ΛαK .M |M T
| 〈〉 | 〈` = M ;N〉 |M.`
| (` M)R | caseL of ` x→M ; y → N
| case⊥ L
| if L thenM elseN
| [M] | for (x←M)N
| []A |M ++N

| rec fA xA
′
.M

We let x range over term variables and c range over constants.
Term-level type abstractions ΛαK .M are annotated with kinds.

Records are introduced with the unit record 〈〉 and record extension
〈` = M ;N〉 constructs. They are eliminated with projection M.`.
Dually, variants are introduced with the injection ` M and elimi-
nated using the case caseL of ` x → M ; y → N and empty case
case⊥ L constructs. We build in conditionals if L thenM elseN
because they are crucial to the generation of SQL. For the same
reason we include term forms for introducing empty lists []A,
singleton lists [M] and concatenating two lists M ++ N , and
for comprehensions for eliminating lists. We make a distinction
between non-recursive functions λxA.M and recursive functions
rec fA xA

′
.M because the latter cannot in general be run on the

database. For readability we often omit type and kind annotations.

Constants We assume a signature Σ mapping constants to their
types. We let n range over integer constants, and s range over string
constants. In addition, we assume that the constants c include at
least the following.

true : Bool
false : Bool
(¬) : ∀ε.Bool →ε Bool
(∧) : ∀ε.〈Bool ,Bool〉 →ε Bool
(∨) : ∀ε.〈Bool ,Bool〉 →ε Bool
(+) : ∀ε.〈Int , Int〉 →ε Int
(−) : ∀ε.〈Int , Int〉 →ε Int
(×) : ∀ε.〈Int , Int〉 →ε Int
(=) : ∀αBaseType .∀ε.〈α, α〉 →ε Bool
(<) : ∀αBaseType .∀ε.〈α, α〉 →ε Bool
(>) : ∀αBaseType .∀ε.〈α, α〉 →ε Bool

Values CORELINKS is a call-by-value calculus. The syntax of
values is standard.

U, V,W ::= c
| Λα.M | λx.M
| 〈〉 | 〈` = V ;W 〉 | ` V
| rec f x.M
| [V1, . . . , Vn]

The notation [V1, . . . , Vn] stands for the concatenation of single-
ton lists [V1], . . . , [Vn]. We interpret list values modulo identity
[] ++ V ≡ V ≡ V ++ [] and associativity (U ++ V ) ++W ≡
U ++ (V ++W ).

Notation We use the following abbreviations:

` : A ≡ `• : A
`P ≡ `P : 〈〉

〈A1, . . . , Ak〉 ≡ 〈1 : A1; . . . ; k : Ak; ·〉
` ≡ `1, . . . , `k

`P : A ≡ `P1
1 : A1, . . . , `

Pk
k : Ak

`• : A ≡ `•1 : A1, . . . , `
•
k : Ak

`◦ : A ≡ `◦1 : A1, . . . , `
◦
k : Ak

We interpret n-ary record and case extension at the type and term
levels in the obvious way. For instance:

`P : A;R ≡ `P1
1 : A1; . . . ; `Pnn : An;R

2.2 Typing and kinding judgements
The typing rules are given in Figure 1. Type environments map term
variables to types. Kind environments map type variables to kinds.

Type environments Γ ::= x1 : A1, . . . , xk : Ak
Kind environments ∆ ::= α1 :: K1, . . . , αk :: Kk

The typing judgement ∆; Γ ` M : A ! E says that in kind
environment ∆ and type environment Γ, the term M has type A
and effects E. We assume that Γ, A and E are well-kinded with



∆; Γ `M : A ! E

VAR

∆; Γ, x : A ` x : A ! E

CONST
Σ(c) = A

∆; Γ ` c : A ! E

LAM
∆; Γ, x : A `M : B ! E

∆; Γ ` λxA.M : A→E B ! E′

APP

∆; Γ ` L : A→E B ! E ∆; Γ `M : A ! E

∆; Γ ` LM : B ! E

POLYLAM
∆, α :: K; Γ `M : A ! wild◦;E α /∈ FTV (Γ, E)

∆; Γ ` ΛαK .M : ∀αK.A ! wildP ;E

POLYAPP

∆; Γ `M : ∀αK.A ! E ∆ ` T :: K α 6∈ FTV (E)

∆; Γ `M T : A[α := T ] ! E

UNIT

∆; Γ ` 〈〉 : 〈〉 ! E

EXTEND
∆; Γ `M : A ! E ∆; Γ ` N : 〈`◦ : A′;R〉 ! E

∆; Γ ` 〈` = M ;N〉 : 〈`• : A;R〉 ! E

PROJECT
∆; Γ `M : 〈`• : A;R〉 ! E

∆; Γ `M.` : A ! E

INJECT
∆; Γ `M : A ! E

∆; Γ ` (` M)R : [`• : A;R] ! E

CASE
∆; Γ ` L : [`• : A;R] ! E ∆; Γ, x : A `M : B ! E ∆; Γ, y : [`◦ : A′;R] ` N : B ! E

∆; Γ ` caseL of ` x→M ; y → N : B ! E

CASEZERO
∆; Γ ` L : [] ! E

∆; Γ ` case⊥L : A ! E

IF
∆; Γ ` L : Bool ! E ∆; Γ `M : A ! E ∆; Γ ` N : A ! E

∆; Γ ` if L thenM else N : A ! E

SINGLETON
∆; Γ `M : A ! E

∆; Γ ` [M] : [A] ! E

FOR
∆; Γ `M : List A ! E ∆; Γ, x : A ` N : List B ! E

∆; Γ ` for (x←M)N : List B ! E

NIL

∆; Γ ` []
A : [A] ! E

CONCAT
∆; Γ `M : [A] ! E ∆; Γ ` N : [A] ! E

∆; Γ `M ++N : [A] ! E

REC

∆; Γ, f : A→(wildP ;E) B, x : A `M : B ! wildP ;E

∆; Γ ` rec fA→
(wildP ;E)B xA.M : A→(wild•;E) B ! E′

Figure 1. Core typing rules

TABLE

∆; Γ ` table t : Σ(t) ! E

ASLIST
∆; Γ `M : Table(Sr, Sw, Sn) ! E

∆; Γ ` asListM : List 〈Sr〉 ! E

QUERY

∆; Γ `M : List 〈S〉 ! wild◦;E ∆ ` S :: BaseRowL

∆; Γ ` queryS M : List 〈S〉 ! wildP ;E

INSERT

∆; Γ ` L : Table(Sr, Sw, Sn) ! wildP ;E

∆; Γ `M : List 〈`• : A〉 ! wildP
′
;E Sr = (`• : A;S) Sw = (`• : A;S′) Sn = (`P ′′ : A; ·)

∆; Γ ` insertL valuesM : 〈〉 ! wild•;E

UPDATE

∆; Γ ` L : Table(Sr, Sw, Sn) ! wildP ;E ∆; Γ, x : 〈Sr〉 `M : Bool ! wild◦;E

∆; Γ, x : 〈Sr〉 ` N : 〈`• : A〉 ! wild◦;E Sr = (`• : A;S) Sw = (`• : A;S′) Sn = (`P ′ : A;S′′)

∆; Γ ` update (x⇐ L)whereM set`
•:AN : 〈〉 ! wild•;E

DELETE

∆; Γ ` L : Table(Sr, Sw, Sn) ! wildP ;E ∆; Γ, x : 〈Sr〉 `M : Bool ! wild◦;E

∆; Γ ` delete (x⇐ L)whereM : 〈〉 ! wild•;E

Figure 2. Database typing rules



respect to ∆. If ∆, Γ, or E are empty, then they are sometimes
omitted.

The typing rules are mostly straightforward; we only discuss the
more interesting ones. The EXTEND rule is strict in the sense that
it requires a label to be absent from a record before the record can
be extended with the label. Dually, the CASE rule refines the type
of the value being matched so that in the type of the variable bound
by the default branch, the non-matched label is absent.

Aside The full version of Links also includes an operation to
remove labels from a record, which allows one to define a record
update operation that does not require the label to be absent. This
can be used to define a non-strict record update operation that does
not require the label being updated to be absent. Interestingly, if one
works in CPS then this operation can be expressed in terms of an
upcast. The dual operation on first-class cases [3] can be expressed
directly with an upcast.

The only rules that actually change the effects are the ones for
introducing term-level type abstractions and recursive functions.
The POLYLAM rule is a relaxation of the ML value restriction.
Rather than limiting the body of a Λ to a syntactic value, we
insist that it is tame (observe that every syntactic value can always
be assigned a tame effect). This ensures that impure extensions
such as references or concurrency primitives cannot be used to
break type soundness. The REC rule ensures that the body of a
recursive function is wild, as recursive functions cannot be run on
the database. (We do not attempt to generate stored procedures.
Our goal is to abstract over a subset of SQL that does not include
general recursion.)

Note that by design we do not support subsumption, and in
particular we do not support sub-effecting, i.e., there is no implicit
coercion from a computation with effects ` : A; · to one with effects
` : A;R. We discuss this design choice further in Section 2.3.

The kinding rules are given in Figure 3. The kinding judgement
∆ ` A :: K says that in kind environment ∆, the type A has
kind K. Type variables in the kind environment are well-kinded.
The base types are Int , Bool and String . The rules for forming
function, record, variant, forall and list types follow the syntactic
structure of types, as do the rules for forming presence types. Recall
that RowL is the kind of row types whose labels cannot appear in
L. (To be clear, this constraint applies equally to absent and present
labels; it is a constraint on the form of row types. In contrast, `◦

in a row type is a constraint on terms.) An empty row has kind
BaseRowL for any label set L. The side-conditions ` /∈ L in
EXTENDROW and EXTENDBASEROW ensure that row types have
distinct labels. The restriction to base types in EXTENDBASEROWS
allows only rows of base types to have kind BaseRowL. A row
type can only be used to build a record, variant or function type
if it has kind Row∅. This constraint ensures that any absent labels
in an open row type must be mentioned explicitly. Subkinding is
implicit: BaseType is a subkind of Type and BaseRowL is a
subkind of RowL. Implicit subkinding does not significantly affect
type inference in the source language as there are no higher kinds
and there is no polymorphism over kinds.

2.3 Effect rows vs standard effect polymorphism vs effect
subtyping

Our treatment of effects is not dissimilar to standard effect poly-
morphism (for instance, see [24]). The key difference is that rather
than using row types, standard effect polymorphism admits a union
operation on effect types. In particular, it is possible to express an
effect as the union of several effect variables.

E = ε1 ∪ ε2 ∪ ε3

One way of characterising effect rows is as a restriction of standard
effect polymorphism in which the union operation is only applica-
ble if at least one of its arguments is monomorphic, i.e. any given
effect type can include at most one effect variable. The advantage
of imposing this restriction is that it puts an upper bound on the
size of effect types: an effect row can only include those concrete
effects that are relevant plus at most one effect variable.

In contrast, standard effect polymorphism can lead to effect
types containing an unbounded number of polymorphic effect vari-
ables. For instance, each branch of an if or case can give rise to a
new effect variable in the containing function. This blow-up in the
size of types is not necessarily a problem for a compiler backend,
but is undesirable for a source language. One of the goals of CORE-
LINKS is to provide a target for source languages (primarily Links)
that do support effect types and effect inference.

One way of reducing the size of effect types in standard effect
polymorphism systems is to introduce subsumption into the type
system (for instance, see [19]). That way a pure function can actu-
ally be assigned the empty effect rather than a polymorphic effect.
The difficulty with subsumption is that it complicates the type in-
ference algorithm, and can itself lead to large types arising from a
proliferation of subtyping constraints.

3. Database programming
In order to support database access we add one type constructor
and six new syntactic forms.

Types A ::= · · · | Table(Sr, Sw, Sn)

The type Table(Sr, Sw, Sn) encodes three different views on a
table as rows which capture constraints associated with the fields
of the table. The read row Sr contains all the fields that can be read
from the table. The write row Sw contains all the fields that can
be written in the table. The needed row Sn contains all the fields
that must be supplied when performing an insert operation (because
they do not have default values).

We overload the type signature for constants Σ to define a fixed
schema mapping table names to table types. In other words we
assume a collection of table constants ranged over by t.

The terms are extended as follows.

L,M,N ::= . . .
| table t | asListM | queryS M
| insertL valuesM
| update (x⇐ L)whereM setS N
| delete (x⇐ L)whereM

The database typing rules are given in Figure 2. This is where
we really start to make use of the novel features of the type system.

A table handle table t represents the table t, whose type is Σ(t).
The coercion asListM reads an entire table M from the database
as a list of records. A query expression querySM statically guaran-
tees thatM will be translated to at most one SQL query at run-time,
and the results will have flat relation type 〈S〉. Despite the fact that
the only primitive for reading from the database is asList, the nor-
malisation algorithm will in fact ensure that only the necessary data
is extracted. For instance, the example in Section 1.3 of filtering by
employees salary only returns the names of the employees.

The insert, update and delete commands translate directly to
their SQL counterparts. The command insertL valuesM inserts
the list of records M into the table L. The fields of the elements
of M must include all the needed fields of L. The command
update (x⇐ L)whereM setS N updates each row in the table L
withN wheneverM is true. The variable x is bound inN andM to
the contents of the current row. The fields ofN can be any writeable
subset of the fields of L. The command delete (x ⇐ L)whereM



∆ ` T :: K

TYVAR

∆, α :: K ` α :: K

INT

∆ ` Int :: BaseType

BOOL

∆ ` Bool :: BaseType

STRING

∆ ` String :: BaseType

FUNCTION
∆ ` A :: Type ∆ ` E :: Row∅ ∆ ` B :: Type

∆ ` A→E B :: Type

RECORD
∆ ` R :: Row∅

∆ ` 〈R〉 :: Type

VARIANT
∆ ` R :: Row∅

∆ ` [R] :: Type

FORALL
∆, α :: K ` A :: Type

∆ ` (∀αK.A) :: Type

LIST
∆ ` A :: Type

∆ ` List A :: Type

PRESENT

∆ ` ◦ :: Presence

ABSENT

∆ ` • :: Presence

EMPTYBASEROW

∆ ` · :: BaseRowL

EXTENDROW
` /∈ L
∆ ` R :: RowL∪{`}
∆ ` A :: Type
∆ ` P :: Presence

∆ ` (`P : A;R) :: RowL

EXTENDBASEROW
` /∈ L
∆ ` S :: BaseRowL∪{`}
∆ ` B :: BaseType
∆ ` P :: Presence

∆ ` (`P : B;S) ::BaseRowL

UPCASTBASETYPE
∆ ` B :: BaseType

∆ ` B :: Type

UPCASTBASEROW
∆ ` S :: BaseRowL

∆ ` S :: RowL

Figure 3. Kinding rules

deletes each row from the table L for whichM is true. The variable
x is bound in M to the contents of the current row.

Table handles are the only new value form.

V,W ::= · · · | table t

The QUERY rule enforces the constraints that the body of a query
expression must be tame and return a list of records of base type.
The INSERT rule ensures that: a) any fields being written are com-
patible with the writeable fields of the table, and b) all needed fields
are included in the values being written. Similarly, the UPDATE
rule ensures that any fields being updated are compatible with the
writeable fields of the table. It also ensures that the where and set
clauses are tame allowing all updates to be translated directly to
SQL. Similarly, the DELETE rule ensures that the where clause is
tame. We have chosen to enforce the constraint that all writeable
fields are also readable, but it would be perfectly possible to relax
this constraint. In the INSERT and UPDATE rules, the types of the
labels in the needed row are constrained to be consistent with those
of the other rows. The presence information is, on the other hand,
unconstrained as we can infer nothing about it solely from an insert
or update operation. In the INSERT rule the needed row is closed

β-rules
(λx.M) V −→ M [x := V ]

(rec f x.M) V −→ M [f := rec f x.M,
x := V ]

(Λα.M) T −→ M [α := T ]
〈` = V ;W 〉.` −→ V
〈` = V ;W 〉.`′ −→ W.`′, if ` 6= `′

case ` V of ` x→M ; z → N −→ M [x := V ]
case ` V of `′ x→M ; z → N −→ N [z := ` V ], if ` 6= `′

if true thenM elseN −→ M
if false thenM elseN −→ N

for (x← [V ])M −→ M [x := V ]

List deconstruction
for (x← [])N −→ []

for (x← V ++W )N −→ (for (x← V )N)
++ (for (x←W )N)

Evaluation contexts

M −→M ′

E [M ] −→ E [M ′]

E ::= [ ] | E M | V E | E T
| 〈` = E ;N〉 | 〈` = V ; E〉 | E .`
| ` E | case E of ` x→M ; y → N | case⊥ E
| if E thenM elseN
| [E] | E ++M | V ++ E
| for (x← E)N

Figure 4. Operational semantics

because all needed fields must occur in the type of M , whereas in
the UPDATE rule the needed row is open because there is no lower
bound on the number of fields that an update can modify.

4. Dynamic semantics
We start with a small-step semantics for CORELINKS (Figure 4)
without the database operations. The statement M −→ M ′ can be
read as: term M evaluates to term M ′ in one step. The rules are all
completely standard call-by-value β-reductions, except for the last
two which are used to deconstruct lists.

Now we consider how to generate an SQL query. The goal is to
convert the code inside a query expression into SQL. We will show
that it is always possible to rewrite a tame term of flat relation type
into the following normal form:

Queries L ::= (++)C
Comprehensions C ::= for (G)whereX [R]
Generators G ::= x← t
Records R ::= 〈` = X〉
Base expressions X,Y, Z ::= x.` | c(X)

| ifX thenY elseZ

where we use the following abbreviations:

(++)C ≡ C1 ++ . . .++ Cn
for (G)M ≡ for (G1) . . . for (Gn)M

whereM N ≡ ifM thenN else []
t ≡ asList (table t)

We assume that the order in which SQL queries return rows is
non-deterministic. We discuss briefly how Links supports ordered
SQL output in Section 5. Ignoring list ordering, normalised queries



β-rules
(λx.N) M  N [x := M ]
(Λα.M) T  M [α := T ]

〈` = M ;N〉.`  M
〈` = M ;N〉.`′  N.`′, if ` 6= `′

case ` L of ` x→M ; z → N  M [x := L]
case ` L of `′ x→M ; z → N  N [z := ` L], if ` 6= `′

if true thenM elseN  M
if false thenM elseN  N

for (x← [M])N  N [x := M ]

List deconstruction
for (x← [])M  []

for (x←M1 ++M2)N  (for (x←M1)N)
++ (for (x←M2)N)

Commuting conversions
F [if L thenM elseN ]  if L thenF [M ] elseF [N ]

for (x← for (y ← L)M)N  for (y ← L) for (x←M)N

Elimination frames
F ::= [ ] M | [ ] T | [ ].`
| case [ ] of ` x→M ; z → N
| if [ ] thenM elseN
| for (x← [ ])N

Compatible closure

M  M ′

K[M ] K[M ′]

where K ranges over one-hole contexts

Figure 5. Query rewriting

can be translated to SQL trivially, since the syntax of normalised
queries is isomorphic to the following fragment of SQL:

Queries L,M,N ::= (union all)C
Comprehensions C ::= selectR fromGwhereX
Generators G ::= t asx
Record terms R ::= X as `
Base terms X,Y, Z ::= x.` | c(X)

| case whenX thenY elseZ end

Strictly speaking, this is not quite a subset of SQL as SQL cannot
handle comprehensions in whichR is a row with no fields, or empty
unions. We ignore these idiosyncrasies.

4.1 Normalisation
Query evaluation relies on the query normalisation function norm
defined in Figures 5 and 6. This is invoked whenever evaluation
needs to access the database. Cooper [10] defines a similar nor-
malisation algorithm for a monomorphic language. His termination
proof is somewhat intricate because some of the rewrite rules do not
fit standard patterns. In order to avoid such difficulties in our more
challenging polymorphic setting, we have decomposed the normal-
isation algorithm into two stages. The first stage performs standard
symbolic evaluation, that is β-reductions, list deconstruction, and
commuting conversions, defined through a reduction relation  ,
thus it is amenable to standard termination arguments. The second
stage takes the output of the first stage as input. It is defined as
a structurally recursive function that returns a term in the desired
normal form.

Each β rule in the relation arises from a corresponding β rule
in the −→ relation (and similarly for the list deconstruction rules).
Notice however, that because we are only interested in applying
query normalisation rules to tame terms, the β rules are the more
general call-by-name variants. Furthermore, the rules are closed
under all contexts rather than just evaluation contexts. This means
that it is possible to perform some reductions that appear unsound:
although the whole query term must be tame, it may refer to
functions whose bodies are wild, providing those functions are not
actually used. For instance, suppose that we add a print command
that outputs a string and whose effect is wild. Now the term:

query (λx. []) ((λy. λz. 〈y, y〉)(print "foo"))

rewrites to:

query (λx. []) ((λz. 〈print "foo", print "foo"〉))

which appears to duplicate the print command. However, this then
rewrites to:

query []

The purpose of the commuting conversions is to expose further
β-reductions. They are necessary because not all values are avail-
able at normalisation time. (It is not necessary to perform com-
muting conversions for hoisting cases out of elimination contexts
because cases can always be eliminated from closed flat relational
queries by β-reduction alone.)

The syntax of -normal forms is given by the following gram-
mar:

Terms M,N ::= [R] | for (x← t)M | t
| [] |M ++N
| ifX thenM elseN

Records R,S ::= x | 〈` = X〉
| ifX thenR elseS

Base expressions X,Y, Z ::= x.l | c(X)
| ifX thenY elseZ

Given a -normal form M , the second stage of normalisation
computes ‖M‖[],true, which splitsM into a list of comprehensions,
which when concatenated together gives the desired normal form. It
is defined with respect to the labels ` of the output relation. (In order
to distinguish the meta language from the object languages, we
write roman square brackets [−] for the meta level list constructor
and ⊕ for the meta level concatenation of two lists — as opposed
to teletype square brackets [ ] and ++ for object languages.)

The function ‖−‖G,X splits its argument aggregating the cur-
rently active generators G and the current where clause X as it
proceeds. The auxiliary ‖−‖ function recurses on the record at the
tail of a comprehension. The auxiliary ‖−‖i function computes the
base expression associated with the `i component of the record.
Together ‖−‖ and ‖−‖i perform any necessary η-expansion for
record variables, and push conditionals inside records. These oper-
ations are necessary as SQL supports neither record variables nor
conditionals over records.

Given a tame flat relational term M : [〈` : A〉], we write
norm`(M) for the function that first applies -normalisation and
then splits the result to obtain a normalised query. It is well-defined
because is confluent.

4.2 The database operations
Now we extend the small-step rules to include the database oper-
ations (Figure 7). We model a database DB as a record of tables.
Each table t is a bag (or multiset) of flat records of type Σ(t). We
write Σ ` DB to assert that the value of each table t of DB satis-
fies ` DB .t : Σ(t). The small-step evaluation relation is extended
to keep track of the database. The statement DB ;M −→M ′; DB ′



norm`(M) = (++) (‖N‖[],true)
normRecord`(M) = ‖N‖

normBase(M) = N

where M  ∗ N 6 and:

‖[R]‖G,X = [for (G)whereX [‖R‖]]
‖for (x← t)M‖G,X = ‖M‖G⊕[x←t],X

‖t‖G,X = ‖[x]‖G⊕[x←t],X , x fresh
‖[]‖G,X = []

‖M ++N‖G,X = ‖M‖G,X ⊕ ‖N‖G,X
‖if Y thenM elseN‖G,X = ‖M‖G,X∧Y ⊕ ‖N‖G,X∧¬Y

‖R‖ = 〈`1 = ‖R‖1, . . . , `n = ‖R‖n〉

‖x‖i = x.`i
‖〈`1 = X1, . . . , `n = Xn〉‖i = Xi

‖ifX thenR elseS‖i = ifX then ‖R‖i else ‖S‖i

Figure 6. Query normalisation

can be read as: given input database DB the term M evaluates to
the term M ′ and produces the output database DB ′ in one step.

Evaluating asList (table t) reads the entire table t and converts
it to a list. In SQL this amounts to select ∗ from t. In order
to model the default behaviour of SQL, whereby no guarantee
is made as to the order in which rows are returned, the asList
function takes a bag and non-deterministically converts it to a
corresponding list. Evaluating a query expression querySM first
normalises unQuery(M), and then runs the normalised term. The
unQuery function maps each sub-term of the form queryN to N
(thus normalisation ignores nested query constructors). We write
V ' W to mean that the list value V is a permutation of the list
value W . Hence executing a query is non-deterministic as in SQL

Updates on the database are performed by the updateDB func-
tion, which we leave abstract as our focus is the semantic proper-
ties of queries. The update operation performs query normalisation
on the where and set clauses. Observe that evaluating the latter
depends on knowing the labels that are being updated. The delete
operation also normalises its where clause.

4.3 Type soundness
Preservation and progress properties hold for the operational se-
mantics.

Proposition 1 (Preservation). If ∆; Γ ` M : A ! E, Σ ` DB and
DB ;M −→M ′; DB ′ then ∆; Γ `M ′ : A ! E and Σ ` DB ′.

Proposition 2 (Progress). If ∆; Γ ` M : A ! E, then either M is
a value or there exists a term M ′ and a database DB ′, such that
DB ;M −→M ′; DB ′.

As usual, preservation is proved by induction over the evalu-
ation relation −→ using a suitable substitution lemma. The only
interesting cases are those rules that involve the norm func-
tion. Preservation depends on a preservation property for this
function, that is, if ∆; Γ ` M : [〈` : A〉] ! wild◦;E then
∆; Γ ` norm`(M) : [〈` : A〉] ! wild◦;E. This in turn depends
on a notion of preservation, or subject reduction for the relation.

Proposition 3 (Subject reduction).

1. If ∆; Γ `M : A !E and M  M ′, then there exists some E′,
such that ∆; Γ `M ′ : A ! E′.

2. If ∆; Γ `M : A !(wild◦;E), then eitherM 6 , or there exists
someM ′ such thatM  M ′ and ∆; Γ `M ′ : A!(wild◦;E).

DB ;M −→ N ; DB ′

V = asList(DB .t)

DB ; asList (table t) −→ V ; DB

N = norm`(unQuery(M)) N −→ V V 'W

DB ; query`:A M −→W ; DB

DB ′ = updateDB (insert (table t) values [R])

DB ; insert (table t) values [R] −→ 〈〉; DB ′

X = normBase(M) R = normRecord`(N)

DB ′ = updateDB (update (x⇐ table t)whereX set`:AR)

DB ; update (x⇐ table t)whereM set`:AN −→ 〈〉; DB ′

X = normBase(M)
DB ′ = updateDB (delete (x⇐ table t)whereX)

DB ; delete (x⇐ table t)whereM −→ 〈〉; DB ′

Evaluation contexts
E ::= . . .
| asList E
| insert E valuesM
| insertV values E
| update (x⇐ E)whereM set`:AN
| delete (x⇐ E)whereM

Figure 7. Operational semantics for the database operations

The first property is a weak form of subject reduction, which
allows the effect type to vary. This is necessary because we are
allowing call-by-name reduction. The second property states that
whenever a reduction is possible, we can always choose one that
does preserve effects. This can be achieved by adopting a reduction
strategy that only contracts tame redexes. We can be sure that any
impure redexes will eventually disappear as M itself is tame.

As usual, progress is proved by induction over typing deriva-
tions using a suitable substitution lemma. Again, the only inter-
esting cases arise when rules involving the norm function apply.
Progress depends on this function terminating, which in turn de-
pends on termination of the relation.

Theorem 4. If ∆; Γ ` M : A ! wild◦;E, then M is strongly
normalising with respect to .

Proof sketch. The proof is by translation to Fω extended with prod-
ucts, sums, unit and empty type including the standard commut-
ing conversions as well as β-rules. We call this language F×+10

ω .
Matthes [18] proves strong normalisation for a similar extension to
System F and his proof scales up to F×+10

ω (as well as other features
such as positive recursive types).

We observe that for any given term, polymorphic records and
variants can be straightforwardly simulated by products and sums.
Let n be the number of distinct labels appearing in the term. The
idea is to simulate each record by an n-ary product and each variant
by an n-ary sum. We write |`| for the position in a product encod-
ing a record containing ` or a sum encoding a variant containing `.
Absent labels in a record are given the unit type, and absent labels
in a variant type are given the zero type. Row variables are repre-
sented as 2n standard type variables: two for each label. Two are



JIntKσ = Int
JStringKσ = String

JBoolKσ = 1 + 1
JA→E BKσ = JAKσ → JBKσ

J〈R〉Kσ = (×) JRKσ,[1,n...,1],1
J[R]Kσ = (+) JRKσ,[0,n...,0],0

J∀αType .AKσ = ∀α?.JAKσ = J∀αBaseType .AKσ
J∀ρRowL .AKσ = ∀(ρ†).JAKσ = J∀ρBaseRowL .AKσ
J∀θPresenceKσ = ∀θ?→?→?.θ JAKσ[θ 7→•] JAKσ[θ 7→◦]

JList AKσ = 1 + JAKσ
JαKσ = α

J`• : A;RKσ,B,C = JRKσ,B[|`|7→JAKσ ],C
J`◦ : A;RKσ,B,C = JRKσ,B,C
J`θ : A;RKσ,B,C = JRKσ,B[|`|7→A′],C ,

where A′ = JAKσ, if σ(θ) = •
C, if σ(θ) = ◦

J·Kσ,B,C = B
Jρ :: RowLKσ,B,C = [A1, . . . , An],

where Ai = Bi, if i ∈ |L|
Ai = ρC,i, if i /∈ |L|

ρ† = [ρ?1,1, . . . , ρ
?
1,n, ρ

?
0,1, . . . , ρ

?
0,n]

|{`1, . . . , `n}| = {|`1|, . . . , |`n|}

Figure 8. Type translation for simulating in F×+10
ω

needed as each row variable may be used in records and variant
types, which require different treatment for absent labels.

The next step is to handle list types. The rules involving com-
prehensions and unit lists (but not empty lists and concatenation)
are the standard rules for monads. Benton et al [2] observe that
the rules for monads can be straightforwardly simulated with those
for sums by instantiating the monad constructor as the exception
monad T A = 1 + A. We can do the same thing here (the monad
constructor is called List in our case). Even better, we can also
give interpretations to the empty list and concatenation, such that
the translation simulates the original rewrite rules.

The one missing ingredient is presence polymorphism. This is
the one feature that makes use of type level computation. The idea
is simple: encode presence types as type level booleans. We use
the standard representation of booleans at the type level. Presence
types have kind ?→ ?→ ?, where ? is the kind of types. True (◦)
is represented as the type-level function λx?. λy?. x and false (•)
as λx?. λy?. y. The conditional if P thenA elseB is represented
as P AB.

The translation on types is given in Figure 8. It is parameterised
by an environment σ that keeps track of which presence variables
are present and which are absent. The translation on row types is
additionally parameterised by a vector B that tracks the current
row encoding, and a type C that is the current representation of an
absent label (1 for a record and 0 for a variant).

The translation on terms is not difficult, but is more tedious.
A minor technicality is that one needs to introduce n − 1 dummy
redexes for each projection and case. This is because the labels may
need to be re-ordered. It is straightforward to verify that each  -
reduction is simulated by one or more F×+10

ω reductions.

In order to be sure that norm is actually well-defined we need
to ensure that is confluent.

Proposition 5. The relation is confluent.

Proof sketch. By an exhaustive case analysis we obtain weak
confluence. Confluence follows from Theorem 4 and Newman’s
Lemma.

The typing rule for query ensures that the input to the normal-
isation procedure has flat relation type and is tame, and can there-
fore be translated to an SQL query. Similarly, the typing rules for
update and delete ensure that the where clauses and the set clause
for update are tame and hence their normal forms can be directly
translated to SQL expressions.

4.4 Query evaluation correctness
In this section we show that query evaluation is correct in the
following sense: a program with query expressions (where queries
are evaluated through normalising and then evaluating the query
remotely on the database) is equivalent to an expression without
query (where the equivalent processing is performed by loading
the database tables into memory and evaluating the query code in-
memory). The latter evaluation strategy is potentially much more
inefficient, but provides a benchmark for the correctness of the
former.

The first step is to show that -reduction is sound with respect
to the evaluation relation −→. Given a database DB and a term
M , let inMemDB (M) be M with all sub-terms of the form table t
replaced by asList(DB .t), all sub-terms of the form asList (N)
replaced by N , and all table types Table(Sr, Sw, Sn) replaced by
List 〈Sr〉.

Lemma 6. If `M : [〈S〉] ! wild◦;E and M −→∗ V , then there
exists W ' V such that inMemDB (M) −→∗ W .

Proof. By induction on the structure of M .

Lemma 7 (Soundness of  ). If ` M : [〈S〉] ! wild◦;E,
unQuery(M) −→∗ V , and unQuery(M)  N , then there
exists W ' V such that N −→∗ W .

Proof. By Lemma 6, we have inMemDB (unQuery(M)) −→∗
W with W ' V . As asList does not appear in the  -rules,
we have inMemDB (unQuery(M))  inMemDB (N).
Now all the applicable −→-rules are also  -rules, so
inMemDB (unQuery(M))  ∗ W . By confluence of  ,
we have inMemDB (N)  ∗ W . Finally, as there are no free
variables or asList constructors in inMemDB (N), we are free to
choose a call-by-value reduction strategy that uses no commuting
conversions, and hence inMemDB (N) −→∗ W .

Lemma 8 (Soundness of splitting).
If for (G)whereXM −→∗ V , where ` V : [〈` : A〉] !wild◦;E,
and (++) ‖M‖G,X −→

∗ W , then V 'W .

Proof. By induction on the structure of M .

Proposition 9. If queryM −→∗ V , then there exists W ' V
such that unQuery(M) −→∗ W .

Proof. By Lemmas 7 and 8.

5. Links implementation
Up to now we have focused on CORELINKS as a core calculus for
effects. We now consider some more practical issues by reference
to the Links source language and implementation [17].



5.1 Source types
Effect type systems are widely studied, but rarely exposed in source
languages. We believe that this may be largely because exposing
effect types to the programmer can significantly complicate the
types the programmer has to deal with. In particular, the standard
extension of type inference with effect types includes a union
operation on effects, allowing for an arbitrary number of effect
variables to appear in any effect annotation. The use of effect rows
amounts to introducing the restriction that only one effect variable
can appear in each effect annotation.

The Links source language is based on a Hindley-Milner type
system extended with rows and kinds. Type inference for polymor-
phic records and variants is standard. The extension to support ef-
fect rows is a straightforward application of the same technology.

5.2 Evaluation model
The intermediate representation (IR) used by Links is an A-normal
form variant of CORELINKS. The server-side component of Links
is implemented as a CPS interpreter for the IR. (CPS is used,
amongst other things, for implementing web continuations and
concurrency.) When the interpreter encounters a query expression
it switches to a non-standard interpreter that implements the query
normalisation rules as a big-step semantics and then sends the
resulting query to the database.

Note that it is essential that queries be generated at run-time,
because not enough information is available to generate them stati-
cally. Consider the filterTable example from the introduction. We
cannot hope to generate a full query until the arguments are pro-
vided to the function, which we cannot expect to happen in general
until run-time, as the arguments can depend on arbitrary computa-
tion. In this simple case we might hope to normalise most of the
component parts in advance, which might be seen as an optimisa-
tion. However, suppose we were to abstract further over the data
source, or build up more complex queries by performing joins and
abstracting over other data sources, then a non-trivial amount of
normalisation would inevitably remain to do at run-time.

5.3 Extensions
Links supports some extensions to CORELINKS. It is possible to
attach an orderby clause to a for comprehension. This corresponds
to the SQL order by clause. For ordering to be meaningful it is
necessary to move from a bag to a list semantics. However, though
our rewrite relation is sound for lists, the splitting function is not.
The development version of Links implements a more sophisticated
splitting function that accommodates a list semantics. It inserts
special ordering indexes in order to determinise the output.

To allow sorting on fields from multiple tables Links generalises
comprehensions to support multiple generators. In order to effec-
tively desugar such generalised for comprehensions we use a vari-
ant of the ‘comprehensive comprehensions’ compilation scheme
introduced by Peyton Jones and Wadler [16]. This scheme allows us
to desugar for comprehensions using map, concatMap and sortBy
functions (being careful to ensure that these functions are specially
annotated as tame). The non-standard interpreter then rediscovers
the generalised for comprehension structure as part of its big-step
normalisation procedure. This turns out to be surprisingly straight-
forward. This design has the pleasing property that it does not re-
quire us to complicate the IR by the inclusion of for comprehen-
sions (which makes targetting environments other than the database
considerably simpler than it might be).

5.4 Recursive types
Links supports recursive types. Unfortunately this exposes a hole in
the effect-type system, as it is possible to encode the Y -combinator
and hence write non-terminating queries. We could certainly plug

this hole by partitioning recursive types into positive and negative
ones, and associating the wild effect with the elimination form for
negative recursive types. We have not yet implemented such a sys-
tem, partly because we are concerned about the negative impact it
may have on the usability of the rest of the language. In practice,
we have not had a problem with negative recursive types leading to
non-termination. It seems considerably less likely for a program-
mer to accidentally encode a non-terminating term using negative
recursive types than to accidentally write a call to a standard recur-
sive function inside a query. Nevertheless, this area deserves further
investigation.

5.5 Syntactic sugar for functions
As language designers one of our goals has been to try to support
effect types in a way that is not too intrusive to the programmer. A
glance at the typing rules might suggest that CORELINKS types are
too verbose. For instance, every recursive function has a wild an-
notation. We have ameliorated this issue somewhat by introducing
special syntactic sugar for the two effects we currently support.

The CORELINKS type A →E B is written in Links as
(A) {E}-> B (Links functions are n-ary; hence argument type(s)
are written in parentheses). The · at the end of a closed row is never
written explicitly. Row type extension `;R is written l | R. An
empty open row ρ is written |rho. The syntactic sugar for function
arrows is summarised as follows:

-e-> ≡ { |e}->
-> ≡ -e->, e fresh
{E}~> ≡ {wild | E}->
~e~> ≡ { |e}~>
~> ≡ ~e~>, e fresh
{:A | E}~> ≡ {hear:A | E}~>

The -> suffix indicates a tame arrow and the ~> suffix indicates a
wild arrow. Type variables are written in the middle of an arrow.
The hear:A effect is abbreviated :A. First order functions that do
not receive messages always have arrows of the form -> or ~>. We
can always assign fresh effect variables to the first n arguments
of a curried function (as partially applying a curried function has
no effects). Interestingly, many higher-order functions (at least,
most of the standard ones included in the Links prelude) follow
a consistent pattern: function arguments are all assigned the same
effect as the function body. This suggests that it might be worth
giving -> and ~> more sophisticated meanings in order to make
higher-order function types more readable. For example, the type
inferred for the uncurry function is:

((a) -b-> (c) -b-> d) -> (a, c) -b-> d

Because this follows the common pattern, we might hope for
this to be displayed instead as:

((a) -> (b) -> c) -> (a, b) -> c

Effect rows scale to support unbounded numbers of effects. For
instance, Blume et al. [4] use them to track an arbitrary number of
exceptions. However, it is not clear how acceptable the resulting
verbosity is to programmers. One could imagine introducing some
kind of support from an IDE for selectively hiding some of the
effect annotations on types.

6. Related work
Our work builds on a long line of research on functional database
query languages, comprehensions, and language-integrated query-
ing. Links was explicitly inspired by work on Kleisli [27], a func-
tional query language; moreover, Cooper’s work on higher-order
query normalisation [10] (which we refine in this paper) builds
on Wong’s seminal work on conservativity and query normali-
sation [26]. Subsequently, Links has co-evolved with the LINQ
project at Microsoft, which has brought the benefits of language-
integrated queries and comprehension syntax to a wide audience.



Row type systems have been widely studied [6, 15, 20, 22, 25].
The basis for our row type system is Remy’s ΠML′ [22]. Our
typing rules for polymorphic variants are similar to those of Blume
et al. [3]. Unlike their system CORELINKS does not support first-
class cases, but the full Links does allow them to be implemented
as functions using upcasts.

The Ur/Web project [8] uses advanced record typing features,
along with powerful generative programming techniques, to type-
check SQL primitives embedded in a high-level functional lan-
guage. This approach provides greater control over what query
code is generated, but makes an explicit distinction between query
code and ordinary code.

SML# [21] extends Standard ML with polymorphic records
and support for SQL. Like Ur/Web it makes an explicit distinction
between query code and ordinary code.

Ferry [13] is a functional query language that provides nested
data, grouping, and aggregation, and supports list semantics rather
than SQL’s multiset semantics. It translates to SQL via a monolithic
translation to a flat relational algebra which comes equipped with
a sophisticated optimisation engine. Like Links query expressions,
Ferry programs that return a list of records of base type are guar-
anteed to be translated to at most one SQL query. Ferry programs
can also return nested data. In this case an additional collection of
SQL queries, whose size is equal to the number of nested lists in
the type of the program, is generated. Ulrich [23] has developed a
variant of Links that builds on Ferry. It integrates smoothly with
the Links type system, but uses Ferry as a back-end instead of our
query normaliser. A difficulty with the Ferry approach is that it is
rather hard to reason about due to the monolithic translation.

7. Conclusions and future work
Our experience with Links [7] has shown that our effect system
does appear to work well in practice, and it is a significant advan-
tage to use standard row and polymorphic type inference mecha-
nisms for effects. Nevertheless there may still be room for improve-
ment in the design of CORELINKS. The particular form of presence
polymorphism we support is rather unusual, and can be counterin-
tuitive (if a label is absent, then it seems strange to have to give
it a type). Alternatives include using explicit constraints alongside
types along the lines of OCaml or SML#, or some combination of
rows and constraints, or even moving to a more expressive type sys-
tem supporting refinement types or more general dependent types.

Much work remains in extending support for database function-
ality. The fragment of SQL currently targeted is limited. For in-
stance, it does not support null values, grouping or aggregation, all
of which are key parts of SQL. We believe our approach is comple-
mentary to ongoing work in Ur/Web and Ferry: it would be inter-
esting to see whether Links’ implicit query normalisation approach
can be combined with the explicit approach in Ur/Web. We are cur-
rently working on establishing type soundness for concurrency in
Links using row-based effects and on developing a rewriting-based
technique for evaluating Ferry-style nested queries using multiple
flat queries.

An important concern when adding new effects to a source
language is how this will affect the usability and readability of the
language. It would be interesting to see how well our approach
scales to support more effects, and to what extent it is possible
to balance the concerns of providing precise effect information in
types while keeping types readable.
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