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Abstract
To make data available on the Web, one must typically implement
two components: one to convert the data into HTML, and another
to parse updates out of client responses. In current systems, these
components are usually implemented using separate functions—
an approach that replicates functionality across multiple pieces of
code, making programs difficult to write, reason about, and main-
tain. This paper presents formlenses, a new abstraction based on
formlets that makes it easy to bridge the gap between data stored
on a server and values embedded into an HTML form. We present a
new foundation for formlets based on monoidal functors (replacing
the classic definition based on applicative functors), and show how
to endow the resulting structures with a bidirectional semantics.
We investigate the connection between linearity and bidirectional
transformations and develop a translation from a linear pattern syn-
tax into formlens combinators. Finally, we develop infrastructure
for building formlenses over arbitrary algebraic datatypes.

1. Introduction
Putting data on the Web typically involves implementing two com-
ponents: one to convert the data into HTML, and another to parse
updated data from client responses. Unfortunately, in current sys-
tems, these components are usually implemented using separate
functions—an approach that replicates functionality across multi-
ple pieces of code, and makes programs difficult to write, reason
about, and maintain.

To illustrate, consider a datatype representing visiting speakers,

data Speaker = Speaker {name :: String , date :: Date }
data Date = Date {year :: Int ,month :: Int , day :: Int }

and suppose we want to build an application that supports viewing
and editing a database of such speakers through a Web browser.
The first step, would be to write a function renderer that converts
a single Speaker value into HTML:1

renderer :: Speaker → Html
renderer (Speaker n (Date y m d)) =

input ! [name "name", value n ] +++ br +++
lineToHtml "Year: " +++
input ! [name "year", value (show y)]
lineToHtml "Month: " +++
input ! [name "month", value (show m)] +++ br +++
lineToHtml "Day: " +++
input ! [name "day", value (show d)] +++ br +++

The output produced by renderer contains an embedded form,
which allows users to edit the details for the speaker and submit

1 This code uses combinators from the Text .Html module.

modifications back to the server. When the form is submitted, a
response will be sent back to the server as an association list:

data Env = [(String ,String)]

To handle these responses, we also need a function collector that
extracts an updated Speaker value from an Env .

collector :: Env → Speaker
collector e =

let n = read (fromJust (lookup "name" e)) in
let y = read (fromJust (lookup "year" e)) in
let m = read (fromJust (lookup "month" e)) in
let d = read (fromJust (lookup "day" e)) in
Speaker n (Date y m d)

This function retrieves the appropriate items from the Env , parses
them back into their original formats, and builds a Speaker value
out of the results.

Together, renderer and collector effectively present a single
Speaker value on the Web. But in general, developing Web appli-
cations manually leads to several challenges. First, it requires the
programmer to write explicitly coercions to convert the data into
and out of HTML. And often the correctness of the application
requires that these coercions compose to the identity—something
that is easy to get wrong, especially in large applications. Second,
the programmer must construct the Web form manually, including
choosing the names of each element. Although these names are
semantically immaterial—the program would behave the same if
different names were used—they must be globally unique to avoid
clashes. In addition, the names introduced in the renderer func-
tion must be synchronized with the names used in the collector
function to ensure that data is preserved on round-trips. These con-
straints make it difficult to build forms in a compositional manner.
For instance, we cannot iterate the renderer and collector func-
tions to obtain a program for a list of Speakers because the names
are “baked in” to the two functions.

Formlets. In previous work, Cooper et al. [10] introduced a high-
level abstraction for building Web forms called formlets. form-
lets encapsulate a number of low-level details including selecting
names for elements and parsing responses.

In Haskell, formlets are represented as functions that take a
name source (concretely, an Int) as an argument and produce
a triple comprising HTML, a collector function, and a modified
namesource.

type Formlet a = Int → (Html ,Env → a, Int)

The names of any form elements in the HTML are drawn from the
namesource, and the collector looks up precisely these names.

As a simple example of a formlet, consider the html combi-
nator, which generates static HTML without any embedded form
elements,
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html :: Html → Formlet ()
html h i = (h, const (), i)

and a wrapper for generating plain text:

text :: String → Formlet ()
text = html ◦ stringToHtml

We can also define a formlet combinator that accepts an integer:

inputInt :: Formlet Int
inputInt i = let n = show i in

(input ! [name n ],
λe → read (fromJust (lookup n e)), i + 1)

Combinators for other primitive types like String and Bool can be
defined in similar fashion.

Formlets can be combined into larger formlets using the in-
terface of applicative functors, a useful and generic mathematical
structure for representing computations with effects [26].

class Functor f where
fmap f :: (a → b)→ f a → f b

class (Functor f )⇒ Applicative f where
pure :: a → f a
(⊗) :: f (a → b)→ f a → f b

Intuitively, the pure function injects a value of type a into the
type f a , while the ⊗ operator applies the underlying function to
the underlying argument, accumulating effects from left to right.
Applicative functor instances are expected to obey the following
natural conditions which relate the behavior of pure and ⊗:

pure id ⊗ u = u
pure (◦)⊗ u ⊗ v ⊗ w = u ⊗ (v ⊗ w)

pure f ⊗ pure x = pure (f x )
u ⊗ pure x = pure (λf → f x )⊗ u

The applicative instance for formlets is defined as follows:

instance Applicative Formlet where
pure a i = (noHtml , const a, i)
(f ⊗ g) i = let (x , p, i ′) = f i in

let (y , q , i ′′) = g i ′ in
(x +++ y , λe → p e (q e), i ′′)

The pure formlet generates empty HTML and has the constant
function as its collector . The ⊗ operator threads the namesource
through its arguments from left to right and accumulates the gen-
erated HTML. Its collector function applies the function (of type
a → b) produced by the collector for f to the value (of type a)
produced by the collector for g .

Using the applicative functor interface and the simple combina-
tors just defined, we can define a formlet for Speakers as follows:

dateForm :: Formlet Date
dateForm = pure (λ y m d → Date y m d)
⊗ text "Year: " ⊗ inputInt ⊗ html br
⊗ text "Month: "⊗ inputInt ⊗ html br
⊗ text "Day: " ⊗ inputInt ⊗ html br

speakerForm :: Formlet Speaker
speakerForm = pure Speaker ⊗ inputString ⊗ dateForm

The arguments to the pure function ignore the () values produced
by the collector for the text and html combinators.

Formlenses. Formlets are a useful abstraction, but they only ad-
dress half of the problem! They make it easy to describe a collector
function that produces a value of type a , but they do not provide a

way to describe a renderer function that consumes a value of type
a and embeds it in a form. Of course, programmers could write
functions of type a → Formlet a , but such functions do not have
an applicative functor interface, so large formlets would have to be
built by hand. Moreover, formlets do not help programmers estab-
lish that these transformations will have reasonable behavior—e.g.,
that the a value will be preserved on round-trips.

Another way to think about these problems starts from the ob-
servation that forms (and formlets) are often used in the context of
an updatable view of an underlying data source. The fundamental
difficulty in putting data on the Web stems from the fact that pro-
grammers are maintaining these views manually, writing explicit
forward transformations that put the data into forms, and separate
backward transformations that propagate collected values back to
the underlying sources.

As the terminology used in the preceding paragraph should sug-
gest, we have a solution to this problem in mind: use ideas from
bidirectional transformations [11] to define formlets that behave
like updatable views. The primary goal of this paper is to show
how formlets and bidirectional transformations such as lenses [15]
can be combined, yielding an abstraction we call Formlenses. Es-
sentially, a formlens is a gadget that takes a value of type a , renders
it as a form that can be dispatched to the Web client, translates the
response back to a new value of type a , and merges the result with
the old value. Intuitively, one can think of a Formlens a as a bidi-
rectional mapping between an a value and a form that contains an
a . But unlike the manual approach described above using explicit
functions of type a → Formlet a , we can design the formlens
abstraction to support composition in a natural way and provide
semantic guarantees.

Challenges. Combining formlets and lenses turns out to be non-
trivial. If values of type Formlens a consume a values, then a
must appear in a negative position in their types, so Formlens can-
not be a covariant Functor over the category of Haskell types and
functions. Conversely, if values of type Formlens a produce a
values, then a must appear positively in their types, so Formlens
cannot be a contravariant functor over this category either. To avoid
this difficulty, we shift perspective and consider functors from the
following categories to the category Hask of Haskell types and
functions:

• Bij , the category of Haskell types and bijective embedding-
projection pairs and

• Lens , the category of Haskell types and bidirectional transfor-
mations [15].

Although other researchers have considered using functors over
other categories in Haskell, such as partial isomorphisms for in-
vertible syntax descriptions [33], to the best of our knowledge, we
are the first to use functors over lenses for programming.

Another complication is that, even restricting attention to func-
tors on bijections or lenses, the applicative functor interface is
too strong. Consider the following interface, which generalizes
McBride and Paterson’s definition to allow applicative functors
from an arbitrary source category c to Hask :

class GApplicative c f where
gpure :: a → f a
gapp :: f (c a b)→ f a → f b

To instantiate this interface with GApplicative c Formlens ,
where c is Bij or Lens , we would need to define functions

gpure :: a → Formlens a
gapp :: Formlens (c a b)→ Formlens a → Formlens b
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For the latter, we would need to (somehow) combine a form that
consumes and produces a Bij a b or Lens a b with another form
that produces and consumes an a to obtain a form that produces
and consumes a b. This does not seem to be possible to achieve
in a natural way. Unlike formlets, which are only required to pro-
duce values, formlenses must produce and consume values, which
leads to problems instantiating gapp, which has a fundamentally
asymmetric type.

Fortunately we can avoid this problem by exploiting the connec-
tion between Applicative functors and Monoidal functors noted
by McBride and Paterson. They showed that for Haskell Functors,
Applicative functors are inter-definable with Monoidal functors.
It turns out that this extra structure is not required for Formlets or
Formlenses. By adapting the basic ideas of Formlets to a different
(weaker) mathematical structure, we are able to employ Formlets
in a broader range of settings—specifically we can compose form-
lets with bijections and lenses while retaining the ability to com-
pose formlets formerly offered by the Applicative interface and
now provided by the Monoidal interface instead.

Contributions. This paper makes the following contributions:

• We present a new foundation for formlets based on monoidal
functors. This foundation makes it possible to endow formlets
with a bidirectional semantics and provides a convenient ab-
straction for presenting data on the Web.

• We explore the connection between linear syntax and bidirec-
tional transformations by developing a translation from a linear
pattern language into our formlens combinators. This extension
makes it possible to define formlenses using a convenient syn-
tax (subject to a linearity constraint). We have implemented this
translation using GHC’s quasi-quoting mechanism and Tem-
plate Haskell.

• We develop infrastructure for building formlenses over arbi-
trary algebraic datatypes, using ideas from datatype-generic
programming.

The rest of the paper is structured as follows: Section 2 reviews
(standard) definitions of monoidal categories and functors, phrased
in terms of Haskell type classes. Section 3 shows how we can
reconstruct classic formlets in terms of monoidal functors, and
how the resulting formlets can be lifted to functors over bijections
or lenses, resulting in formlenses. Section 4 adapts the syntactic
sugar of classic formlets to formlenses, allowing for either bijective
or bidirectional templates. Section 5 presents infrastructure for
defining formlenses over algebraic datatypes. Section 6 discusses
related work, and Section 7 concludes.

2. Monoidal categories and functors
The key ingredient in our approach is to use monoidal rather than
applicative functors to define formlenses. This section reviews the
(mostly standard) definitions for bijections, lenses, categories, and
monoidal functors. It can be skimmed on a first reading and referred
back to as needed.

Bijections. A bijection is a one-to-one and onto mapping between
two sets. We represent bijections using the following datatype:

data Bij a b = Bij {fwd :: a → b, bwd :: b → a }
Every bijection is expected to satisfy the following conditions,
which state that fwd and bwd are inverses:

bwd bij ◦ fwd bij = id = fwd bij ◦ bwd bij

Bijections admit many useful combinators such as the following:

idB :: Bij a a
idB x = x

invB :: Bij a b → Bij b a
invB bij = Bij (bwd bij ) (fwd bij )

swapB :: Bij (a, b) (b, a)
swapB = Bij (λ(a, b)→ (b, a)) (λ(b, a)→ (a, b))

Lenses. Lenses generalize bijections by allowing the transfor-
mation in the forward direction to be non-injective. We represent
lenses in Haskell using the following type:

data Lens a b = Lens {get :: a → b, put :: a → b → a }
Note that the type of put , the backward transformation, is asym-
metric. It takes the original a and a new b as arguments and pro-
duces an updated a .

Every lenses is expected to satisfy the following laws [15]:

put a (get a) = a -- GetPut
get (put a b) = b -- PutGet

Intuitively, these laws say that data is preserved on round-trips.
Lenses admit the following combinators (among many others):

idL :: Lens a a
idL = Lens id (const id)

constL :: b → Lens a b
constL b = Lens (const b) (λa → a)

fstL :: Lens (a, b) a
fstL = Lens (λ(a, b)→ a) (λ( , b) a → (a, b))

(· ×L ·) :: Lens a1 b1 → Lens a2 b2 → Lens (a1, b1) (a2, b2)
l1 ×L l2 = Lens (λ(a1, a2)→ (get l1 a1, get l2 a2))

(λ(b1, b2) (a1, a2)→
(put l1 b1 a1, put l2 b2 a2))

Every bijection can be converted into a lens using a put function
that ignores its second argument:

bij2lens :: Bij a b → Lens a b
bij2lens b = Lens (fwd b) (const (bwd b))

Categories. A category is a collection of objects and arrows such
that every object has an identity arrow and arrows compose asso-
ciatively.

class Category c where
id :: c x x
(◦) :: c y z → c x y → c x z

Haskell functions, bijections, and lenses each form a category.

instance Category (→) where
id = λx → x
f ◦ g = λx → f (g x )

instance Category Bij where
id = Bij id id
f ◦ g = Bij (fwd f ◦ fwd g) (bwd g ◦ bwd f )

instance Category Lens where
id = Lens id (const $ id)
l ◦m = Lens (get l ◦ get m)

(λa c → put m a (put l (get m a) c))

An isomorphism in a category c is a morphism f ::c a b with an
“inverse” g ::c b a satisfying f ◦g = id = g◦f . In a computational
setting, it is convenient to represent isomorphisms explicitly.

data Iso c a b = Iso {fwdI :: c a b, bwdI :: c b a }
Isomorphisms are expected to satisfy the following condition:

fwdI iso ◦ bwdI iso = id = bwdI iso ◦ fwdI iso
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Note that Bij is just Iso (→). However, we will keep the notation
separate to avoid confusion.

Monoidal categories. A monoidal category is a category with
additional structure, namely a unit and product on objects in the
category. For simplicity, we will use the following definition of
monoidal categories, which is specialized to Haskell’s unit () and
pairing types (, ) and also includes a pairing operation on c-arrows
(· × ·) as well as c-isomorphisms relating unit and pairing:

class Category c ⇒ MonoidalCategory c where
(· × ·) :: c a1 b1 → c a2 b2 → c (a1, a2) (b1, b2)
munitl :: Iso c (a, ()) a
munitr :: Iso c ((), a) a
massoc :: Iso c (a, (b, d)) ((a, b), d)

Monoidal categories are expected to satisfy a number of additional
laws, which essentially state that () is a unit with respect to (, )
and “all diagrams involving the above operations commute” [23].
We will also omit discussion of the relevant laws of monoidal
categories; the standard laws hold for all of the monoidal categories
we will consider in this paper.

Haskell types and functions form a monoidal category (→),
with the following operations:

instance MonoidalCategory (→) where
f × g = λ(a, b)→ (f a, g b)
munitl = Iso (λ(a, ())→ a) (λa → (a, ()))
munitr = Iso (λ((), a)→ a) (λa → ((), a))
massoc = Iso (λ(a, (b, d))→ ((a, b), d))

(λ((a, b), d)→ (a, (b, d)))

In fact, any category with finite products is monoidal, but there are
many monoidal categories whose monoidal product does not form a
full Cartesian product. This is the case, for example, for bijections,
since the fst and snd mappings are not bijections; models of linear
type theory [2] provide more examples.

Two examples of monoidal categories that are relevant for our
purposes are Bij and Lens . For Bij , we first show how to lift
isomorphisms on Hask to Bij (there is some redundancy here,
which we tolerate for the sake of uniformity):

iso2bij :: Iso (→) a b → Iso Bij a b
iso2bij (Iso to fro) = Iso (Bij to fro) (Bij fro to)

instance MonoidalCategory Bij where
f × g = Bij (λ(a, b)→ (fwd f a, fwd g b))

(λ(fa, gb)→ (bwd f fa, bwd g gb))
munitl = iso2bij munitl
munitr = iso2bij munitr
massoc = iso2bij massoc

For Lens , we first lift the coercion bij2lens from bijections to
lenses to act on isomorphisms:

iso2lens :: Iso Bij a b → Iso Lens a b
iso2lens (Iso to fro) = Iso (bij2lens to) (bij2lens fro)

instance MonoidalCategory Lens where
l1 × l2 = l1 ×L l2
munitl = iso2lens munitl
munitr = iso2lens munitr
massoc = iso2lens massoc

Dual categories. Every category has a dual, obtained by revers-
ing arrows:

newtype cop a b = Co {unCo :: c b a }
instance Category c ⇒ Category cop where

id = Co id
(Co f ) ◦ (Co g) = Co (g ◦ f )

The dual of any monoidal category is also monoidal:

iso2dual :: Iso c a b → Iso cop a b
iso2dual (Iso to fro) = Iso (Co fro) (Co to)

instance MonoidalCategory c ⇒
MonoidalCategory cop where

(Co l1)× (Co l2) = Co (l1 × l2)
munitl = iso2dual munitl
munitr = iso2dual munitr
massoc = iso2dual massoc

In particular, Lensop is monoidal. This fact will be useful later
since Formlens a is a contravariant functor from Lens to Hask .

Functors. The built-in Haskell Functor type class models func-
tors from Hask to Hask . For our purposes, we will need to gen-
eralize its definition slightly2 to consider functors from other cate-
gories (such as Bij and Lens) to Hask . Accordingly, we introduce
the following type classes:

class Category c ⇒ GFunctor c f where
gmap :: c a b → f a → f b

Again, since we are interested only in Hask -valued functors rather
than defining a type class for functors between arbitrary categories,
we define a specific type class for functors from an arbitrary cate-
gory c to Hask .

Monoidal functors. Next, we consider monoidal functors:3

class Monoidal f where
unit :: f ()
(?) :: f a → f b → f (a, b)

Note that we do not explicitly identify the domain of f in the type
class Monoidal f ; this is not necessary (and leads to typechecking
complications due to the unconstrained type variable) since the
signature of the operations of a monoidal functor depends only on
the codomain category (which for us is always Hask ). However, in
stating the laws for monoidal functors, we will implicitly assume
that the domain is a monoidal category—in particular, that · × ·,
munitl , munitr , and massoc are defined.

McBride and Paterson use the following laws for monoidal
functors,

fmap (f × g) (u ? v) = fmap f u ? fmap g u
fmap fst (u ? unit) = u

fmap snd (unit ? u) = u
fmap assoc (u ? (v ? w)) = (u ? v) ? w

which implicitly assume we are working with endofunctors on
Hask . In addition, they use the operations fst :: (a, b) → a and
snd ::(a, b)→ b which are not available in all monoidal categories
(for example, there is no bijection Bij (a, b) a , and while there is
a lens Lens (a, b) a , it is not an isomorphism). Since we are only
interested in functors whose range is Hask , a minor variant of these
laws (adapted from MacLane [23]) suffices:

2 Others have proposed much more general libraries for categorical concepts
in Haskell [21, 38]; we believe our approach could be framed using such
a library, but prefer to keep the focus on the needed concepts to retain
accessibility to readers not already familiar with these libraries. This is also
an appropriate place to mention that correct use of categorical concepts
in Haskell requires some additional side-conditions such as avoidance of
nontermination; we treat this issue informally.
3 Some authors, such as McBride and Paterson, call these lax monoidal
functors to distinguish them from other kinds of monoidal functors, but
these distinctions are unimportant in this paper so we just say monoidal.
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(M1) gmap (f × g) (u ? v) = fmap f u ? fmap g u
(M2) gmap munitl (u ? unit) = u
(M3) gmap munitr (unit ? u) = u
(M4) gmap massoc (u ? (v ? w)) = (u ? v) ? w

Composition. Monoidal functors, like applicative functors, can
be composed (unlike some other well-known abstractions such as
monads). To realize this in Haskell, we introduce a type for functor
compositions and type class instances for composing ordinary and
general functors:

data (f ◦ g) a = Comp {deComp :: f (g a)}
instance (Functor f ,Functor g)⇒ Functor (f ◦ g) where

fmap h (Comp a) = Comp (fmap (fmap h) a)

instance (Functor f ,Monoidal f ,Monoidal g)⇒
Monoidal (f ◦ g) where

unit = Comp (fmap (const unit) unit)
(Comp u) ? (Comp v) = Comp (fmap (uncurry (?)) (u ? v))

Applicative functors. As shown by McBride and Paterson, in the
context of Hask functors, every Applicative functor induces a
Monoidal functor and vice versa, and the translations back and
forth are inverses.

instance (Monoidal f ,Functor f )⇒ Applicative f where
pure a = fmap (\ → a) unit
mf ⊗mx = fmap (λ(f , x )→ f x ) (mf ?mx )

Lemma 1 ([26]). For any functor f : Hask → Hask, there exist
operations (pure,⊗) making f an applicative functor if and only
if there exist operations (unit, ?) making f a monoidal functor.

This means that existing Applicative functors can be viewed as
Monoidal and vice versa. However, this argument implicitly uses
the fact that Hask has rich structure, including so-called strength,

strength :: Functor f ⇒ (a, f b)⇒ f (a, b)
strength (a, fb) = fmap (λb → (a, b)) fb

which is derived from the fact that fmap can be used on arbitrary
higher-order functions. This is not possible for functors f from an
arbitrary category c to Hask .

The traditional Formlet type based on applicative functors can
equally well be given using monoidal functors and deriving ap-
plicative structure, or vice versa. In fact, the monoidal functor laws
are often significantly simpler to verify (as also noted by Pater-
son [30]). In the next section, we show how to construct formlets
based on monoidal functors directly, without an unnecessary detour
through applicative functors.

3. Formlenses
This section defines formlenses, the main abstraction presented in
this paper. Our development proceeds in two phases. First, we show
how to construct the classic formlet abstraction

type Formlet a = Int → (Html ,Env → a, Int)

as the composition of three smaller abstractions—one for gener-
ating names, one for accumulating HTML, and one for collecting
values out of form responses—following the approach pioneered
by Cooper et al. [10]. We also show that each of these smaller ab-
stractions can be endowed with monoidal structure. Defining form-
lets in a modular fashion, as opposed to simply defining them to be
the type stated above has several advantages. One is pedagogical—
it explains the role of each smaller abstraction, and it demonstrates
that we have not lost essential structure by shifting from applicative
to monoidal functors. Another is that it makes it possible to adjust
the behavior of formlets in a modular fashion, by composing other

types corresponding to additional processing phases. We illustrate
this latter point by composing a validation phase onto the bare def-
inition, effectively changing the type of the collector component to
Env → Maybe a . We then show how to define new validating
formlet combinators that check that the data submitted by the user
satisfies certain well-formedness conditions.

Second, we define the formlens abstraction. The type of form-
lenses,

type Formlens a = a → Int → (Html ,Env → a, Int)

closely resembles the type of formlets, except that it is parameter-
ized on an additional argument of type a which intuitively repre-
sents the initial value stored on the server. Adding this extra param-
eter appears simple but creates numerous complications. In partic-
ular, a appears both covariantly and contravariantly in the type, and
this is the main reason we are forced to sacrifice the richer applica-
tive interface in favor of monoidal functors.

We obtain the formlens type using a higher-order type opera-
tor Lift that builds a function type with an extra argument, as in
the type of Formlens . We show that this type operator preserves
monoidal structure and extends to (generalized) functors from Bij
to Hask and Lens to Hask . Taken together, these results provide
sufficient structure to support using bijections and lenses to define
forms. We illustrate the use of formlenses for implementing bidi-
rectional transformations through examples, and we discuss the ex-
pected semantic properties—i.e., that the a value being transformed
by the formlens is preserved on round-trips.

3.1 Classic Formlets
We begin by showing how to define classic formlets as the compo-
sition of three simpler functors.

Namers. The functor Namer t generates names, which are used
to identify elements of the form.

newtype Namer t a = Namer {runNamer :: t → (a, t)}
Note that Namer t holds the type t abstract. We will typically use
Ints. It is straightforward to show that Namer t is a functor

instance Functor (Namer t) where
fmap f (Namer n) = Namer (first f ◦ n)

and also has monoidal structure:

instance Monoidal (Namer t) where
unit = Namer (λt → ((), t))
(Namer n1) ? (Namer n2) =

Namer (λt → let (a, t ′) = n1 t in
let (b, t ′′) = n2 t ′ in
((a, b), t ′′))

The following lemma records the fact that Namer is a valid in-
stance of Monoidal .

Lemma 2. Namer t is a monoidal functor for any type t .

To prove this lemma, we can simply check that properties M1 to
M4 all hold. To save space, in the rest of this paper, we will usually
not state explicit lemmas for each instance of Monoidal . However,
we still expect these properties to hold.

Accumulators. The Acc m functor accumulates the HTML gen-
erated by formlets.

data Acc m a = Acc m a

Acc is parameterized on a monoid m . Monoids are defined in
Haskell using the following (standard) type class,4

4 Note that the monoid type class and monoidal functors are different!
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class Monoid a where
mempty :: a
mappend :: a → a → a

where the mempty element is an identity for the mappend op-
eration, which is associative. We will typically take m to be the
monoid of Html documents:

instance Monoid Html where
mempty = noHtml
mappend = (+++)

The functor and monoidal functor structures on Acc m can be
defined as follows:

instance Functor (Acc m) where
fmap f (Acc m a) = Acc m (f a)

instance Monoid m ⇒ Monoidal (Acc m) where
unit = Acc mempty ()
(Acc m1 a) ? (Acc m2 b) = Acc (m1 ‘mappend ‘m2) (a, b)

Assuming m is a Monoid , it is straightforward to verify that
Acc m is monoidal.

Collectors. The Collect e functor reconstructs the value encoded
in a form response.

data Collect e a = Collect (e → a)

Values of type Collect e a wrap a function e → a that builds an a
from an environment e . The following definitions give the functor
and monoidal functor structure on collectors:

instance Functor (Collect e) where
fmap f (Collect g) = Collect (f ◦ g)

instance Monoidal (Collect e) where
unit = Collect (λx → ())
(Collect c1) ? (Collect c2) = Collect (λe → (c1 e, c2 e))

Classic Formlets. Using the functors just defined, the type of
classic formlets can be obtained using composition,

newtype Formlet a =
Formlet {unFormlet ::

(Namer Int) ◦ ((Acc Html) ◦ (Collect Env)) a }
with functor and monoidal structure lifted to Formlet in the obvi-
ous way:

instance Functor Formlet where
fmap f = Formlet ◦ fmap f ◦ unFormlet

instance Monoidal Formlet where
unit = Formlet unit
fl1 ? fl2 = Formlet (unFormlet fl1 ? unFormlet fl2)

Note that this type is isomorphic to the type for classic formlets
stated at the start of this section:

type Formlet a = Int → (Html ,Env → a, Int)

In general, we can either define formlets using this “direct” type, or
using the type defined as the composition of the Name , Acc, and
Collect functors. We will often use such “direct” types for simplic-
ity, as it allows us to avoid explicitly introducing and eliminating
the Formlet and Comp constructors.

Validation One of the benefits of defining classic formlets com-
positionally is that it allows us to modularly adjust their behavior
by adding additional processing phases. To illustrate, suppose that
we want to define a variant of formlets in which collectors may fail

if the strings contained in the form response are ill-formed. A sim-
ple way to achieve this is to have the collector inject its result into
the Maybe type.

First, we check that Maybe admits functor and monoidal func-
tor structure:

instance Functor Maybe where
fmap Nothing = Nothing
fmap f (Just a) = Just (f a)

instance Monoidal Maybe where
unit = Just ()
(Just x ) ? (Just y) = Just (x , y)
? = Nothing

Then we build “validating” formlets by composing the Maybe
functor with the collector component,

newtype ValFormlet a =
ValFormlet {unValFormlet ::

(Namer Int) ◦ ((Acc Html) ◦ ((Collect Env) ◦Maybe)) a }

which is isomorphic to the following type:

type ValFormlet a = Int → (Html ,Env → Maybe a, Int)

Using this type, we can define combinators that fail when the
strings in the form data are not well formed. For example, the
following combinator returns Nothing if the input is not a string
encoding a positive integer.

inputNat :: ValFormlet Int
inputNat i = let n = show i in

(input ! [name n ],
(λe → case reads (fromJust (lookup n e)) of

[(v , "")] | v > 0→ Just v
→ Nothing),

i + 1)

Note that we use the “direct” type for validating formlets for sim-
plicity. Other validating combinators can be defined similarly.

3.2 Formlenses
Now we present the main result in this section: the definition of
formlenses themselves. Recall that our goal is to bundle the code
that builds a form together with the code that processes responses.
That is, we would like a type that behaves like a → Formlet a .
Such a function would be applied to the initial values of the form,
so that if the user immediately clicks ”submit” then the original a
value is reconstructed, and if they modify the values embedded in
the form, then the a value changes accordingly. As described in
the introduction, there is a major problem with this idea: the type
a → Formlet a cannot be made into an ordinary functor because
a appears both positively and negatively in the type. Nevertheless,
we can define a natural lifting construction that maps monoidal
functors to monoidal Lens → Hask functors, and hence also
Bij → Hask , as a special case.

Lifting. Given a type operator f , the type operator Lift f maps
each type a to the type a → f a .

data Lift f a = Lift (a → f a)

In addition, Lift f preserves monoidal structure.

instance Monoidal f ⇒ Monoidal (Lift f ) where
unit = Lift (λ()→ unit)
(Lift f ) ? (Lift g) = Lift (λ(a, b)→ f a ? g b)

Note that due to the contravariance of Lift f , in general Lift f may
not be an instance of Functor . Nevertheless, provided that f is a
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Functor , we do have that Lift f is a covariant GFunctor on Bij
and a contravariant GFunctor on Lens .

instance Functor f ⇒ GFunctor Bij (Lift f ) where
gmap bij (Lift g) = Lift (fmap (fwd bij ) ◦ g ◦ bwd bij )

instance Functor f ⇒ GFunctor Lensop (Lift f ) where
gmap (Co l) (Lift g) =

Lift (λa → fmap (put l a) (g (get l a)))

In categorical terms, we say that Lift f extends to functors from
Bij to Hask and from Lensop to Hask . In plain terms, these
GFunctor instances define functions that can be used to map a
bijection or lens over the Formlens type:

gmap :: Bij a b → Formlens a → Formlens b
gmap :: Lens b a → Formlens a → Formlens b

The fact that these instances are valid is be captured in the following
theorems.

Theorem 3. If f is a (monoidal) functor, then Lift f is a
(monoidal) GFunctor Lens , and hence Lift f is also a (monoidal)
GFunctor Bij .

The proof of this result is given in Appendix B.

Formlenses. To build the Formlens type operator, we lift Formlet ,
yielding a type that is isomorphic to the one stated previously:

newtype Formlens a = Formlens (Lift Formlet a)

We lift the monoidal functor and generalized functor structures to
Formlenses in the obvious way:

instance Monoidal Formlens where
unit = Formlens (unit)
(Formlens f ) ? (Formlens g) = Formlens (f ? g)

instance GFunctor Bij Formlens where
gmap b (Formlens fl) = Formlens (gmap b fl)

instance GFunctor Lensop Formlens where
gmap l (Formlens fl) = Formlens (gmap l fl)

Theorem 4. Formlens is a monoidal GFunctor Lens , and hence
Formlens is also a monoidal GFunctor Bij .

Example. To get a taste for how formlenses work, let us build a
bidirectional version of the dateForm Formlet from the introduc-
tion. Recall the definition of dateForm as a classic formlet:

dateForm :: Formlet Date
dateForm = pure (λ y m d → Date y m d)
⊗ text "Month: "⊗ inputInt ⊗ html br
⊗ text "Year: " ⊗ inputInt ⊗ html br
⊗ text "Day: " ⊗ inputInt ⊗ html br

As a first step, let us define formlens versions of the html , text ,
and inputInt combinators.

htmlL :: Html → Formlens ()
htmlL h v i = (h, const (), i)

textL :: String → Formlens ()
textL = htmlL ◦ stringToHtml

inputIntL :: Formlens Int
inputIntL v i = let n = show i in

(input ! [name n, value (show v)],
λe → read (fromJust (lookup n e)),
i + 1)

Note that each of the formlens combinators takes the initial value v
for the form as a parameter.

Next, it will be useful to define several helper operators, (〈?)
and (?〉). These operators behave mostly like (?) but they combine
a Formlens a and Formlens () into a Formlens a , rather than a
Formlens (a, ()) and Formlens ((), a) respectively.

(〈?) :: (Monoidal f ,GFunctor Bij f )
⇒ f a → f ()→ f a

f 〈? g = gmap (munitl :: Iso Bij (a, ()) a)
(f ? g)

The definition of the (?〉) is symmetric, but eliminates the () value
using munitr instead of munitl .

Third, let us define a bijection on Dates.

dateB :: Bij ((Int , Int), Int) Date
dateB = Bij (λ((y ,m), d)→ Date y m d)

(λ(Date y m d)→ ((y ,m), d))

Putting all these pieces together, we can build a formlens for Dates
as follows:

dateFormlens :: Formlens Date
dateFormlens =

gmap dateB
(textL "Year: " ?〉 inputIntL 〈? htmlL br 〈?
textL "Month: " ? inputIntL 〈? htmlL br 〈?
textL "Day: " ? inputIntL 〈? htmlL br)

Compared to the formlet dateForm , we have replaced (⊗) with
(?), (〈?), and (?〉) as appropriate, and applied gmap dateB at the
top-level. Overall, dateFormlens maps bidirectionally between a
Date value and a form that encodes a date, as desired.

Optional formlenses. The type Formlens a can sometimes be
awkward to use, because it requires us to always construct an a
before building a form for it. We can define a variant of formlenses
that support both creating and editing data using the same code.
The idea is to build a type similar to Maybe a → Formlet a , so
that we can either build a form that creates an a from Nothing , or
if we already have an a , build a form that allows editing that a from
Just a .

A simple variant of Lift , called MLift , does precisely this.

data MLift f a = MLift (Maybe a → f a)

Like Lift , the MLift operator lifts functors over Bij :

instance Functor f ⇒ GFunctor Bij (LiftM f ) where
gmap f (MLift g) =

MLift (fmap (fwd f ) ◦ g ◦ fmap (bwd f ))

with monoidal structure given by:

instance (Monoidal f )⇒ Monoidal (MLift f ) where
unit = MLift (\ → unit)
(MLift f ) ? (MLift g) =

MLift (λma →
case ma

of Just (a, b)→ f (Just a) ? g (Just b)
Nothing → f Nothing ? g Nothing)

But unlike Lift , even if f is a functor MLift g is not a contravariant
functor on lenses, since in cases where the input is Nothing we do
not have an a-value to provide to put :

instance Functor f ⇒ GFunctor Lensop (MLift f ) where
gmap (Co l) (MLift (g)) =

MLift (λma →
case ma of

Just a → fmap (put l a) (g (Just (get l a)))
Nothing → fmap (put l ( ??? )) (g Nothing))
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However, if we adjust the definition of a lens slightly so that the
put direction can proceed if we just have a b value and no a ,

data MLens a b = MLens {mget :: a → b,
mput :: Maybe a → b → a }

then we can make MLens into a monoidal category, analogous to
Lenses (the details are in Appendix ??). The MLens type is similar
to classic lenses, which have a “create” function in addition to “get”
and “put” functions [15].

With this generalization, we can then lift functors f to con-
travariant MLens functors in the obvious way:

instance Functor g ⇒ GFunctor MLensop (MLift g) where
gmap (Co l) (MLift (g)) =

MLift (λma →
case ma of

Just a → fmap (mput l ma) (g (Just (mget l a)))
Nothing → fmap (mput l Nothing) (g Nothing))

Moreover, these functors also have monoidal structure.

Theorem 5. If f is a (monoidal) functor then MLift f is a
(monoidal) GFunctor MLens , and hence MLift f is also a
(monoidal) GFunctor Bij .

Finally we can define MFormlens a as follows:

newtype MFormlens a = MFormlens (MLift Formlet a)

We will use MFormlenses to define a type-theoretic sum operator
in Section 5.

3.3 Semantic Properties
Classic lenses satisfy natural well-behavedness conditions such as
the GETPUT and PUTGET laws. A natural question to ask is: are
there analogous laws for formlenses, and are they preserved by
operations such as (?) and gmap?

Let extract be a function from Html to Env that crawls over
an HTML document and extracts the association list containing
the names and values of all form fields. We say that a Formlens
value fl is well behaved if it satisfies the following law (which is
analogous to GETPUT) for all values x and namesources t :

(h, c,n ′) = fl x n extract h ⊆ e

collect e = x
(COLLECTEXTRACT)

We believe that our formlens combinators satisfy COLLECTEX-
TRACT (or preserve it assuming that their arguments satisfy it), and
that if fl satisfies COLLECTEXTRACT then so do (gmap bij fl)
and (gmap l fl), where bij is a bijection and l a lens of appro-
priate type. We plan to prove these properties formally in the near
future.

4. High-level Syntax
Programming with raw formlens combinators can be difficult be-
cause the structure of the types produced (and consumed) by the
Formlens closely matches the structure of the combinator program.
For example, if f is a Formlens Int and g is a Formlens () then
f ? g is a Formlens (Int , ()). If the programmer wants to obtain
a Formlens Int instead, they must gmap the bijection munitl on
the result to eliminate the spurious (). Of course, the derived 〈? op-
erator does this, but having to remember when to use ? versus 〈? is
inconvenient.

This section presents a better alternative. We define a syntax for
describing formlenses based on pattern matching, and we give a
translation from this high-level syntax into our low-level formlens
combinators. In our implementation, we use quasi-quotation [24]

Meta variables
e expression
f formlet expression

s string
p pattern

t tag
ats attribute list

Quasiquotes

c ::= [formc | n1 . . . nk yields e | ] classic formlet
b ::= [formb | p ↔ n1 . . . nk | ] bijective formlens
l ::= [forml | p ↔ n1 . . . nk |] bidirectional formlens

n ::= <t ats>n1 . . . nk</t> | s node| {e } | {f → p}

Figure 1. Syntax

to represent this syntax and Template Haskell [35] to implement
the translation.

The syntax is based on pairs of patterns over a shared set of
variables. The pattern on the left is used to match values, while the
pattern on the right is used to match snippets of HTML. Hence,
when read from left to right, a program written in this syntax
denotes a transformation from values into HTML; when read from
right to left it denotes a transformation from form responses back
into values. Overall, this syntax provides a much more convenient
way of describing formlenses compared to manually constructing
combinator programs by hand, and applying bijections (or lenses)
to massage the data into the desired format.

Classic formlets. To define a classic formlet, we use the syntax
[formc | body yields e | ]. The body consists of a sequence of
nodes5 where a node is either an element <t ats>n1 . . . nk</t>,
a text node s , a spliced HTML expression {e }; or a nested formlet
binding {f → p}. A full description of the syntax of our patterns
is given in Figure 1.

Cooper et al. [10] defined a desugaring from such quasiquoted
formlet programs into combinators using applicative functors. We
will use an analogous translation, adapted to use monoidal func-
tors instead. The translation of the body using (−)◦ first goes by
structural recursion, producing formlet combinators as a result. Se-
quences of nodes are then combined using the (?) operator and
unit handles the empty sequence. On the other side, we extract
patterns from the form using (−)†, again following a straightfor-
ward structural recursion. The functor map operation fmap is then
used to combine the results of the sub-formlets bound in the body
through the extracted patterns. Figure 4 gives the formal definition
of the translation.

Using this syntactic sugar we can rewrite dateForm as:

dateFormC :: Formlet Date
dateFormC =

[formc | Year : {inputInt → y }<br/>
Month : {inputInt → m }<br/>
Day : {inputInt → d }<br/>

yields Date y m d | ]

The translation of this program is the code for dateForm given in
the introduction.

Bijective formlenses. Bijective Formlenses are defined using the
syntax [ | formb | p ↔ n1 . . . nk |]. For a bijective formlens,
we have to additionally specify how to split up input values among
sub-formlenses. Furthermore, to ensure that the overall formlens

5 In practice, in order to make parsing easier, one could require additional
syntax for delimiting the body. For instance, the Links language [9], re-
quires the body to be a single element, and uses a special dummy element
< # /> for simulating sequences of nodes.
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[formc | n1 . . . nk yields e ] = fmap f (n1 . . . nk)◦

where
f = λ(n1 . . . nk)† → e

s◦ = text s
{e }◦ = html e

{f → p}◦ = f
<t ats>n1 . . . nk</t>◦ = tag t ats (n1 . . . nk)◦

(n1 . . . nk)◦ = n1 ? . . . ? nk

s† = ()
{e }† = ()

{f → p}† = p
<t ats>n1 . . . nk</t>† = (n1 . . . nk)†

(n1 . . . nk)† = (n†1, . . . , n
†
k)

[formb | p ↔ n1 . . . nk ] =
gmap (Bij get put) (n1 . . . nk)◦ where

fwd = λ(n1 . . . nk)† → p
bwd = λp → (n1 . . . nk)†

[forml | p ↔ n1 . . . nk ] =
gmap (Co (Lens get put)) (n1 . . . nk)◦

where (pold , pnew ) = p�

get = λp → (n1 . . . nk)†

put = λpold → λ(n1 . . . nk)† → pnew

� = (x , x ), x fresh
x� = ( , x )

(p1, . . . , pk)� = ((p′1, . . . , p
′
k), (e1, . . . , ek))

where (p′i, ei) = pi
�, 1 6 i 6 k

(K p)� = (K p′,K e) where (p′, e) = p�

Figure 2. Translations.

is well behaved, the variables must be used linearly among those
sub-formlenses.

We adopt a straightforward convention that guarantees linearity.
The idea is to adapt the classic formlet syntax so that the yields
clause is restricted to be a pattern and is used to specify both in-
put and output values. This is more restrictive than classic form-
let, which allow yields clauses to be arbitrary, but handles the
common case of bijective mappings between source values and
forms. Instead of [formb | n1 . . . nk yields p ] we write
[formb | p ↔ n1 . . . nk ], to highlight that the interface pat-
tern p defines both the input and output interfaces for the formlens.

The key difference in the translation (see Figure 4) is that the
fmap becomes gmap and is passed a bijection rather than a func-
tion6. This is required as the domain of GFunctor Bij Formlens
is the category of Haskell types and bijections. We construct the
bijection using Template Haskell. Note, however, that the functions
fwd and bwd are only well-typed if the linearity condition is satis-
fied. Observe also, that p cannot contain any wildcard patterns, as
it is used as an expression. This means that the formlet must use
all of the input—i.e., we require strict linearity and merely affine
patterns do not suffice. It would be tempting to extend interface
patterns to support a richer language of bijections through a suit-
able linear typing discipline, and we intend to explore this in the
future. However, patterns do cover an important and common case.
Moreover, it is always possible to explicitly use gmap outside of

6 Of course, we must also adapt (−)◦ to output textL, htmlL, and tagL in
place of text , html , and tag .

the syntactic sugar in order to compose an arbitrary bijection with
a formlens.

Using this syntactic sugar, we can rewrite the dateFormlens
example as follows:

dateFormlensB :: Formlens Date
dateFormlensB =

[formb | Date y m d
↔

Year : {inputIntL→ y }<br/>
Month : {inputIntL→ m }<br/>
Day : {inputIntL→ d }<br/> | ]

This is desugared into essentially the same code as dateFormlens
in Section 3.2, but without using the (〈?) and (?〉) operators. In
particular, the outer bijection becomes:

Bij (λ(Date y m d)→ ((), y , (), (),m, (), (), d , ()))
(λ((), y , (), (),m, (), (), d , ())→ Date y m d)

It would be straightforward to adapt the desugaring transformation
to output ?〉 and 〈? operators where appropriate. It is not clear
whether this would be particularly desirable, but it would make the
generated code more readable.

Bidirectional formlenses. Finally, bidirectional formlenses are
defined using the syntax [| forml | p ↔ n1 . . . nk | ].
Unlike bijective formlenses, patterns in bidirectional formlenses
may ignore part of the input. Thus we generalize the syntax to allow
wildcards in the pattern.

The key difference from the translation (see Figure 4) for bi-
jective formlenses is the use of the put function. As we are now
mapping a lens over the formlens, the put function must take an ex-
tra argument representing the original input value. The pattern pold
binds the parts of the original input value that are ignored by the
formlens. The pattern pnew (which is also an expression as it con-
tains no wildcards) combines the ignored part of the input bound
by pold with the output produced by the formlens.

As with the translation for bijective formlenses, if get and put
are well-typed then linearity is guaranteed. Any wildcard patterns
that appear in the interface pattern are filled in using the additional
argument to put .

If no wildcards appear in the pattern, then forml desugaring
produces essentially the same code as formb desugaring—the first
argument to put is just ignored.

As a simple example, suppose we want a form, based on the
Speaker example from the introduction, that only allows us to see
and edit the name of a speaker, while maintaining the date, then we
can write the following code:

speakerFormL :: Formlens Speaker
speakerFormL = [ | forml | Speaker name

↔ Name : {inputStringL→ name } | ]

which is desugared into:

speakerFormL =
gmap (Lens (λ(Speaker name )→ ((),name))

(λ(Speaker x0 ) ((),name)→ Speaker name x0 ))
(textL "Name: " ? inputString)

where x0 is a fresh variable that tracks the old date value.

Aside. As Template Haskell provides no support for antiquota-
tion in user-defined quasiquoters, we roll our own simple bracket-
counting parser to determine the extent of embedded Haskell code
and pass the output to Dominic Orchard’s syntax-trees package7.

7 http://hackage.haskell.org/package/syntax-trees
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type HNFormlet = (Namer [Int ]) ◦ ((Acc Html) ◦ (Collect Env))
type HNFormlens a = MLift HNFormlet a
data Value = Base String | Inl Value | Inr Value

| Pair Value Value | Con Value
data GenFormlens =

forall a . (BaseValue a)⇒ GBase (HNFormlens a)
| GPair GenFormlens GenFormlens
| GSum GenFormlens GenFormlens
| GVar String
| GRec String GenFormlens

Figure 3. Basic structures for algebraic datatypes.

5. Formlenses for Algebraic Datatypes
So far, we have seen several ways of constructing formlenses: by
defining primitive formlenses; by exploiting the monoidal structure
of formlenses, in particular the (?) operator, to combine formlenses
that operate on the components of a product to obtain a formlens
that operates on the entire product; and by using gmap to modify
the behavior of a formlens using a bijection or a lens. This section
presents additional infrastructure that makes it possible to construct
formlenses over arbitrary algebraic datatypes. These features make
it possible to define formlenses for richer datatypes such as lists
and trees. For example, we will be able to lift a Formlens a to a
Formlens [a ].

Our approach has two main ingredients. First, borrowing tech-
niques from from datatype-generic programming [17], we repre-
sent datatypes as a recursive sum of products, and we define a
formlens operator for each type operator. Second, we modify the
Formlens type, enriching the namesource to be an [Int ] instead of
Int . Such namesources can be used to represent hierarchical names,
which are needed to handle recursive formlenses.

Basic structures. Figure 5 defines types for hierarchically-named
formlenses, algebraic datatypes, and boxed values. HNFormlet
is like Formlet but has an [Int ] as a namesource. The type
HNFormlens is obtained by applying MLift to HNFormlet .
The type Value represents explicitly boxed values belonging to
an algebraic datatype. Con v represents a (rolled) value of a re-
cursive type. To inject Haskell base values in and out of Values,
we use the BaseValue typeclass (included in the long version of
this paper [32]); instances of BaseValue are inter-expressible as
Values. The most interesting definition is of the GenFormlens
type, which represents the abstract syntax of an algebraic type,
with HNFormlenses at the leaves. Note that we model recursive
types using explicit type variables.

Combinators. To convert a GenFormlens into a formlens, we
need to interpret each type operator as an operator on formlenses.
We already have a definition of a product operator on formlenses—
namely the (?) operator. Figure 4 defines the operators (⊕) and
unfold , which handle sums and recursive types respectively.

At a high level, the sum formlens (f ⊕ g) works as follows. It
adds a hidden field to the rendered HTML that indicates whether
the value encoded in the form is a left or right injection. Otherwise,
we only render the sub-formlens that produces a value (defaulting
to the left one if neither does). The collector of the sum formlens
checks the hidden tag and invokes the collector of the appropriate
component. The modified name source is computed by taking the
max of the two namesources, since the two components may not
use the same number of names.

For recursive formlenses, we add a level of indirection at each
unfolding, which can be thought of as simulating a pointer. At each

Figure 5. Screenshot of Speakers formlens running in a browser.

level of recursive unfolding, we add a hidden element to the HTML
that points to the first element of the underlying value is added. This
enables editing the structures generated by a recursive formlens by
modifying pointers. Our hierarchical naming scheme makes it easy
to efficiently manipulate such pointers. For example, the parent of
a block of HTML elements containing an element "input_0_3"
is the element "input_0". Such manipulations are necessary to
implement operations such as insertions and deletions into a list.

Example. As an example, the following defines a formlens that
handle a list of Speakers, as discussed in the introduction:

speakerListFormlens :: HNFormlens Value
speakerListFormlens =

tagL "table" $ tagL "tr" unit ?〉 (getFormlens $
GRec "x" $

GSum (GBase $ tagL "tr"

$ tagL "td" insertButton)
(GPair (GBase $ tagL "tr"

$ tagL "td" speakerFormlens
〈? tagL "td" deleteButton)
(GVar "x")))

This code creates a formlens that essentially follows the recursive
structure of a list: it uses GRec to handle the recursive type, GSum
to handle the sum, GBase for the nil case, and GPair for the
cons case, and speakerFormlens for each element. The result of
running this code in a web browser can be seen in Figure 5. Note
that the form supports modifying Speakers in place, as well as
adding and deleting list elements. The complete code needed to
run this example can be found in Appendix A.

6. Related work
Formlets. Cooper et al. [10] first proposed expressing formlets as
the composition of several primitive applicative functors. There is
a variety of earlier work on declarative abstractions for web forms
(e.g. [1, 6, 8, 18, 19, 31, 37]). Of particular note is Hanus’s WUI
(Web User Interface) library [18]. The abstraction used in WUI is
essentially the type a → Formlet a we adopt in this paper. In par-
ticular, the WUI library includes a combinator for lifting a bijection
to WUIs, similar to our GFunctor Bij Formlens instance; how-
ever, Hanus did not consider Applicative or Monoidal equational
laws on WUIs, nor constructing them as functors over bijections or
lenses out of simpler components.
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nextName l@(hd : tl) = (makeName l , (hd + 1) : tl)
makeName l = "input_" ++ intercalate "_" (map show (reverse l))
readName s = reverse (map read (split "_" (drop 6 s)))

(⊕) :: HNFormlens a → HNFormlens b → HNFormlens (Either a b)
f ⊕ g = λmv l → let (n, l ′) = nextName l in

let (ma,mb, tag , keepA, keepB) = case v of
Just (Left a) → (Just a, Nothing , "left", id , const noHtml)
Just (Right b)→ (Nothing , Just b, "right", const noHtml , id)
Nothing → (Nothing ,Nothing , "left", id , const noHtml) in

let (ra, ca, la) = f ma l ′ in
let (rb, cb, lb) = g mb l ′ in
(hidden n tag +++ keepA ra +++ keepB rb,
λe → case lookup n e of

Just "left" → Left (ca e)
Just "right"→ Right (cb e),

max la lb)

unfold :: HNFormlens a → HNFormlens a
unfold f = λmv l → let (n, l ′) = nextName l in

let collector = (λe → let k = readName (fromJust (lookup n e)) in
let ( , c, ) = f a k in c e) in

let (r , , ) = f mv (0 : l) in
(hidden n (makeName (0 : l)) +++ r , collector , l ′)

Figure 4. Sum and recursion combinators.

Formlets were originally implemented as part of the Links web
programming language [9]. Subsequently formlet libraries have
been implemented for Haskell, F#, Scala, OCaml, Racket, and
Javascript. Eidhof’s original Haskell library [13] evolved first into
digestive functors [12], and most recently the reform package [34].
The latter integrates with various other web programming libraries,
and extends formlets with better support for validation, and sepa-
rating layout from formlet structure. The commercial WebSharper
library for F# [3] introduces flowlets, which combine formlets with
functional reactive programming [14] allowing forms to change dy-
namically at run-time. However, while flowlets involve both ap-
plicative and monadic combinators, this work does not develop the
formal semantics or equational laws for flowlets.

Bidirectional transformations. Languages for describing bidi-
rectional transformations have been extensively studied in recent
years [4, 5, 15, 16, 25, 27–29, 40]. The original paper on lenses [15]
describes work on databases and programming languages; another
more recent survey also discusses work from the software engineer-
ing literature [11]. The XSugar [7] language defines bidirectional
transformations between XML documents and strings. Similarly,
the biXid [20] language specifies essentially bijective conversions
between pairs of XML documents. Transformations in both XSugar
and biXid are specified using pairs of intertwined grammars, which
resemble our high-level pattern syntax. The most closely related
work we are aware of is by Rendel et al. [33]. They propose using
functors over partial isomorphisms to describe invertible syntax de-
scriptions. Our design for formlenses is similar, but also supports
using non-bijective bidirectional transformations, a high-level syn-
tax, and full support for algebraic datatypes.

Applicative and monoidal functors. Applicative functors have
been used extensively as an alternative to monads for structuring
effectful computation. They were used (implicitly) by Swierstra
and Duponcheel [36] for parser combinators, and named and rec-
ognized as a lighter-weight alternative to monads by McBride and

Paterson [26]. The relationships among monads, arrows and ap-
plicative functors were further elucidated by Lindley et al. [22].
The connection to monoidal functors was discussed by McBride
and Paterson and has been explored further in Paterson’s upcoming
paper [30], which also observes that it is often much easier to work
with monoidal functors. However, Paterson considers only functors
on cartesian closed categories and neither Bij nor Lens is cartesian
closed.

Paterson also observes that it is easier to work with functors
that are Hask -valued. We initially tried to work directly with end-
ofunctors on Bij or even Lens , but reconsidered when the extra
generality was not buying us much, compared to the effort needed
to verify the monoidal functor laws. Nevertheless, endofunctors on
bijections or lenses (when they exist) are also of interest: any such
endofunctor can be pre-composed with a Lens → Hask functor.
Functors on categories other than Hask have appeared in other
contexts; functors over isomorphisms are used in the fclabels li-
brary [39], whereas functors over partial isomorphisms Iso →
Hask are essential in Rendel and Ostermann’s invertible syntax de-
scriptions [33]. They also employ a variant of Monoidal functors
(which they call ProductFunctors). A natural question for further
work is whether Monoidal functors over partial isomorphisms suf-
fice for invertible syntax descriptions, so that one can easily com-
pose parser or pretty-printer combinators with formlenses.

7. Conclusion
Formlenses combine the features of formlets and lenses in a pow-
erful abstraction that makes it easy to make data available on the
web. Our work is ongoing. In the future, we plan to develop the se-
mantic properties of formlenses, including proving formal round-
tripping properties. We also plan to investigate ways of interacting
with browsers that are not based on forms—e.g., using JavaScript.
Finally, we plan to explore ways of leveraging the semantic prop-
erties of formlenses to obtain efficient mechanisms for maintaining
the HTML even as the underlying data changes.
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A. Speaker Formlens
This Appendix contains the complete source code for the Speaker example, including the extension to lists of speakers using our generic
infrastructure.

A.1 Decomposition.hs

The first module contains the main definitions for bijections, MLenses, and MFormlenses.

{-# LANGUAGE FlexibleInstances, MultiParamTypeClasses, FlexibleContexts #-}
module Decomposition where

import Control .Arrow (first)
import Data.Monoid
import Control .Category
import Prelude hiding (id , (◦))
import Text .Html

-- Datatype Declarations
data Iso c a b = Iso {fwdI :: c a b, bwdI :: c b a }
data Bij a b = Bij {fwd :: a → b, bwd :: b → a }
inv :: Bij a b → Bij b a
inv (Bij g p) = Bij p g

invI :: Iso c a b → Iso c b a
invI iso = Iso (bwdI iso) (fwdI iso)

-- maybe lenses
data MLens a b = MLens {mget :: a → b,mput :: Maybe a → b → a }
constML :: b → MLens a b
constML b = MLens (\ → b) (λb → b)

swapML :: MLens (a, b) (b, a)
swapML = MLens (λ(a, b)→ (b, a)) (\ (b, a)→ (a, b))

pairML :: MLens a a ′ → MLens b b′ → MLens (a, b) (a ′, b′)
pairML l1 l2 = MLens (λ(a, b)→ (mget l1 a,mget l2 b))

(λmab (a ′, b′)→
case mab of

Nothing →
(mput l1 Nothing a ′,mput l2 Nothing b′)

Just (a, b)→
(mput l1 (Just a) a ′,mput l2 (Just b) b′))

b2ml :: Bij a b → MLens a b
b2ml bij = MLens (fwd bij ) (const $ bwd bij )

-- Class declarations and compositional instances
class Category c ⇒ MonoidalCategory c where

· × · ::c a a ′ → c b b′ → c (a, b) (a ′, b′)
munitl :: Iso c (a, ()) a
munitr :: Iso c ((), a) a
massoc :: Iso c (x , (y , z )) ((x , y), z )

class Category c ⇒ GFunctor c f where
gmap :: c a b → f a → f b

instance Functor f ⇒ GFunctor (→) f where
gmap = fmap

-- Duality
newtype f op a b = Co {unCo :: f b a }
instance Category c ⇒ Category cop where

id = Co id
(Co f ) ◦ (Co g) = Co (g ◦ f )

instance GFunctor Bij f ⇒ GFunctor Bij op f where
gmap (Co f ) = gmap (inv f )

iso2dual :: Iso c a b → Iso cop a b
iso2dual iso = Iso (Co (bwdI iso)) (Co (fwdI iso))

instance MonoidalCategory c ⇒ MonoidalCategory cop where
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(Co l1)× (Co l2) = Co (l1 × l2)
munitl = iso2dual munitl
munitr = iso2dual munitr
massoc = iso2dual massoc

-- Monoidal functors
class Monoidal f where

unit :: f ()
(?) :: f a → f b → f (a, b)

infixr 6 ?

-- haskell functions
instance MonoidalCategory (→) where

f × g = λ(a, b)→ (f a, g b)
munitl = Iso (λ(a, ())→ a) (λa → (a, ()))
munitr = Iso (λ((), a)→ a) (λa → ((), a))
massoc = Iso (λ(a, (b, c))→ ((a, b), c)) (λ((a, b), c)→ (a, (b, c)))

-- bijections
iso2bij :: Iso (→) a b → Iso Bij a b
iso2bij (Iso to fro) = Iso (Bij to fro) (Bij fro to)

instance Category Bij where
id = Bij id id
f ◦ g = Bij (fwd f ◦ fwd g) (bwd g ◦ bwd f )

instance MonoidalCategory Bij where
f × g = Bij (λ(a, b)→ (fwd f a, fwd g b))

(λ(fa, gb)→ (bwd f fa, bwd g gb))
munitl = iso2bij munitl
munitr = iso2bij munitr
massoc = iso2bij massoc

-- maybe-lenses
instance Category MLens where

id = MLens (λx → x ) (\ x → x )
l ◦m = MLens (mget l ◦mget m)

(λma c → case ma of
Just a →

mput m (Just a) (mput l (Just (mget m a)) c)
Nothing →

mput m Nothing (mput l Nothing c))

iso2mlens :: Iso Bij a b → Iso MLens a b
iso2mlens iso = Iso (b2ml (fwdI iso)) (b2ml (bwdI iso))

instance MonoidalCategory MLens where
l1 × l2 = pairML l1 l2
munitl = iso2mlens munitl
munitr = iso2mlens munitr
massoc = iso2mlens massoc

-- Namer
newtype Namer t a = Namer {runNamer :: t → (a, t)}
instance Functor (Namer t) where

fmap f (Namer n) = Namer (first f ◦ n)

instance Monoidal (Namer t) where
unit = Namer (λi → ((), i))
(Namer n1) ? (Namer n2) =

Namer (λt → let (a, t ′) = n1 t in
let (b, t ′′) = n2 t ′ in
((a, b), t ′′))

-- Accumulator
data Acc m a = Acc m a

instance Functor (Acc m) where
fmap f (Acc m a) = Acc m (f a)
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instance Monoid m ⇒ Monoidal (Acc m) where
unit = Acc mempty ()
(Acc m1 a) ? (Acc m2 b) = Acc (m1 ‘mappend ‘m2) (a, b)

instance Monoid Html where
mempty = noHtml
mappend = (+++)

-- Collector
data Collect e a = Collect (e → a)

instance Functor (Collect e) where
fmap f (Collect g) = Collect (f ◦ g)

instance Monoidal (Collect e) where
unit = Collect (const ())
(Collect c1) ? (Collect c2) = Collect (λe → (c1 e, c2 e))

-- Maybe
instance Monoidal (Maybe) where

unit = Just ()
x ? y = do x ′ ← x

y ′ ← y
return (x ′, y ′)

-- Composition
data f ◦ g a = Comp {deComp :: f (g a)}
instance (Functor f ,Functor g)⇒ Functor (f ◦ g) where

fmap f (Comp a) = Comp $ fmap (fmap f ) a

instance (Functor f ,Monoidal f ,Monoidal g)
⇒ Monoidal (f ◦ g) where

unit = Comp (fmap (const unit) unit)
(Comp u) ? (Comp v) = Comp (fmap (uncurry (?)) (u ? v))

-- Maybe-Formlenses
data MLift f a = MLift (Maybe a → f a)

instance Functor f ⇒ GFunctor Bij (MLift f ) where
gmap f (MLift g) = MLift (fmap (fwd f ) ◦ g ◦ fmap (bwd f ))

instance Functor f ⇒ GFunctor MLensop (MLift f ) where
gmap (Co l) (MLift (g)) =

MLift (λma → case ma of
Just a → fmap (mput l (Just a)) (g (Just (mget l a)))
Nothing → fmap (mput l Nothing) (g Nothing))

instance (Monoidal g)⇒ Monoidal (MLift g) where
unit = MLift (\ → unit)
(MLift f ) ? (MLift g) =

MLift (λma → case ma of
Just (a, b)→ f (Just a) ? g (Just b)
Nothing → f Nothing ? g Nothing)

--
infixr 0 |$|
(|$|) :: (GFunctor c f )⇒ c a b → f a → f b
(|$|) = gmap

(〈?) :: (Monoidal f ,GFunctor Bij f )
⇒ f a → f ()→ f a

f 〈? g = gmap (fwdI (munitl :: Iso Bij (a, ()) a))
(f ? g)

(?〉) :: (Monoidal f ,GFunctor Bij f )
⇒ f ()→ f a → f a

f ?〉 g = gmap (fwdI (munitr :: Iso Bij ((), a) a))
(f ? g)
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A.2 Speaker.hs
The next module contains the definitions specific to the Speakers example. It also contains code needed to run the example using the
Happstack server.

{-# LANGUAGE ExistentialQuantification, TypeSynonymInstances, FlexibleInstances, OverlappingInstances #-}
module Speaker where

import Text .Html
import Decomposition
import System.IO .Unsafe
import qualified Data.List as List (union, delete, intercalate, stripPrefix , isPrefixOf )
import Data.Maybe (fromJust , fromMaybe)

import Control .Monad (liftM ,msum)

import qualified Data.ByteString .Lazy .Char8 as L (unpack)
import qualified Data.ByteString .Char8 as B (pack)
import qualified Data.ByteString .Lazy .UTF8 as LU (fromString)
import Happstack .Server hiding (method)
import Happstack .Server .RqData
import qualified Happstack .Server .Internal .Types as HST

split :: (Eq a,Show a)⇒ [a ]→ [a ]→ [ [a ] ]
split del list = split del list [ ]

where split :: (Eq a)⇒ [a ]→ [a ]→ [a ]→ [ [a ] ]
split del [ ] acc = ifcons acc [ ]
split del ls acc = case List .stripPrefix del ls of

Just l → ifcons acc ( split del l [ ])
Nothing → split del (tail ls) (acc ++ [head ls ])

ifcons [ ] l = l
ifcons hd l = hd : l

makeName :: [Int ]→ String
makeName is = "input_" ++ List .intercalate "_" (map show (reverse is))

readName :: String → [Int ]
readName n = case List .stripPrefix "input_" n of

Just s → reverse (map read (split "_" s))
Nothing → [0]

nextName :: [Int ]→ (String , [Int ])
nextName l@(hd : tl) = (makeName l , (hd + 1) : tl)

branch :: [Int ]→ [Int ]
branch l = 0 : l

unbranch (hd : tl) = tl

type Env = [(String ,String)]
data Date = Date {year :: Int ,month :: Int , day :: Int } deriving Show
data Speaker = Speaker {spName :: String , date :: Date } deriving Show

type HNFormlens = MLift ((Namer [Int ]) ◦ ((Acc Html) ◦ (Collect Env)))

mkFormlens :: (Maybe a → [Int ]→ (Html ,Env → a, [Int ]))→ HNFormlens a
mkFormlens f = MLift (λma → Comp (Namer (λl → let (r , c, l ′) = f ma l in

(Comp $ Acc r (Collect c), l ′))))

runFormlens :: HNFormlens a → (Maybe a → [Int ]→ (Html ,Env → a, [Int ]))
runFormlens (MLift f ) = (λma l → let (Comp (Namer g)) = f ma in

let (Comp (Acc r (Collect c)), l ′) = g l in
(r , c, l ′))

(⊕) :: HNFormlens a → HNFormlens b → HNFormlens (Either a b)
f ⊕ g = mkFormlens (λv l → let (n, l ′) = nextName l in

let (ma,mb, tag , dispA, dispB) = case v of
Just (Left a)→ (Just a,Nothing , "left", id , const noHtml)
Just (Right b)→ (Nothing , Just b, "right", const noHtml , id)
Nothing → (Nothing ,Nothing , "", id , const noHtml) in

let (ra, ca, l1) = runFormlens f ma l ′ in
let (rb, cb, l2) = runFormlens g mb l ′ in
(hidden n tag +++ dispA ra +++ dispB rb,
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λe → case lookup n e of
Just "left"→ Left $ ca e
Just "right"→ Right $ cb e,

max l1 l2))

unfold :: HNFormlens a → HNFormlens a
unfold f = mkFormlens (λma l →

let (n, l ′) = nextName l in
let collector = λe → let k = readName $ fromJust $ lookup n e in

let ( , c, ) = runFormlens f Nothing k in
c e in

let (r , , ) = runFormlens f ma (branch l) in
(hidden n (makeName (branch l)) +++ r , collector , l ′))

boxPair :: HNFormlens Value → HNFormlens Value → HNFormlens Value
boxPair f g = let h = f ? g in

mkFormlens (λmv l → let mv ′ = liftM (λ(Pair a b)→ (a, b)) mv in
let (r , c, l ′) = runFormlens h mv ′ l in
(r , uncurry Pair ◦ c, l ′))

boxSum :: HNFormlens Value → HNFormlens Value → HNFormlens Value
boxSum f g = let h = f ⊕ g in

mkFormlens (λmv l → let mv ′ = liftM (λv → case v of
Inl a → Left a
Inr b → Right b) mv in

let (r , c, l ′) = runFormlens h mv ′ l in
(r , either Inl Inr ◦ c, l ′))

boxUnfold :: HNFormlens Value → HNFormlens Value
boxUnfold f = let h = unfold f in

mkFormlens (λmv l → let mv ′ = liftM (λ(Con v)→ v) mv in
let (r , c, l ′) = runFormlens h mv ′ l in
(r ,Con ◦ c, l ′))

boxBase :: (BaseValue a)⇒ HNFormlens a → HNFormlens Value
boxBase fa = mkFormlens (λmv l → let (r , c, l ′) = runFormlens fa (liftM unbox mv) l in

(r , box ◦ c, l ′))

data Value = Base String
| Inl Value
| Inr Value
| Pair Value Value
| Con Value

deriving Show

class BaseValue a where
box :: a → Value
unbox :: Value → a

instance BaseValue () where
box = box ◦ show
unbox = read ◦ unbox

instance BaseValue String where
box s = Base s
unbox (Base s) = s

instance BaseValue Int where
box = box ◦ show
unbox = read ◦ unbox

instance (BaseValue a,BaseValue b)⇒ BaseValue (a, b) where
box (a, b) = Pair (box a) (box b)
unbox (Pair va vb) = (unbox va, unbox vb)

instance (BaseValue a,BaseValue b)⇒ BaseValue (Either a b) where
box (Left a) = Inl (box a)
box (Right b) = Inr (box b)
unbox (Inl va) = Left (unbox va)
unbox (Inr vb) = Right (unbox vb)
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instance (BaseValue a)⇒ BaseValue [a ] where
box [ ] = Con $ Inl $ box ()
box (hd : tl) = Con $ Inr $ Pair (box hd) (box tl)

unbox (Con (Inl )) = [ ]
unbox (Con (Inr (Pair v tl))) = (unbox v) : (unbox tl)

instance BaseValue Date where
box (Date y m d) = box ((y ,m), d)
unbox v = (uncurry ◦ uncurry) Date (unbox v)

instance BaseValue Speaker where
box (Speaker s d) = box (s, d)
unbox v = uncurry Speaker (unbox v)

data GenFormlens = forall a ◦ (BaseValue a)⇒ GBase (HNFormlens a)
| GPair GenFormlens GenFormlens
| GSum GenFormlens GenFormlens
| GRec String GenFormlens
| GVar String

fv :: GenFormlens → [String ]
fv (GVar s) = [s ]
fv (GPair l1 l2) = fv l1 ‘List .union‘ fv l2
fv (GSum l1 l2) = fv l1 ‘List .union‘ fv l2
fv (GRec s l) = List .delete s (fv l)
fv = [ ]

fresh :: (String ,GenFormlens)→ String
fresh (s, l) = fresh 0 (fv l)

where fresh n vars
| s ++ (show n) ∈ vars = fresh (n + 1) vars
| otherwise = s ++ (show n)

subst :: (String ,GenFormlens)→ GenFormlens → GenFormlens
subst (s, l) (GPair l1 l2) = GPair (subst (s, l) l1) (subst (s, l) l2)
subst (s, l) (GSum l1 l2) = GSum (subst (s, l) l1) (subst (s, l) l2)
subst (s, l) l ′@(GVar s ′)
| s ≡ s ′ = l
| otherwise = l ′

subst (s, l) (GRec s ′ l ′)
| s ≡ s ′ = GRec s ′ l ′

| s ′ ∈ fv (l) = let t = fresh (s ′, l) in
GRec t (subst (s, l) $ subst (s ′,GVar t) l ′)

| otherwise = GRec s ′ (subst (s, l) l ′)
subst l ′ = l ′

getFormlens :: GenFormlens → HNFormlens Value
getFormlens (GBase fa) = boxBase fa
getFormlens (GPair fa fb) = boxPair (getFormlens fa) (getFormlens fb)
getFormlens (GSum fa fb) = boxSum (getFormlens fa) (getFormlens fb)
getFormlens (GRec x fx ) = boxUnfold $ getFormlens $ subst (x ,GRec x fx ) fx

htmlL :: Html → HNFormlens ()
htmlL h = mkFormlens (\ l → (h, const (), l))

rawTextL :: String → HNFormlens ()
rawTextL s = htmlL $ primHtml s

textL :: String → HNFormlens ()
textL s = htmlL $ lineToHtml s

tagL :: String → HNFormlens a → HNFormlens a
tagL tagname fa = tagAttrL tagname [ ] fa

brL :: HNFormlens ()
brL = tagL "br" unit

tagAttrL :: String → [HtmlAttr ]→ HNFormlens a → HNFormlens a
tagAttrL tagname attrs fa =

mkFormlens (λma l → let (r , c, l ′) = runFormlens fa ma l in
(tag tagname r ! attrs, c, l ′))
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inputStringL :: HNFormlens String
inputStringL = inputStringAttrL [ ]

inputStringAttrL :: [HtmlAttr ]→ HNFormlens String
inputStringAttrL attrs = mkFormlens (λma l → let (n, l ′) = nextName l in

(input ! [name n, value (fromMaybe "" ma)] ! attrs,
fromJust ◦ lookup n, l ′))

inputL :: (Show a,Read a)⇒ HNFormlens a
inputL = inputAttrL [ ]

inputAttrL :: (Show a,Read a)⇒ [HtmlAttr ]→ HNFormlens a
inputAttrL attrs = mkFormlens (λma l → let (n, l ′) = nextName l in

(input ! [name n, value (maybe "" show ma)] ! attrs,
read ◦ fromJust ◦ lookup n, l ′))

formL :: String → HNFormlens a → HNFormlens a
formL actn fa =

mkFormlens (λma l → let (r , c, l ′) = runFormlens fa ma l in
(tag "form" r ! [method "POST", action actn ], c, l ′))

submitL :: Maybe String → HNFormlens ()
submitL caption =

mkFormlens (\ l → (submit "" (fromMaybe "Submit" caption),
const (), l))

dateFormlens :: HNFormlens Date
dateFormlens =

Bij (λ(y , (m, d))→ Date y m d) (λ(Date y m d)→ (y , (m, d)))
|$| tagL "table"

( tagL "tr"

(tagL "td" (textL "Year:")
?〉 tagL "td" (inputAttrL [size "4"]))

? tagL "tr"

(tagL "td" (textL "Month:")
?〉 tagL "td" (inputAttrL [size "2"]))

? tagL "tr"

(tagL "td" (textL "Day:")
?〉 tagL "td" (inputAttrL [size "2"])))

speakerFormlens :: HNFormlens Speaker
speakerFormlens = Bij to fro
|$| textL "Name:"

?〉 inputStringL
〈? brL
? (tagL "table" $ tagL "tr" $

((tagL "td" $ textL "Date:")
?〉 (tagL "td" $ dateFormlens)))

where to = uncurry Speaker
fro (Speaker s d) = (s, d)

insertButton :: HNFormlens ()
insertButton = mkFormlens (\ l → let l ′ = unbranch l in

((tag "script" $ primHtml $ backptrcode)
+++ input ! [value "Add New Speaker", thetype "button",

strAttr "onclick" $ "insert(’" ++ makeName (branch l ′) ++ "’)"],
const (), l))

where backptrcode = "prev[’" ++ makeName (branch l ′) ++ "’] = ’" ++ makeName l ′ ++ "’;"

deleteButton :: HNFormlens ()
deleteButton = mkFormlens (\ l → let l ′ = unbranch l in

((tag "script" $ primHtml $ backptrcode)
+++ input ! [value "Delete", thetype "button",

strAttr "onclick" $ "remove(’" ++ makeName (branch l ′) ++ "’)" ],
const (), l))

where backptrcode = "prev[’" ++ makeName (branch l ′) ++ "’] = ’" ++ makeName l ′ ++ "’;"

preamble :: HNFormlens ()
preamble = rawTextL $ unsafePerformIO (readFile "preamble.js")
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speakerListFormlens :: HNFormlens Value
speakerListFormlens =

tagL "table" $ tagL "tr" unit ?〉 (getFormlens $
GRec "x" $

GSum (GBase $ tagL "tr"

$ tagL "td" insertButton)
(GPair (GBase $ tagL "tr"

$ tagL "td" speakerFormlens
〈? tagL "td" deleteButton)

(GVar "x")))

speakerForm = htmlL (header $ style $ primHtml "td {vertical-align: baseline;}") ?〉
preamble ?〉 tagL "body" (formL "submitForm" (speakerListFormlens 〈? (submitL $ Just "Submit")))

testSpList :: IO ()
testSpList = do

let (r , , ) = runFormlens speakerForm (Just $ box ([Speaker "Alan Turing" (Date 23 6 2012),Speaker "Alonzo Church" (Date 30 6 2012)] :: [Speaker ])) ([0] :: [Int ])
putStrLn $ show r
putStrLn ""

simplifyEnv :: RqEnv → Env
simplifyEnv (qs, b, c) =

map (λ(s, i)→ (s,L.unpack $ forceRight $ HST .inputValue i)) (qs ++ (fromMaybe [ ] b))
where forceRight (Right b) = b

forceRight = error "Unexpected File value in environment"

myPolicy :: BodyPolicy
myPolicy = (defaultBodyPolicy "" 0 1000 1000)

serveOnly :: Html → ServerPart Response
serveOnly html = ok $ toResponse html

processData :: (Show a)⇒ (Env → a)→ ServerPart Response
processData collect =

do methodM POST
x ← askRqEnv
let e = simplifyEnv x
ok $ toResponse $ show $ collect e

dispatchSpeakerList :: [Speaker ]→ IO ()
dispatchSpeakerList speakers = let (rendering , collect , ) = runFormlens speakerForm (Just $ box speakers) [0] in

let handlers = do decodeBody myPolicy ;
msum [dir "submitForm" $ processData (unbox ◦ collect :: Env → [Speaker ]),

serveOnly $ rendering ]
in simpleHTTP nullConf handlers

main :: IO ()
main = dispatchSpeakerList [Speaker "Alan Turing" (Date 2012 6 13),Speaker "Alonzo Church" (Date 2012 6 20)]

A.3 preamble.js

The final module is a JavaScript preamble that enables inserting and deleting form elements.

<script type=’text/javascript’>
// globals
var prev = {}; var lastName = [100];
function nextName() {

name = makeName(lastName);
lastName = nextn(lastName,1);
return(name);

}
function makeName(numlist) {

return(’input_’ + numlist.reverse().join(’_’));
}
function nextn(numlist, inc) {

return([(numlist[0]+inc)].concat(numlist.slice(1)));
}
function readName(name) {

return(name.slice(6).split(’_’).map(function(x) {
return(parseInt(x));}).reverse());
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}
function insert (tag) {

var parent = document.getElementsByName(prev[tag])[0];
var nextField = document.getElementsByName(parent.value)[0];

var elements = createElements(tag, parent);

for (var i = 0; i < elements.length; i++) {
nextField.parentNode.insertBefore(elements[i], nextField);

}
}

function createElements (tag, parent) {
var elements = [ document.createElement(’input’),

document.createElement(’tr’),
document.createElement(’input’)];

elements[0].name = nextName();
elements[0].type = ’hidden’;
elements[0].value = ’right’;

tdElements = [document.createElement(’td’), document.createElement(’td’)];
addAll(tdElements, elements[1]);

td0 = [ document.createTextNode(’Name:’),
document.createElement(’input’),
document.createElement(’br’),
document.createElement(’table’),
document.createElement(’br’)];

td1 = [document.createElement(’input’)];
addAll(td0, tdElements[0]);
addAll(td1, tdElements[1]);

td0[1].name = nextName();
td0[1].type=’text’;

td1[0].type = ’button’;
td1[0].value = ’Delete’;
td1[0].onclick = function() {remove(elements[0].name)};

tableElements = [document.createElement(’tr’)];
addAll(tableElements, td0[3]);

trElements = [document.createElement(’td’), document.createElement(’td’)];
addAll(trElements, tableElements[0]);

td_0 = [document.createTextNode(’Date:’)];
td_1 = [document.createElement(’table’)];
addAll(td_0, trElements[0]);
addAll(td_1, trElements[1]);

iTableElements = [ document.createElement(’tr’),
document.createElement(’tr’),
document.createElement(’tr’)];

addAll(iTableElements, td_1[0]);

tr0Elements = [document.createElement(’td’), document.createElement(’td’)];
tr1Elements = [document.createElement(’td’), document.createElement(’td’)];
tr2Elements = [document.createElement(’td’), document.createElement(’td’)];
addAll(tr0Elements, iTableElements[0]);
addAll(tr1Elements, iTableElements[1]);
addAll(tr2Elements, iTableElements[2]);

tr0Elements[0].appendChild(document.createTextNode(’Day:’));
el = tr0Elements[1].appendChild(document.createElement(’input’));
el.type = ’text’;
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el.name = nextName();
el.size=’2’;

tr1Elements[0].appendChild(document.createTextNode(’Month:’));
el = tr1Elements[1].appendChild(document.createElement(’input’));
el.type = ’text’;
el.name = nextName();
el.size=’2’;

tr2Elements[0].appendChild(document.createTextNode(’Year:’));
el = tr2Elements[1].appendChild(document.createElement(’input’));
el.type = ’text’;
el.name = nextName();
el.size=’4’;

elements[2].type = ’hidden’;
elements[2].name = nextName();
elements[2].value = parent.value;

parent.value = elements[0].name;
prev[tag] = elements[2].name;
prev[elements[0].name] = parent.name;

return(elements);
}

function addAll(elements, node) {
for (var i = 0; i < elements.length; i++)
node.appendChild(elements[i]);

}

var topleveltags = [’input’, ’tr’, ’input’];

function remove (tag) {
var parent = document.getElementsByName(prev[tag])[0];
var node;
var next = document.getElementsByName(parent.value)[0];
for (var i = 0; i < topleveltags.length;) {
node = next;
next = node.nextSibling;
if (node.nodeName.toLowerCase() == topleveltags[i]) {

node.parentNode.removeChild(node);
i++;

}
}

prev[node.value] = prev[parent.value];
delete prev[parent.value];
parent.value = node.value;

}
</script>
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B. Formlens Proofs
Proof of Theorem 3 for Bij . The definitions of the operations are
given above. To simplify notation we omit the bijective coercions
Lift and just consider the underlying functions in the proofs.

• We must show that

gmap (Co id) = (Co id)

Accordingly, consider

gmap (Co id) = λg x → fmap (put id x ) (g (get id x ))
= λg x → fmap id (g id x )
= λg x → g x
= (Co id)

• Next we must show that

gmap (Co (l ◦m)) = gmap (Co l) ◦ gmap (Co m)

Accordingly, consider:

gmap (Co (l ◦m))
= λg c → fmap (put (m ◦ l) c) (g (get (m ◦ l) c))
= λg c → fmap (put l c ◦ put m (get l c))

(g (get l ◦ get m))
= λg c → fmap (put l c) (fmap (put m (get l c))

(g (get m (get l c))))
= λg c → fmap (put l c) (λb → fmap (put m b)

(g (get m b))) (get l c)
= λg → gmap (Co l) (λb → fmap (put m b)

(g (get m b)))
= λg → gmap (Co l) (gmap (Co m) g)
= gmap (Co l) ◦ gmap (Co m)

Proof of Theorem 3 for Lens . The first part is as in the previous
proof. For the second part, assuming f is Monoidal as an endo-
functor on Set , we must show that Lift f is monoidal as a lens
functor.

• For (M1), consider:

gmap (f × g) (u ? v)
= λ(b, b′)→ fmap (put (f ×L g) (b, b′))

((u ? v) (get (f ×L g) (b, b′)))
= λ(b, b′)→ fmap (put (f ×L g) (b, b′))

((u ? v) (get f b, get g b′))
= λ(b, b′)→ fmap (put (f ×L g) (b, b′))

(u (get f b) ? v (get g b′))
= λ(b, b′)→ fmap (put b) (u (get f b))

? fmap (put b′) (v (get g b′))
= gmap f u ? gmap g v

• For (M2), let m = bij2lens (inv munitl) in the following:

gmap munitl (u ? unit)
= λa → fmap (put m a) ((u ? unit) (get m a))
= λa → fmap (put m a) ((u ? unit) ((λx → (x , ())) a))
= λa → fmap (put m a) (u a ? unit)
= λa → fmap (λ (x , ())→ x ) (u a ? unit)
= λa → u a
= u

• For (M3), we must show

lmap munitr (unit ? u) = u

This is symmetric to the previous argument.

• For (M4), let m = bij2lens (inv massoc) in the following:

gmap massoc (u ? (v ? w))
= λ((x , y), z )→ fmap (put m ((x , y), z ))

((u ? (v ? w)) (get m ((x , y), z )))
= λ((x , y), z )→ fmap (put m ((x , y), z ))

(u ? (v ? w))
= λ((x , y), z )→ fmap (put m ((x , y), z ))

(u x ? (v y ? w z ))
= λ((x , y), z )→ ((u x ? v y) ? w z )
= (u ? v) ? w

Proof of Theorem 5 for Bij . The definitions of the operations are
given above. To simplify notation we omit the bijective coercions
MLift and just consider the underlying functions in the proofs.

• We must show that

gmap (Co id) = (Co id)

Accordingly, consider

gmap (Co id)
= λg mx → case mx

of Just x → fmap (mput id (Just x ))
(g (Just (mget id x )))

Nothing → fmap (mput id Nothing)
(g Nothing)

= λg mx → case mx
of Just x → g (Just x )

Nothing → g Nothing
= λg mx → g mx
= (Co id)

• Next we must show that

gmap (Co (l ◦m)) = gmap (Co l) ◦ gmap (Co m)

Accordingly, consider:

gmap (Co (l ◦m))
= λg mc → case mc of

Just c → fmap (mput (m ◦ l) (Just c))
(g (Just (mget (m ◦ l) c)))

Nothing → fmap (mput (m ◦ l) Nothing)
(g Nothing)

For the first case we proceed as follows:

fmap (mput (m ◦ l) (Just c))
(g (Just (mget (m ◦ l) c)))

= fmap (mput l (Just c) ◦ put m (Just (mget l c)))
(g (mget l ◦mget m))

= fmap (mput l (Just c))
(fmap (mput m (Just (mget l c)))

(g (mget m (mget l c))))
= fmap (mput l (Just c))

(λmb → case mb of
Just b → fmap (put m (Just b))

(g (mget m b))
Nothing → e) (Just (mget l c))

= fmap (mput l (Just c))
((gmap (Co m) g) (Just (mget l c)))

and for the second case, we proceed as follows:

fmap (mput (m ◦ l) Nothing) (g Nothing)
= fmap (mput l Nothing ◦mput m Nothing)
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(g Nothing)
= fmap (mput l Nothing)

(fmap (mput m Nothing) (g Nothing))
= fmap (mput l Nothing)

((λmb →
case mb of

Just b → e ′

Nothing → mput m Nothing (g Nothing))
Nothing)

= fmap (mput l Nothing) ((gmap (Co m) g) Nothing)

To conclude, we have

λg mc → case mc of
Just c → fmap (mput (m ◦ l) (Just c))

(g (Just (mget (m ◦ l) c)))
Nothing → fmap (mput (m ◦ l) Nothing)

(g Nothing)
= λg mc → case mc of

Just c → fmap (mput l (Just c))
((gmap (Co m) g) (Just (mget l c)))

Nothing → fmap (mput l Nothing)
((gmap (Co m) g) Nothing)

= λg → gmap (Co l) (gmap (Co m) g)
= gmap (Co l) ◦ gmap (Co m)

This concludes the proof.

Proof of Theorem 5 for MLens . The first part is given by the pre-
vious theorem. For the second part, assuming f is Monoidal as an
endofunctor on Set , we must show that MLift f is monoidal as a
maybe-lens functor.

• For (M1), consider:

gmap (f × g) (u ? v)
= λmbb → case mbb of

Just (b, b′)→
fmap (mput (pairML f g) (Just (b, b′)))

((u ? v) (Just (mget (f ×L g) (b, b′))))
Nothing →

fmap (mput (f ×L g) Nothing)
((u ? v) Nothing)

Consider the first case:

fmap (mput (pairML f g) (Just (b, b′)))
((u ? v) (Just (mget (f ×L g) (b, b′))))

= fmap (put (pairML f g) (Just (b, b′))
((u ? v) (Just (mget f b,mget g b′)))

= fmap (mput (pairML f g) (Just (b, b′)))
(u (Just (mget f b)) ? v (Just (mget g b′)))

= fmap (mput (Just b)) (u (Just (mget f b)))
? fmap (mput (Just b′)) (v (Just (mget g b′)))

= (gmap f u ? gmap g v) (Just (b, b′))

Similarly, in the second case:

fmap (mput (f ×L g) Nothing)
((u ? v) Nothing

= fmap (mput (pairML f g) Nothing)
(u Nothing ? v Nothing)

= fmap (mput f Nothing) (u Nothing)
? fmap (mput f Nothing) (v Nothing)

(u Nothing ? v Nothing)
= (gmap f u ? gmap g v) Nothing

Hence, to conclude:

λmbb → case mbb of
Just (b, b′)→

fmap (mput (pairML f g) (Just (b, b′)))
((u ? v) (Just (mget (f ×L g) (b, b′))))

Nothing →
fmap (mput (f ×L g) Nothing)

((u ? v) Nothing)
= λmbb → case mbb of

Just (b, b′)→ (gmap f u ? gmap g v) (Just (b, b′))
Nothing → (gmap f u ? gmap g v) Nothing

= λmbb → (gmap f u ? gmap g v) mbb
= gmap f u ? gmap g v

• For (M2), let m = bij2lens (inv munitl) in the following:

gmap munitl (u ? unit)
= λma → case ma of

Just a → fmap (put m (Just a))
((u ? unit) (Just (get m a)))

Nothing → fmap (put m Nothing)
((u ? unit) Nothing)

For the first case, we reason as follows:

fmap (put m a) ((u ? unit) ((λx → (x , ())) a))
= fmap (put m a) ((u (Just a) ? unit))
= fmap (λ (x , ())→ x ) (u (Just a) ? unit)
= u (Just a)

and for the second case:

fmap (put m Nothing) ((u ? unit) Nothing)
= fmap (put m Nothing) (u Nothing ? unit)
= fmap ((λ (x , ())→ x ) (u Nothing ? unit)
= u Nothing

hence, we can conclude:

λma → case ma of
Just a → fmap (put m (Just a))

((u ? unit) (Just (get m a)))
Nothing → fmap (put m Nothing)

((u ? unit) Nothing)
= λma → case ma of

Just a → u (Just a)
Nothing → u Nothing

= λma → u ma
= u

• For (M3), we must show

lmap munitr (unit ? u) = u

This is symmetric to the previous argument.
• For (M4), let m = bij2lens (inv massoc) in the following:

gmap massoc (u ? (v ? w))
= λmxyz → case mxyz of

Just ((x , y), z )→
fmap (put m (Just ((x , y), z )))

((u ? (v ? w)) (Just (get m ((x , y), z ))))
Nothing →

fmap (put m Nothing)
((u ? (v ? w)) Nothing)

For the first case, we reason as follows:

fmap (mput m (Just ((x , y), z )))
((u ? (v ? w)) (Just (get m ((x , y), z ))))
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= fmap (mput m (Just ((x , y), z )))
(u (Just x ) ? (v (Just y) ? w (Just z )))

= ((u (Just x ) ? v (Just y)) ? w (Just z ))
= ((u ? v) ? w) (Just ((x , y), z ))

and for the second case, we reason as follows:

fmap (mput m Nothing)
((u ? (v ? w)) Nothing)

= fmap (mput m Nothing)
(u Nothing ? (v Nothing ? w Nothing))

= (u Nothing ? v Nothing) ? w Nothing
= ((u ? v) ? w) Nothing

To conclude,

λmxyz → case mxyz of
Just ((x , y), z )→

fmap (put m (Just ((x , y), z )))
((u ? (v ? w)) (Just (get m ((x , y), z ))))

Nothing →
fmap (put m Nothing)

((u ? (v ? w)) Nothing)
= λmxyz → case mxyz of

Just ((x , y), z )→ ((u ? v) ? w) (Just ((x , y), z ))
Nothing → ((u ? v) ? w) Nothing

= λmxyz → ((u ? v) ? w) mxyz
= (u ? v) ? w
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