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As Filinski first showed in the 1990s, first-class delimited control operators can express all monadic effects.

Plotkin and Pretnar’s effect handlers offer a modular form of delimited control providing a uniform mechanism

for concisely implementing features ranging from async/await to probabilistic programming.

In this paper we study the fundamental efficiency of effect handlers. Specifically, we show the presence of

effect handlers enables an asymptotic improvement in runtime complexity for a certain class of programs. To

obtain this result, we consider the generic search problem and define a pure PCF-like base language λ
b
and an

extension thereof λ
h
with effect handlers. We show that λ

h
admits an implementation of generic search that

is asymptotically more efficient than any implementation of generic search in λ
b
.

To our knowledge this result is the first of its kind for control operators.

1 INTRODUCTION
In today’s programming languages we find a wealth of powerful constructs and features — excep-

tions, higher-order store, dynamicmethod dispatch, coroutining, explicit continuations, concurrency

features, Lisp-style ‘quote’ and so on — which may be present or absent in various combinations

in any given language. There are of course many important pragmatic and stylistic differences

between languages, but here we are concerned with whether languages may differ more essentially

in their expressive power, according to the selection of features they contain.

One can interpret this question in various ways. For instance, Felleisen [1991] considers the

question of whether a language L admits a translation into a sublanguage L ′ in a way which

respects not only the behaviour of programs but also aspects of their (global or local) syntactic

structure. If the translation of some L-program into L ′ requires a complete global reorganisation

of its structure, we may say that L ′ is in some way less expressive than L. In the present paper,

however, we have in mind even more fundamental expressivity differences that would not be

bridged even if whole-program translations were admitted. These fall under two headings.

(1) Computability: Are there operations of some type A that are programmable in L but are not

expressible at all in L ′?

(2) Complexity: Are there operations programmable in L with some asymptotic runtime bound

(e.g. ‘O(n2)’) that cannot be achieved in L ′?

We may also ask: are there examples of natural, practically useful operations that manifest such

differences? If so, this might be considered as a significant point of advantage of L over L ′.

If the ‘operations’ we are asking about are ordinary first-order functions— that is, both their inputs

and outputs are of ground type (strings, arbitrary-size integers etc.) — then the situation is easily

summarised. At such types, all reasonable languages give rise to the same class of programmable

functions, namely the Church-Turing computable ones. As for complexity, the runtime of a program

is typically analysed with respect to some cost model for basic instructions (e.g. one unit of time per

array access). Although the realism of such cost models in the asymptotic limit can be questioned

(see, e.g., [Knuth 1997, Section 2.6]), it is broadly taken as read that such models are equally

applicable whatever programming language we are working with, and moreover that all respectable

languages can represent all algorithms of interest; thus, one does not expect the best achievable

asymptotic run-time for a typical algorithm (say in number theory or graph theory) to be sensitive

to the choice of programming language, except perhaps in marginal cases. (It should be admitted,
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however, that proving general theorems to this effect may be harder than one might suppose: see

for example Section 1 of [Pippenger 1996].)

The situation changes radically, however, when we consider higher-order operations: typically,
programmable operations whose inputs may themselves be programmable operations. (At this

point, we suppose that the languages we wish to compare all support higher-order data in some

way: in particular, that their type systems are rich enough to admit encodings of all simple types

generated from the familiar ground types via ‘→’.) Here it turns out that both what is computable

and the efficiency with which it can be computed can be highly sensitive to the selection of language

features present. This is in fact true more widely for abstract data types, of which higher-order

types can be seen as a special case: a higher-order value will of course be represented within the

machine as ground data, but a program within the language typically has no access to this internal

representation, and can interact with the value only by applying it to an argument.

Most of the work in this area to date has focused on computability differences. One of the

best known examples is the parallel if operation which is computable in a language with parallel

evaluation but not in a typical ‘sequential’ programming language [Plotkin 1997]. It is also well

known that the presence of control features or local state enables observational distinctions that

cannot be made in a purely functional setting: for instance, there are programs involving ‘call/cc’

that detect the order in which a (call-by-name) ‘+’ operation evaluates its arguments [Cartwright

and Felleisen 1992]. Such operations are ‘non-functional’ in the sense that their output is not

determined solely by the extension of their input (seen as a mathematical functionN⊥×N⊥ → N⊥);
however, there are also programs with ‘functional’ behaviour that can be implemented with control

or local state but not without them [Longley 1999]. More recent results have exhibited differences

lower down in the language expressivity spectrum: for instance, in a purely functional setting à la
Haskell, the expressive power of recursion increases strictly with its type level [Longley 2018b],

and there are natural operations computable by (low-order) recursion but not by (even high-order)

iteration [Longley 2018a]. Much of this territory, including the mathematical theory of some of the

natural notions of higher-order computability that arise in this way, is mapped out by Longley and

Normann [2015].

Relatively few results of this character have so far been established on the complexity side.

Pippenger [1996] gives an example of an ‘online’ operation on infinite sequences of atomic symbols

(essentially a function from streams to streams) such that the first n output symbols can be produced

within time O(n) if one is working in an ‘impure’ version of Lisp (in which mutation of ‘cons’ pairs

is admitted), but with a worst-case runtime no better than Ω(n log n) for any implementation

in pure Lisp (without such mutation). This example was reconsidered by Bird et al. [1997] who

showed that the same speedup can be achieved in a pure language by using lazy rather than

eager evaluation. Jones [2001] explores the approach of manifesting expressivity and efficiency

differences between certain languages (which differ according to both the forms of iteration or

recursion they admit and also the use of higher types that they allow) by artificially restricting

attention to ‘cons-free’ programs; in this setting, the classes of representable first-order functions

for the various languages are found to coincide with some well-known complexity classes.

The purpose of the present paper is to give a clear example of such an inherent complexity

difference higher up in the expressivity spectrum. Specifically, we consider the following generic
search problem, parametric in n: given a boolean-valued predicate P on the space Bn of boolean
vectors of length n, return the number of such vectors p for which P(p) = true. We shall consider

boolean vectors of any length to be represented by the type Nat→ Bool; thus, for each n, we are
asking for an implementation of a certain third-order operation

countn : ((Nat→ Bool) → Bool) → Nat
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A naive implementation strategy, supported by any reasonable language, is simply to apply P to

each of the 2
n
vectors in turn. A much less obvious, but still purely ‘functional’, approach due

to Berger [1990] achieves the effect of ‘pruned search’ where the predicate admits this (serving

as a warning that counter-intuitive phenomena can arise in this territory). Nonetheless, under

a mild condition on P (namely that it must inspect all n components of the given vector before

returning), both these approaches will have a Ω(n2n) runtime. Moreover, we shall show that in

a typical call-by-value language without advanced control features, one cannot improve on this:

any implementation of Countn must necessarily take time Ω(n2n), even when the predicates P are

chosen to be ‘as simple as possible’. On the other hand, if we extend our language with a feature

such as effect handlers (see Section 2 below), it becomes possible to bring the runtime down to

O(2n) for these simple predicates: an asymptotic gain of a factor of n.
In order make this efficiency difference stand out as clearly as possible, we have resorted to some

slightly artificial constraints in the way we set up our scenario. Of course, even one illustration of

this phenomenon suffices in principle to establish the existence of the efficiency gap in question;

however, it will also be clear from our analysis that, in spite of the technical restrictions, the

phenomenon we are exhibiting is actually quite general. For instance, if the problem of counting

all solutions to P is replaced by that of returning the first solution found (if one exists), it will be

clear that an order n speedup can still typically be expected.

The idea behind the speedup is easily explained. Suppose for example n = 4, and suppose that

the predicate P always inspects the components of its argument in the order 0, 1, 2, 3. A naive

implementation of Count4 might start by applying the given P to p0 = (true, true, true, true), and
then to p1 = (true, true, true, false). Clearly there is some duplication here: the computations of

P p0 and P p1 will proceed identically up to the point where the value of the final component is

requested. What we would like to do, then, is to record the state of the computation of P p0 at just
this point, so that we can later resume this computation with false supplied as the final component

value in order to obtain the value of P p1. (Similarly for all other internal nodes in the evident binary

tree of boolean vectors.) Of course, this ‘backup’ approach would be standardly applied if one were

implementing a bespoke search operation for some particular choice of P (corresponding, say, to

the n-queens problem); but to apply this idea of resuming previous subcomputations in the generic

setting (that is, uniformly in P) requires some special language feature such as effect handlers or

multi-use continuations. One could also obviate the need for such a feature by choosing to present

the predicate P in some other way, but from our present perspective this would be to move the

goalposts: our intention is precisely to show that our languages differ in an essential way as regards
their power to manipulate data of type (Nat→ Bool) → Bool.

The above idea will already be familiar, at least informally, to many who have worked with effect

handlers or explicit continuations, and was explicitly presented in a closely related context by Bauer

[2011]; but our contribution here is to formulate and prove a precise mathematical theorem that pins

down the efficiency difference in question. A general mathematical theory of the expressive power

of effect handlers would be perhaps best articulated within the framework of game semantics;

however, since in the present paper our focus is on one specific example of the difference, we

shall work concretely and operationally with the languages themselves. In the first instance, we

formulate our results as a comparison between a purely functional base language (a version of

call-by-value PCF) and an extension of this with effect handlers; we then easily observe that our

results are unaffected if the base language is augmented with other features such as local mutable

store. As regards the runtime estimates, we work with a CEK-style abstract machine model for our

languages which, we claim, offers a realistic model of program execution time for typical real-world

implementations. We also touch on the prospects for formulating a more general version of our

results that would apply to any reasonable execution model for the base language.
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The rest of the paper is structured as follows.

• Section 2 provides an introduction to effect handlers as a programming abstraction.

• Section 3 presents a PCF-like language λb.
• Section 4 augments λb with effect handlers yielding the language λh.
• Section 5 defines an abstract machine for λb and an extension thereof for λh.
• Section 6 formally states and proves the complexity of generic search in λb (namely Ω(n2n))
and λh (namely O(2n)).
• Section 7 concludes.

The languages λb and λh are rather minimal variants of previous work — we only include the

machinery needed for illustrating the generic search efficiency phenomenon.

2 EFFECT HANDLERS PRIMER
Effect handlers were originally studied as a theoretical means to provide a semantics for exception

handling in the setting of algebraic effects [Plotkin and Power 2001; Plotkin and Pretnar 2013].

Subsequently they have emerged as a practical programming abstraction for modular effectful

programming [Bauer and Pretnar 2015; Dolan et al. 2015; Hillerström and Lindley 2016; Kammar

et al. 2013; Kiselyov et al. 2013; Leijen 2017; Lindley et al. 2017]. In this section we will provide a

minimal introduction to effect handlers. It is minimal in the sense that it provides the necessary

vocabulary and insight to understand the main result of this paper. For a thorough introduction

to programming with effect handlers, we recommend the tutorial by Pretnar [2015], and as an

introduction to the mathematical foundations of handlers, we refer the reader to the founding

paper by Plotkin and Pretnar [2013] and the excellent tutorial paper by Bauer [2018].

Viewed through the lens of universal algebra, an algebraic effect is a signature Σ of finitary

operation symbols defined over some nonempty carrier set A, along with an equational theory that

describes the properties of the operations [Plotkin and Power 2001]. The operations represent

the sources of effects, for example for input/output the operations should be read and write. A
classic example of an algebraic effect is nondeterminism, whose signature consists of a single

nondeterministic choice operation.

Σ
def

= {Branch : 1→ Bool}

The operation takes a single parameter of type unit and ultimately produces a boolean value. The

pragmatic programmatic view of algebraic effects differ slightly from the original development. For

example, as of yet no practical implementation accounts for equations over the operations, and as

such, the algebra underlying the implementations is the free algebra.

As an introductory programmatic example, we will showcase a use of the operation Branch by

modelling a coin toss. Suppose we have a data type Toss
def

= Heads | Tails, then in our programming

notation (introduced formally in Section 4) we may implement a coin toss as follows.

toss : ⟨⟩ → Toss
toss ⟨⟩ = if do Branch ⟨⟩ then inl Heads else inr Tails

The computation toss is thunked, because our language is in essence a variation of call-by-value

PCF. From the type signature it is clear that the computation returns a value of type Toss. It is not
clear from looking at the signature of toss whether it is performs an effect. From looking at the

definition, it evidently performs the operation Branch with argument ⟨⟩ using the do-invocation
form. The result of the operation determines whether the computation returns eitherHeads or Tails
(with the appropriate injections). Systems such as Frank [Lindley et al. 2017], Helium [Biernacki

et al. 2019], Koka [Leijen 2017], and Links [Hillerström and Lindley 2016] include type-and-effect
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systems which track the use of effectful operations. Whilst current iterations of systems such as

Eff [Bauer and Pretnar 2015] and Multicore OCaml [Dolan et al. 2015] elect not to include an effect

system. Our language is closer to the latter two.

Returning to the example of toss, we may, in the style of Lindley [2014], view an effectful

computation as a tree, where the interior nodes correspond to operation invocations and the leaves

correspond to return values. The computation toss induces a particular simple computation tree.

Branch

Heads

true

Tails

false

The computation tree models the interaction with the environment. The operation Branch can be

viewed as a command for which the response is either true or false. A response to a command is

provided by an effect handler. As an example consider the following handler which enumerates the

possible outcomes of a coin toss.

handle toss ⟨⟩ with
val x 7→ [x]
Branch ⟨⟩ r 7→ r true ++ r false

The handle-construct generalises the exceptional syntax of Benton and Kennedy [2001]. The

handler definition consists of two clauses, a success clause, and an operation clause. The former

clause determines how to interpret the return value of toss, or equivalently how to interpret the

leaves of the computation tree above. In this particular instance we lift the return value into a

singleton list. The operation clause determines how to interpret occurrences of Branch in toss. It
provides access to the argument of Branch (which is unit) and its resumption, r . The resumption is

a first-class delimited continuation which captures the remainder of the toss computation from the

invocation of Branch up to its nearest enclosing handler.

Applying r to true resumes evaluation of toss via the true branch. As a result it returns Heads,
which causes the success clause of the handler to be invoked, and thus the result of r true is

[inl Heads]. Evaluation continues in the operation clause, meaning that r is applied again, but this

time to false, which causes evaluation to resume in toss via the false branch. By the same reasoning,

the value of r false is [inr Tails], which gets concatenated with the result of the true branch, hence
the ultimately the handler returns [inl Heads, inr Tails].

Program evaluation is a dialogue between a computation and its handler. When the computation

invokes an operation, control transfers to the corresponding operation clause of the handler. When

the handler invokes the resumption, control transfers back to the computation, which may then

invoke further operations starting the cycle again. If the computation evaluates to a value then

control transfers to the return clause which yields a final result.

3 A FINE-GRAIN CALL-BY-VALUE BASE CALCULUS
In this section, we present our base language λb along with its contextual small-step operational

semantics. The underlying formalism is fine-grain call-by-value [Levy et al. 2003], which is like

A-normal form [Flanagan et al. 1993] in that every intermediate computation is named, but unlike

A-normal form is closed under reduction. Our language amounts to a fine-grained variant of

call-by-value PCF [Plotkin 1997].
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Types A,B,C,D ::= Nat | 1 | A→ B | A × B | A + B
Type environments Γ ::= · | Γ, x : A

Fig. 1. Types and Environments

Naturals n ∈ N
Variables x, y, z, . . .
Values V ,W ∈ Val ::= x | ⟨⟩ | n | Eq | Plus | Minus | λxA.M | rec f A x .M

| ⟨V ,W ⟩ | (inlV )B | (inrW )A

Computations M,N ∈ Comp ::= V W
| let ⟨x, y⟩ = V in N | case V {inl x 7→ M; inr y 7→ N }
| return V | let x ← M in N

Fig. 2. Term Syntax

Our primary reason for choosing fine-grain call-by-value over plain call-by-value is that the

former yields a considerably simpler semantics as only the rule for let bindings admits a continuation

whereas in ordinary call-by-value each congruence rule admits a continuation.

3.1 Types
The grammars of types and type environments are given in Figure 1. The ground types are Nat
and 1 which classify natural number values and the unit value, respectively. We write groundA to

assert that type A is a ground type. The function type A→ B represents functions that map values

of type A to values of type B. The binary product type A × B represents a pair of values whose first

and second components have types A and B respectively. The sum type A × B represents tagged

values of either type A or B. Type environments map term variables to their types.

3.2 Terms
The terms are given in Figure 2. We let n range over natural number constants. We will generally

use lowercase letters x, y, z and more to denote term variables. By convention we use f , g, and h
for variables of function type, i and j for variables of type Nat, and r and k to denote resumptions

and continuations, with the exception that we will use uppercase P to denote predicates.

The syntax partitions terms into values and computations. Value terms comprise variables (x), the
unit value (⟨⟩), naturals (n), primitive functions on naturals (Eq, Plus,Minus), lambda abstraction

(λxA.M), recursion (rec f A x .M), pairs (⟨V ,W ⟩), left ((inl V )B) and right (inr W )A injections.

We elect to keep lambda abstractions in the core calculus, although, they are strictly speaking

redundant in the presence of a recursion operator. We assume an efficient representation of naturals

(e.g. naturals occupy a machine word) such that the three primitive functions Eq, Plus, and Minus
have efficient realisations.

All elimination forms are computation terms. Abstraction is eliminated using application (V W ).

The product eliminator (let ⟨x, y⟩ = V in N ) splits a pair V into its constituents and binds them to

x and y, respectively. Sums are eliminated using the case construct (case V {inl x 7→ M; inr y 7→
N }), which evaluates the computation M if the tag of V matches inl. Otherwise V must have been

tagged with inr in which case it evaluates the computation N . A trivial computation (return V )
returns value V . The sequencing expression (let x ← M in N ) evaluates M and binds the result

value to x in N .
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Values
T-Var

x : A ∈ Γ

Γ ⊢ x : A

T-Unit

Γ ⊢ ⟨⟩ : 1

T-Nat

n ∈ N

Γ ⊢ n : Nat

T-{Plus,Minus}

⋆ ∈ {Plus,Minus}

Γ ⊢ ⋆ : ⟨Nat,Nat⟩ → Nat

T-Eq

Γ ⊢ Eq : ⟨Nat,Nat⟩ → 1 + 1

T-Lam

Γ, x : A ⊢ M : C

Γ ⊢ λxA.M : A→ C

T-Rec

Γ, f : A→ C, x : A ⊢ M : C

Γ ⊢ rec f A→C x .M : A→ C

T-Prod

Γ ⊢ V : A Γ ⊢ W : B

Γ ⊢ ⟨V ,W ⟩ : A × B

T-Inl

Γ ⊢ V : A

Γ ⊢ (inlV )B : A + B

T-Inr

Γ ⊢ W : B

Γ ⊢ (inrW )A : A + B

Computations
T-App

Γ ⊢ V : A→ B Γ ⊢ W : A

Γ ⊢ V W : B

T-Split

Γ ⊢ V : A × B Γ, x : A, y : B ⊢ N : C

Γ ⊢ let ⟨x, y⟩ = V in N : C

T-Case

Γ ⊢ V : A + B Γ, x : A ⊢ M : C Γ, y : B ⊢ N : C

Γ ⊢ case V {inl x 7→ M; inr y 7→ N } : C

T-Return

Γ ⊢ V : A

Γ ⊢ return V : A

T-Let

Γ ⊢ M : A Γ, x : A ⊢ N : C

Γ ⊢ let x ← M in N : C

Fig. 3. Typing Rules

Syntactic sugar. Fine-grain call-by-value mandates that every intermediate computation is let-

bound, meaning that it is not particularly pleasant for writing programs. As we shall see subse-

quently, we basically trade syntactic verbosity for semantic simplicity. For examples, we often use

direct-style call-by-value with the understanding that this denotes the left-to-right call-by-value

translation into fine-grain call-by-value [Flanagan et al. 1993]. For example, assuming f , g, h are

functions, and a is a bound variable, then the expression (f (h a) + g ⟨⟩) denotes

Jf (h a) + g ⟨⟩K = let x ← h a in let y ← f x in let z ← g ⟨⟩ in Plus ⟨y, z⟩

We often write the standard infix operators =, +, and − in place of Eq, Plus, andMinus.

3.3 Static semantics
The typing rules are given in Figure 3. We require two typing judgements: one for values and

the other for computations. We capture both in one notation: the judgement Γ ⊢ □ : A states

that a □-term has type A under type environment Γ, where □ can be either a value term (V ) or a
computation term (M). The typing rules are mostly standard. We encode booleans as sums of type

1 + 1. In Section 3.5 we spell out the derived forms of λb.
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S-App (λxA.M)V { M[V/x]
S-App-Rec (rec f A x .M)V { M[(rec f A x .M)/f ,V/x]
S-Plus Plus ⟨i, j⟩ { return n, where i + j = n

S-Minus Minus ⟨i, j⟩ { return n, where n =

{
0 if j ≥ i
i − j otherwise

S-Eq Eq ⟨i, j⟩ { return x,where x =

{
inl ⟨⟩ if i = j
inr ⟨⟩ otherwise

S-Split let ⟨x; y⟩ = ⟨V ;W ⟩ in N { N [V/x,W/y]

S-Case-inl

case (inlV )B {inl x 7→ M;

inr y 7→ N }
{ M[V/x]

S-Case-inr

case (inrV )A {inl x 7→ M;

inr y 7→ N }
{ N [V/y]

S-Let let x ← return V in N { N [V/x]
S-Lift E[M]{ E[N ], if M { N

Evaluation contexts E ::= [ ] | let x ← E in N

Fig. 4. Contextual Small-Step Operational Semantics

3.4 Dynamic semantics
We present a small-step operational semantics for λbusing evaluation contexts in the style of Felleisen
[1987]. Figure 4 presents the operational rules. We writeM[V/x] for the substitution of the value V
for the variable x in the computation term M . The reduction relation{ is defined on computation

terms. The statement M { N reads: term M reduces to term N in a single step. We write R+ for
the transitive closure of relation R.

Definition 3.1 (Computation normal form). A computation M is a normal if it is of the form

return V for some value V ∈ Val.

Subject reduction and type soundness for λb are standard.

Theorem 3.2 (Subject Reduction). If Γ ⊢ M : A and M { M ′, then Γ ⊢ M ′ : A.

Theorem 3.3 (Type Soundness). If ⊢ M : A, then either there exists ⊢ N : A, such that M {+ N
and N is normal, or M diverges.

3.5 Derived Forms
As mentioned in Section 3.3 we encode booleans along with their operations from the core of λb. In
the following we present the derived forms which we will make use of later in Section 6.

We define the type of booleans Bool as a sum of units, that is

Bool
def

= 1 + 1

and correspondingly we define the two boolean constants true and false as the left and right

injections, respectively.

true
def

= inl ⟨⟩ and false
def

= inr ⟨⟩
We define conditional branching in terms of case splits.

if V then M else N def

= case V {inl ⟨⟩ 7→ M; inr ⟨⟩ 7→ N }

We shall write S-If-tt as a synonym for S-Case-Inl when the scrutinee has type Bool, and in

similar fashion we write S-If-ff in lieu of S-Case-Inr.
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We also define some lightweight, but convenient, syntactic sugar for patterns. For suspended

computations we write

λ⟨⟩.M def

= λx1.M, where x < FV (M)
and more generally if the binder has a type other than 1, then we write

λ_A.M def

= λxA.M, where x < FV (M)

We elide type annotations when clear from context.

4 A FINE-GRAIN CALCULUS WITH EFFECT HANDLERS
We now endow λb with effects and yielding the calculus λh. Specifically, we add two new computa-

tion term forms that introduce and eliminate effects. The syntax of value terms will be unchanged.

First we define notation for operation symbols, signatures, and handler types.

Operation Symbols ℓ ∈ L
Signatures Σ ::= · | {ℓ : A→ B} ∪ Σ
Handler types F ::= C ⇒ D

We assume the existence of a countably infinite set of operation symbols L. An effect signature

Σ is a map from operation symbols to their types, thus we assume that each operation symbol in a

signature is distinct. An operation type A → B denotes an operation that takes an argument of

type A and returns a result of type B. We write dom(Σ) ⊆ L for the set of operation symbols in a

signature Σ. An effect handler type C ⇒ D classifies effect handlers that transform computations of

type C into computations of type D. Following Pretnar [2015], we shall assume a global signature

for every program. We now have the basic machinery to present the two new computation forms.

4.1 Performing Effectful Operations
We give the syntax and static semantics for the introduction form for effectful operations, and defer

presenting its dynamic semantics formally until we have introduced the elimination form.

Computations M,N ∈ Comp ::= · · · | do ℓ V

Informally, the behaviour of the new computation term (do ℓ V ) is that it invokes an operation ℓ
with a value argument V . The typing rule for do relies on the global signature Σ.

T-Do

(ℓ : A→ B) ∈ Σ Γ ⊢ V : A

Γ ⊢ do ℓ V : B

An operation invocation is only well-typed if the operation ℓ appears in the effect signature Σ, and
the argument type A matches the type of the provided argument V . The result type B determines

the type of the invocation. In richer type systems with effect tracking such as that of Hillerström

and Lindley [2016] or Leijen [2017] signatures are an integral part of the type structure.

4.2 Handling of Effectful Operations
We now present the elimination form for effectful operations.

Computations M,N ∈ Comp ::= · · · | handle M with H

Handlers H ::= {val x 7→ M}
| {ℓ p r 7→ N } ⊎ H

The handle construct (handle M with H ) is the counterpart to do. It runs computation M using

handler H . A handler H consists of a value clause {val x 7→ M} and a possibly empty set of
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operation clauses {ℓ p r 7→ Nℓ}ℓ∈L . The value clause {val x 7→ M} defines how to interpret a

final return value of the handled computation. The variable x is bound to the final return value

in the body M . Each operation clause {ℓ p r 7→ Nℓ}ℓ∈L defines how to interpret an invocation of

a particular operation ℓ. The variables p and r are bound in the body Nℓ : p binds the argument

carried by the operation and resumption r binds the resumption of the invocation site of ℓ.
An appealing feature of effect handlers is operation forwarding, which intuitively means that if

some handler H has no matching operation clause for some operation ℓ, then H silently forwards ℓ
to its nearest enclosing handler. In programming practice, forwarding is crucial for modularity as it

provides a basis for composing a collection of fine-grained, specialised effect handlers to interpret

a larger effect signature [Hillerström and Lindley 2016; Kammar et al. 2013]. The handlers in our

calculus do not support forwarding directly; rather, we follow Plotkin and Pretnar [2013] and adopt

the convention that a handler with omitted operation clauses (with respect to global signature Σ) is
syntactic sugar for one in which all missing clauses perform forwarding explicitly:

{ℓ p r 7→ let x ← do ℓ p in r x}

By omitting forwarding, we obtain a slightly simpler metatheory without altering the expressive

power of the system. (Of course, if we were to add a type-and-effect system then this approach

would lose important information.)

Given a handler H , we often wish to refer to the clause for a particular operation or the value

clause; for these purposes we define two convenient projections on handlers in the metalanguage.

H ℓ def

= {ℓ p r 7→ M}, where {ℓ p r 7→ M} ∈ H
Hval

def

= {val x 7→ M}, where {val x 7→ M} ∈ H

The H ℓ
projection yields the singleton set consisting of the operation clause in H that handles the

operation ℓ, whilst Hval
yields the singleton set containing the value clause of H .

4.2.1 Static semantics. The typing of effect handlers is slightly more involved than the typing of

the do-construct.
T-Handle

Γ ⊢ M : C Γ ⊢ H : C ⇒ D

Γ ⊢ handle M with H : D

T-Handler

Hval = {val x 7→ M} [H ℓ = {ℓ pℓ rℓ 7→ Nℓ}]ℓ∈dom(Σ)
[Γ, pℓ : Aℓ, rℓ : Bℓ → D ⊢ Nℓ : D](ℓ:Aℓ→Bℓ )∈Σ Γ, x : C ⊢ M : D

Γ ⊢ H : C ⇒ D

The T-Handle rule is straightforward. Most of the work happens in the T-Handler rule. It ensures

that the bodies of the value clause and the operation clauses all have the output type D. The type
of x in the value clause must match the input type C. The type of the parameter pℓ (Aℓ) and

resumption rℓ (Bℓ → D) in the operation clause H ℓ
is determined by the signature for ℓ. The return

type of rℓ is D, as the body of the resumption will itself be handled by H .

Deep Versus Shallow. An alternative would be to set the return type of rℓ to be C. Then the

programmer would have to explicitly reinvoke the effect handler as desired. Our current rule gives

rise to deep handlers whereas the alternative rule gives rise to shallow handlers [Hillerström and

Lindley 2018; Kammar et al. 2013].
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4.2.2 Dynamic semantics. We add two new reduction rules to the operational semantics: one

for handling return values and the other for handling operations.

S-Ret handle (return V ) with H { N [V/x], where Hval = {val x 7→ N }
S-Op handle E[do ℓ V ] with H { N [V/p, λy.handle E[return y] with H/r],

where H ℓ = {ℓ p r 7→ N }

The rule S-Ret invokes the return clause of a handler. The rule S-Op handles an operation via the

corresponding operation clause. Rather than augmenting the notion of evaluation contexts from

the base language, we introduce a new context for handlers.

Handler contexts H ::= [ ] | handle H with H | let x ←H in N

S-Lift-H H[M]{ H[N ], if M { N
The separation between pure evaluation contexts E and handler contextsH guarantees the reduc-

tion rules remain deterministic, as otherwise (S-Op) can pick an arbitrary handler in scope. But

with this separation, the rule must pick the innermost handler.

The metatheoretic properties of λb transfer to λh with little extra effort, alas we have to amend

the definition of computation normal forms as there are now two ways in which a computation

term can terminate: successfully returning a value or getting stuck on an unhandled operation.

Definition 4.1 (Computation normal forms). We say that a computation term N is normal with

respect to ℓ ∈ Σ, if N is either of the form return V , or E[do ℓW ].

Theorem 4.2 (Subject Reduction). If Γ ⊢ M : C and M { M ′, then Γ ⊢ M ′ : C.

Theorem 4.3 (Type Soundness). If ⊢ M : C, then either there exists ⊢ N : C such that M {+ N
and N is normal, or M diverges.

5 ABSTRACT MACHINE SEMANTICS
Thus far we have introduced the base calculus λb and its extension with effect handlers λh. For each
calculus we have given a contextual small-step operational semantics which uses a substitution model

for evaluation. Whilst the substitution model is semantically pleasing, it falls short of providing a

realistic account of, say, practical computation as performed by a computer. The reason being that

substitution is a fairly expensive operation asymptotically. For this reason we develop an alternative

model that is a little closer to practical computation, namely an abstract machine semantics.

5.1 Base Machine
In this section we present a CEK-style abstract machine semantics [Felleisen and Friedman 1987]

for λb. The machine is adapted from Hillerström and Lindley [2016]. The CEK machine operates

on configurations which are triples of the form ⟨M | γ | σ ⟩. The first component contains the

computation currently being evaluated. The second component contains the environment γ which

binds free variables. The last component contains the continuation which instructs the machine

what to do once it is done evaluating the current computation. The syntax of abstract machine

states is given in Figure 5. Values consist of function closures, constants, pairs, and left or right

tagged values. A continuation is a stack of continuation frames. A continuation frame (γ , x,N )
closes a let-binding let x = [ ] in N over environment γ . Continuations are stacks of continuation
frames. We write [] for an empty continuation and ϕ :: σ for the result of pushing the frame ϕ on

top of σ . We use pattern matching to deconstruct continuations

The abstract machine semantics is given in Figure 6. The transition function is given by the −→

relation, which also depends on an interpretation function J−K for value terms and machine values.

The machine is initialised by placing a term in a configuration alongside the empty environment
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Configurations C ∈ Conf ::= ⟨M | γ | σ ⟩
Value environments γ ∈ Env ::= ∅ | γ [x 7→ v]
Machine values v,w ∈ Mval ::= ⟨⟩ | n | (γ , λxA.M) | (γ , rec f xA.M)

| ⟨v,w⟩ | (inl v)B | (inrw)A

| Eq | Plus | Minus
Continuations σ ∈ PureCont ::= [] | (γ , x,N ) :: σ

Fig. 5. Abstract Machine Syntax

Initial state (for some computation M) ⟨M | ∅ | []⟩
Transition function
M-App ⟨V W | γ | σ ⟩ −→ ⟨M | γ ′[x 7→ JW Kγ ] | σ ⟩, if JV Kγ = (γ ′, λxA.M)
M-App-rec ⟨V W | γ | σ ⟩ −→ ⟨M | γ ′[f 7→ (γ ′, rec f x .M), x 7→ JW Kγ ] | σ ⟩,

if JV Kγ = (γ ′, rec f xA.M)

M-Eq ⟨Eq ⟨V ,W ⟩ | γ | σ ⟩ −→ ⟨return V ′ | γ | σ ⟩, where V ′ =

{
inl ⟨⟩ if JV Kγ = JW Kγ
inr ⟨⟩ otherwise

M-Plus ⟨Plus ⟨V ,W ⟩ | γ | σ ⟩ −→ ⟨return V ′ | γ | σ ⟩, where V ′ = JV Kγ + JW Kγ

M-Minus ⟨Minus ⟨V ,W ⟩ | γ | σ ⟩ −→ ⟨return V ′ | γ | σ ⟩, where V ′ =

{
0 if JW Kγ ≥ JV Kγ
JV Kγ − JW Kγ otherwise

M-Split ⟨let ⟨x, y⟩ = V in N | γ | σ ⟩ −→ ⟨N | γ [x 7→ v, y 7→ w] | σ ⟩, if JV Kγ = ⟨v;w⟩

M-Case

⟨case V {inl x 7→ M;

inr y 7→ N } | γ | σ ⟩ −→
{
⟨M | γ [x 7→ v] | σ ⟩, if JV Kγ = inl v
⟨N | γ [y 7→ v] | σ ⟩, if JV Kγ = inr v

M-Let ⟨let x ← M in N | γ | σ ⟩ −→ ⟨M | γ | (γ , x,N ) :: σ ⟩
M-RetCont ⟨return V | γ | (γ ′, x,N ) :: σ ⟩ −→ ⟨N | γ ′[x 7→ JV Kγ ] | σ ⟩

Final state (yielding some value JV Kγ ) ⟨return V | γ | []⟩
Value interpretation

JxKγ = γ (x)
JnKγ = n
J⟨⟩Kγ = ⟨⟩

JEqKγ = Eq
JPlusKγ = Plus

JMinusKγ =Minus

JλxA.MKγ = (γ , λxA.M)
Jrec f xA.MKγ = (γ , rec f xA.M)

J⟨V ;W ⟩Kγ = ⟨JV Kγ ; JW Kγ ⟩
J(inlV )BKγ = (inl JV Kγ )B

J(inrV )AKγ = (inr JV Kγ )A

Fig. 6. Abstract Machine Semantics

and identity continuation. The rules (M-App), (M-Split), and (M-Case) enact the elimination of

values. Observe that (M-App) handles application of both closures and of captured continuations.

The (M-Let) rule extends the current continuation with let bindings and handlers respectively. The

rule (M-RetCont) binds a returned value if there is a pure continuation in the current continuation

frame. Assuming the input is a well-typed closed computation term ⊢ M : A, the machine will

either diverge or return a value of type A. A final state is given by a configuration of the form

⟨return V | γ | []⟩ in which case the final return value is given by the denotation JV Kγ of V under

environment γ . We now make the correspondence between the operational semantics and the

abstract machine more precise.

5.1.1 Correctness. We now show that the abstract machine is correct with respect to the op-

erational semantics, that is, the abstract machine faithfully simulates the operational semantics.

Initial states provide a canonical way to map a computation term onto the abstract machine. A

more interesting question is how to map an arbitrary configuration to a computation term. Figure 7
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Configurations

L⟨M | γ | σ ⟩M = LσM(LMMγ )

Continuations
L[]MM = M

L(γ , x,N ) :: σMM = LσM(let x ← M in LN M(γ\{x}))
Computation terms

LV W Mγ = LV Mγ LW Mγ
Llet ⟨x; y⟩ = V in N Mγ = let ⟨x; y⟩ = LV Mγ in LN M(γ\{x, y})

Lcase V {inl x 7→ M; inr y 7→ N }Mγ = case LV Mγ {inl x 7→ LMM(γ\{x});
inr y 7→ LN M(γ\{y})}

Lreturn V Mγ = return LV Mγ
Llet x ← M in N Mγ = let x ← LMMγ in LN M(γ\{x})

Value terms and values

LxMγ = LvM, if γ (x) = v
LxMγ = x, if x < dom(γ )
LnMγ = n

LλxA.MMγ = λxA.LMM(γ\{x})
Lrec f xA.MMγ = rec f xA.LMM(γ\{f , x})

L⟨⟩Mγ = ⟨⟩
L⟨V ;W ⟩Mγ = ⟨LV Mγ ; LW Mγ ⟩

L(inl V )BMγ = (inl LV Mγ )B

L(inr W )AMγ = (inr LW Mγ )A

LnM = n
L(γ , λxA.M)M = λxA.LMM(γ\{x})

L(γ , rec f xA.M)M = rec f xA.LMM(γ\{f , x})
L⟨⟩M = ⟨⟩

L⟨v;w⟩M = ⟨LvM; LwM⟩
L(inl v)BM = (inl LvM)B

L(inr w)AM = (inr LwM)A

LσAM = λxA.LσM(return x)

Fig. 7. Mapping from Base Machine Configurations to Terms

describes such a mapping L−M from configurations to terms via a collection of mutually recursive

functions defined on configurations, continuations, computation terms, value terms, and machine

values. The mapping makes use of two operations on environments, γ , which we define now.

Definition 5.1. We write dom(γ ) for the domain of γ , and γ\{x1, . . . , xn} for the restriction of

environment γ to dom(γ )\{x1, . . . , xn}.

The L−M function enables us to classify the abstract machine reduction rules according to how

they relate to the operational semantics. The rule (M-Let) is administrative in the sense that L−M is
invariant under this rule. This leaves the β-rules (M-App), (M-Split), (M-Case), and (M-RetCont).

Each of these corresponds directly with performing a reduction in the operational semantics.

Definition 5.2 (Auxiliary reduction relations). We write −→a for administrative steps, −→β for

β-steps, and =⇒ for a sequence of steps of the form −→∗a−→β .

The following lemma describes how we can simulate each reduction in the operational semantics

by a sequence of administrative steps followed by one β-step in the abstract machine.

Lemma 5.3. Suppose M is a computation and C is configuration such that LCM = M, then if M { N
there exists C′ such that C =⇒ C′ and LC′M = N, or if M ̸{ then C ≠⇒.

Proof. By induction on the derivation of M { N . □

The correspondence here is rather strong: there is a one-to-one mapping between{ and =⇒.

The inverse of the lemma is straightforward as the semantics is deterministic. Notice that Lemma 5.3

does not require that M be well-typed. We have chosen here not to perform type-erasure, but the

results can be adapted to semantics in which all type annotations are erased.

Theorem 5.4 (Simulation). If ⊢ M : A and M {+ N such that N is normal, then ⟨M | ∅ |
[]⟩ −→+ C such that LCM = M, or M ̸{ then ⟨M | ∅ | []⟩ ̸−→.
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Proof. By repeated application of Lemma 5.3. □

5.2 Handler Machine
We now enrich the machine for λb to support effect handlers, resulting in an abstract machine

for λh. As the two machines share much of the syntax and transition rules, we choose to only

discuss the difference between the two. Figure 8 contains the required changes to the syntax for

accommodating effect handlers. The notion of configurations changes slightly as the continuation

component is now occupied by κ ∈ Cont, which is a generalised continuation in the sense of

Hillerström and Lindley [2016]. A machine continuation is now a list of pairs consisting of a

pure continuation (as in the base machine) and a handler closure. The handler closure acts as the

delimiter for its pure continuation. A handler closure is a pair of an environment and a handler

definition, where the former binds the free variables that occur in the latter. The machine values are

augmented to contain handler closures, the reason being that an operation invocation causes the

topmost handler closure of the machine continuation to be reified (and bound to the resumption

parameter in the operation clause). The lack of implicit effect forwarding in λh means it suffices to

bind only the topmost handler closure. Systems with effect forwarding need to reify potentially

multiple consecutive handler closures, thus in such systems the resumption would typically be

bound to a sub-part of the machine continuation.

The handler machine not only adds more transition rules to account for handlers, but also

changes theM-Let andM-AppCont rules from the base machine which is necessary to account

for the richer continuation structure. Figure 9 displays the new and modified transition rules.

The initial machine continuation, κ0, is a singleton containing the handler closure of the identity

handler. The rule (M-Handle) pushes a the handler closure along with an empty pure continuation

Configurations C ∈ Conf ::= ⟨M | γ | κ⟩
Continuations κ ∈ Cont ::= [] | (σ , χ ) :: κ

Handler closures χ ∈ HClo ::= (γ ,H )
Machine values v,w ∈ Mval ::= · · · | χ

Fig. 8. Abstract Machine Syntax for Handlers

Identity continuation
κ0 = [([], (∅, {val x 7→ x}))]

Initial state (for some computation M) ⟨M | ∅ | κ0⟩
Transition function
M-Resume ⟨V W | γ | κ⟩ −→ ⟨return W | γ | (σ , χ ) :: κ⟩,

if JV Kγ = (σ , χ )A

M-Let ⟨let x ← M in N | γ | (σ , χ ) :: κ⟩ −→ ⟨M | γ | ((γ , x,N ) :: σ , χ ) :: κ⟩
M-Handle ⟨handle M with H | γ | κ⟩ −→ ⟨M | γ | ([], (γ ,H )) :: κ⟩

M-AppCont ⟨return V | γ | ((γ ′, x,N ) :: σ , χ ) :: κ⟩ −→ ⟨N | γ ′[x 7→ JV Kγ ] | (σ , χ ) :: κ⟩
M-RetHandler ⟨return V | γ | ([], (γ ′,H )) :: κ⟩ −→ ⟨M | γ ′[x 7→ JV Kγ ] | κ⟩,

if Hval = {val x 7→ M}
M-Handle-Op ⟨do ℓ V | γ | (σ , (γ ′,H )) :: κ⟩ −→ ⟨M | γ ′[p 7→ JV Kγ , r 7→ (σ , (γ ′,H ))] | κ⟩,

if ℓ : A→ B ∈ Σ and H ℓ = {ℓ p r 7→ M}

Final states (yielding some value JV Kγ ) ⟨return V | γ | []⟩
(stuck on some operation ℓ) ⟨do ℓ V | γ | []⟩

Fig. 9. Abstract Machine Semantics for Handlers
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Configurations

L⟨M | γ | κ⟩M = LκM(LMMγ )

Continuations
L[]MM = M

L(σ , χ ) :: κMM = LκM(LχM(LσM(M)))
Handler Closures and Definitions

L(γ ,H )MM = handle M with LHMγ L{val x 7→ M}Mγ = {val x 7→ LMM(γ\{x})}
L{ℓ x r 7→ M} ⊎ HMγ = {ℓ x r 7→ LMM(γ\{x, r})} ⊎ LHMγ

Computation Terms and Machine Values

Lhandle M with HMγ = handle LMMγ with LHMγ
Ldo ℓ V Mγ = do ℓ LV Mγ

L(γ ,H )Mγ = λxA.L(γ ,H )M(return x)

Fig. 10. Mapping from Handler Machine Configurations to Terms

onto the continuation stack. The (M-Let) rule grows the pure continuation by pushing a new

frame onto the pure continuation of the topmost continuation frame. Dually, the (M-AppCont)

rule shrinks the pure continuation of the topmost continuation frame. If the pure continuation is

empty, then the (M-RetHandler) rule applies, which transfers control to the success clause of

the current handler. If an operation is invoked, then the (M-Handle-Op) rule transfers control to

the corresponding operation clause on the topmost handler and during the process it reifies the

handler closure. Finally, the (M-Resume) rule applies a reified handler closure, by pushing it onto

the continuation stack. The handler machine has two possible final states: either it yields a value or

it gets stuck on an unhandled operation.

Correctness. The correctness result for the base machine can mostly be repurposed for the handler

machine as we need only recheck the cases for (M-Let) and (M-AppCont) and check the cases for

handlers. Figure 10 shows the necessary changes to the L−M function.

Lemma 5.5. Suppose M is a computation and C is configuration such that LCM = M, then if M { N
there exists C′ such that C =⇒ C′ and LC′M = N, or if M ̸{ then C ≠⇒.

Proof. By induction on the derivation of M { N . □

Theorem 5.6 (Simulation). If ⊢ M : A and M {+ N such that N is normal, then ⟨M | ∅ |
κ0⟩ −→

+ C such that LCM = M, or M ̸{ then ⟨M | ∅ | κ0⟩ ̸−→.

Proof. By repeated application of Lemma 5.3. □

5.3 Asymptotic Complexity of Machine Operations
In this section we briefly detail the asymptotic complexity of the abstract machine operations. Both

machines have three operations in common: continuation augmentation, environment extension,

and environment lookup. An overview of their asymptotic complexities is given in Table 1. In

the second column of the table we use wildcard pattern matching notation (_) to denote that

the operands are irrelevant for the complexity of their operation. Since continuations are lists

the complexity of pushing a single frame on top of a continuation is always constant. We as-

sume environments are implemented using a functional map data structure, and thus admit a

logarithmic worst-case complexity in the size of their environments [Okasaki 1999]. The handler

machine arguably has one more operation, namely, pure continuation augmentation. However,

time complexity-wise this operation happens to coincide with the augmentation operation for

the base machine as augmenting the pure continuation only requires reaching under the topmost

handler closure, which is a constant time operation.
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Operation Syntax Complexity

Continuation augmentation _ :: _ O(1)

Environment extension γ [_ 7→ _] O(log |γ |)

Environment lookup γ (_) O(log |γ |)

Table 1. Asymptotic Complexity of the Abstract Machine Operations

The worst-case time complexity of the machine transition relation −→ is exhibited by rules

which involve operations on the environment, since any other operation is constant time, hence the

worst-time complexity of a transition is O(log |γ |). The value interpretation function J−K is defined
structurally on values, but it also takes an environment as input. Its worst-case time complexity is

exhibited by a nesting of pairs of variables J⟨x1, . . . , xn⟩Kγ which has complexity O(n log |γ |).

6 EFFICIENT GENERIC SEARCH
We now turn to the main crux of this paper. In this section we will prove that λh accommodates

some programmable operations with an asymptotic runtime bound that cannot be achieved in λb.
Since addition of effect handlers is the only difference between the two languages, we obtain as

a corollary that a PCF-like programming language with effect handlers exhibits fundamentally

more efficient programs than a pure PCF programming language. To obtain this result it suffices to

find one efficient program in λh and show that no equivalent program in λb can achieve the same

asymptotic complexity. We take generic search to be our ‘one’ program.

A generic search procedure is a modular search procedure that finds solutions to a given search

problem P . Generic search is entirely agnostic to the specific instantiation of P , and as a result is ap-
plicable across a wide spectrum of domains. A variety of problems can be cast as instances of generic

search; classic examples include solving Sudoku puzzles and n-Queens, whilst more esoteric exam-

ples include problems from game theory, graph theory, and exact real number integration [Daniels

2016; Simpson 1998].

To simplify the presentation, we compute the number of solutions of any given search problem

(generic count), rather than materialising all solutions (generic search). With little extra effort one

can tweak the development to compute exact solutions.

Informally, a generic count program takes as input a predicate and returns the number of times

the predicate yields true. A predicate returns a boolean value which signifies whether its input

satisfies the predicate. As input a predicate takes a bit vector of length n > 0, which we represent

as a first-order function Nat→ Bool. Ultimately we ask for implementations of a program, count,
whose type is

countn : ((Natn → Bool) → Bool) → Nat

where Natn admits elements of the set Nn
def

= {0, . . . , n− 1}. We shall often omit the n indexes when

they are clear from context, and in particular they do not appear explicitly in the types of our

programs because our formalism does not support dependent types.

Before giving the necessary formal machinery to state and prove the result, we first introduce

the concepts informally.



Asymptotic Improvement with Effect Handlers :17

6.1 Predicates and Points
Higher-order functions are the key feature that enable us to give a modular formulation of generic

search. We define a predicate of size n as a higher-order function that acts on points.

Predicaten
def

= Pointn → Bool

where n is a natural number and a point is a first-order function taking bounded natural numbers

to boolean values

Pointn
def

= Natn → Bool

Intuitively, a point implements a vector of boolean values where the natural number argument

serves as an index into the vector. A point need not be a total function, in fact, the points that we

will concern ourselves with will typically be partial functions.

Examples. Let us consider some simple, to some extent even trivial, examples of predicates and

points. The examples are intended to illustrate the possible variety of dynamic properties that

predicates and points may exhibit. As a first example consider the constant true point, which is

defined as ptrue
def

= λ_.true. It is clearly total on the whole of Nat. A slightly more interesting point

is the one which maps 0 to true and 1 to false and otherwise is undefined, it is given by

p2
def

= λi.if i = 0 then true else if i = 1 then false else ⊥ i

where ⊥
def

= rec f i.f i is the divergent point. The point p2 is partial as it is only defined on Nat2.
Now let us move onto some example predicates. We can give a whole family of constant true

predicates. For example tt0 returns true irrespective of its point.

tt0

def

= λp.true

In similar fashion we can define a variation hereof, tt2, which inspects two components of its point,

but nevertheless returns true.

tt2

def

= λp.p 1; p 0; true

This predicate is slightly more interesting than tt0 as it is defined only for points defined on Natn
for n ≥ 2. A predicate may also inspect the same component of its point more than once

red1
def

= λp.p 0; p 0

which effectively means that the predicate performs redundant work. Another class of predicates

are divergent predicates such as

div1
def

= rec div p.if p 0 then div p else false

which diverges whenever the zero-th index of the point yields true. Thus both div1 ptrue and div1 p2
never terminate. Finally, let us consider a productive predicate which determines whether a point

contains an odd number of true components.

oddn
def

= λp.fold ⊗ false (map p [0, . . . , n − 1])

where fold and map are the standard combinators on lists, and ⊗ is the exclusive-or function. This

predicate is only well-defined for n > 0. Applying odd2 to p2 yields true because the point only has

one true component, whereas applying it to ptrue yields false.
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Fig. 11. Example Decision Tree Models

Predicate Models. In essence a predicate is a decision procedure, which participates in a ‘dialogue’

with a supplied point p : Pointn. The predicate may query (i.e. invoke) the components of p, and
p then responds (i.e. returns). Each query has exactly two possible responses, because p returns

a boolean value. Ultimately this dialogue may answer whether the point satisfies the predicate.
We can model the behaviour of a predicate as an unrooted binary decision tree characterising the

predicate’s interaction with p, such that each interior node is labelled with a query ?i (for i ∈ Nn) for

which the left subtree corresponds to p i being true and the right subtree to p i being false, and each
leaf is labelled with an answer !true or !false according to whether p satisfies the predicate. The

decision trees are unrooted to account for the initial bit of computation which occurs in between

the application of a predicate to p and the first query or answer.

Figure 11 depicts models of some of the example predicates given above. The model of tt0 is

simply an unrooted leaf (Figure 11a). The model of div1 is an infinite left-branching tree (Figure 11b).

The model of odd2 is a complete binary tree (Figure 11c). A further example is the unconditionally

divergent predicate div
def

= rec f p.f p whose model is empty.

Restrictions. In order to obtain a meaningful complexity result, we must constrain the predicates

of interest. At one extreme, counting the number of solutions of a divergent predicate like div0 is
meaningless. At the other extreme, a constant predicate like tt0 exhibits no interesting computa-

tional characteristics. Other constant predicates like tt2 do exhibit some interesting computational

characteristics, because they at least inspect their provided point. However, we shall not concern

ourselves with predicates like red1 which performs redundant work, because any such work could

be optimised away via common subexpression elimination (providing we guarantee that points are

referentially transparent). Thus we restrict attention to predicates that for n > 0

(1) terminate when applied to any point p; and
(2) inspect each bit 0 < i < n of p exactly once.

Of the examples we have considered so far, the only ones that satisfy the above conditions are tt2

and oddn. In fact, the only predicates which satisfies these conditions are those predicates whose

models form complete binary trees (as in Figure 11c). We call such predicates n-standard. We

provide a rigorous definition of n-standard predicates in Section 6.3. To satisfy the first condition

above, we also require that points always terminate on their defined domain Natn. We call a point

that is defined on 0 < i < n an n-point.
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6.2 Effectful Generic Counting
Having introduced predicates and points informally, we move onto presenting our effectful imple-

mentation of count. Our implementation is a variation of the example handler for non-deterministic

computation that we gave in Section 2. The main idea is to implement points as non-deterministic

computations using the Branch operation such that the handler may respond to every query twice

by invoking the provided resumption with true and subsequently false. The key insight is that

the resumption restarts computation at the invocation site of Branch, which means that prior

computation need not be repeated. In other words, the resumption ensures that common bits of

computations prior to any query are shared between both branches.

We fix the effect signature Σ
def

= {Branch : 1 → Bool} to be a singleton. The algorithm is then

expressed as follows.

effcount : ((Nat→ Bool) → Bool) → Nat

effcount P def

=

handle P (λ_.do Branch ⟨⟩) with
val b 7→ if b then return 1 else return 0

Branch ⟨⟩ r 7→ let xtrue ← r true in
let xfalse ← r false in
xtrue + xfalse

The handler applies the given predicate P to a single point defined using the branching opera-

tion. The boolean return value is interpreted as a single solution, whilst the Branch operation is

interpreted by alternately supplying true and false to the resumption and summing the results. A

curious detail about effcount is that it works for all n-standard predicates without having to know

the exact value of n. This is because the point (λ_.do Branch ⟨⟩) represents the superposition of all

possible points. The sharing enabled by the use of the resumption is exactly the ‘magic’ we need to

make it possible to implement generic counting more efficiently in λh than in λb.

6.3 Predicates, Points, and their Models, Formally
We now formalise the notions of n-standard predicates, points, and their models. We formalise

the concepts using the operational semantics and abstract machine for the base language λb. The
reason being that it makes little sense to compare the runtime complexity of predicates which

makes use effectful operations as they cannot be run on the base machine.

We begin by formalising the decision tree model of predicates. We first introduce the label set,

Lab, consisting of queries and answers.

Notation. We write bs ⊏ bs′ to mean that list bs is a prefix of list bs′.

Definition 6.1 (label set). The label set Lab consists of queries parameterised by a natural number

and answers parameterised by a boolean.

Lab
def

= {?n | n ∈ N} ∪ {!true, !false}

We model a decision tree as a partial function from lists of booleans to labels; each boolean list

specifies a cursor into the tree as a path from the root of the tree.

Definition 6.2 ((untimed) decision tree). A decision tree is a partial function t : B∗ ⇀ Lab from
lists of booleans to node labels with the following properties:

• The domain of t, dom(t), is prefix closed.
• If t(bs) = !b then t(bs′) is undefined for all bs′ ⊐ bs. In other words answer nodes are always

leaves.
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As our goal is to reason about the time complexity of generic counting programs and their

predicates it is helpful to decorate decision trees with timing data that records the number of

machine steps taken.

Definition 6.3 (timed decision tree). A timed decision tree is a partial function t : B∗ ⇀ Lab ×Nat
such that its first projection bs 7→ t(bs).1 is a decision tree. We write labs(t) for the first projection
(bs 7→ t(bs).1) and steps(t) for the second projection (bs 7→ t(bs).2) of a timed decision tree.

We now seek a way of relating predicates to decision trees. We do so by first defining an

interpretation of configurations as decision trees.

Notation. We write a ≃ b for Kleene equality, meaning that either both a and b are undefined or

both are defined and a = b.

Definition 6.4. The timed decision tree of a configuration is defined by the following equations

T(⟨return true | γ | []⟩) [] = (!true, 0)
T (⟨return false | γ | []⟩) [] = (!false, 0)

T (⟨p V | γ | σ ⟩) [] = (?JV Kγ , 0)

T (⟨p V | γ | σ ⟩) (b :: bs) ≃ T (⟨return b | γ | σ ⟩) bs
T(⟨M | γ | σ ⟩) bs ≃ I(T (⟨M ′ | γ ′ | σ ′⟩) bs),

if ⟨M | γ | σ ⟩ −→ ⟨M ′ | γ ′ | σ ′⟩

where I(ℓ, s) = (ℓ, s+1) and p is a distinguished free variable such that in all of the above equations

γ (p) = γ ′(p) = p. The decision tree of a computation term is obtained by placing it in the initial

configuration, i.e. T(M) def= T(⟨M, ∅[p 7→ p],κ0⟩). The decision tree of a predicate P is T(P p). Since
p is a parametric variable, we allow ourselves to write T(P) to mean T(P p).

We can use T to define a construction procedure,U, for untimed decision trees (Definition 6.2)

as follows:U(P) def= bs 7→ T (P)(bs).1.
The following definition makes precise the notion of n-standard predicates.

Definition 6.5 (n-standard trees and n-standard predicates). For any n > 0 a decision tree t is said
to be n-standard if

• The domain of t consists of all the lists whose length is at most n, i.e.

dom(t) = {bs : B∗ | |bs | ≤ n}

• Every leaf node in t is an answer node, i.e.

For all bs ∈ dom(t) if |bs | = n then t(bs) = !b for some b ∈ B

• There are no repeated queries along any path in t: for all bs, bs′ ∈ dom(t), j ∈ N, if bs ⊑ bs′

and t(bs) = t(bs′) = ?j then bs = bs′.
A timed decision tree t is n-standard if its underlying untimed decision tree (bs 7→ t(bs).1) is. A
predicate P is said to be n-standard if its decision tree T(P) is an n-standard tree.

As alluded to in Section 6.1 n-standard decision tree models are exactly those that form a complete

binary tree such that each path contains no repeated queries. Note that the third condition in the

definition requires only that there are no repeated queries along any path in the model, it does

not, however, impose a particular ordering on those queries, meaning that a predicate like tt2 from

Section 6.1, which queries the second component of its point first, is an n-standard.
We nowmove onto formalising points. Our model of points is only used for extensional reasoning

about programs in the λb-language as we can reason intensionally about the single point used by

effcount in the λh-language. As remarked in Section 6.1, points may in general be partial, however,

the points that we shall consider all have the property, that they terminate whenever applied to an

element of their defined domain (Natn for some n > 0).
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Notation. We write L−M : N → Nat for the injection of natural numbers into value terms and

NJ−K : Nat→ N for its inverse. Similarly, we write BJ−K : Bool→ B for denotation function for

boolean value terms.

Definition 6.6 (n-point). For any n > 0 a closed value p : Pointn is said to be an n-point if

∀i ∈ Nn.p LiM {∗ return W .

Semantically, we can think of any n-point as a total first-order function of type Nn → B. In fact,

we shall take this function type to be the model of n-points. Since an n-point terminates on its

defined domain, we can easily compute a model of it using the operational semantics. Definition 6.7

provides a procedure for computing the model of any n-point.

Definition 6.7. The denotation of an n-point p is the realisation of its operational behaviour

PJ−K : (Natn → Bool) → (Nn → B)

PJpK def

= j ∈ Nn 7→ BJpLjMK
Using the model of n-points we define what it means for any two points to be distinct.

Definition 6.8. We say that any two n-points p0 and p1 are distinct if their denotations differ, i.e.

∃j ∈ Nn.PJp0Kj , PJp1Kj

6.4 Specification of Generic Counting
Now we have most of the prerequisites in place to be able to provide a rigorous specification of

generic counting. The only missing piece of machinery is a way to determine the correct ‘count’ of

an n-standard predicate, that is how many times it yields true.

Definition 6.9. A counting function is a partial function of type B∗ ⇀ N.

As with the decision tree functions, the list argument to a counting function serves as a cursor

into the model of the predicate. Except that in this case, the function computes the sum of the

true answers in the subtree pointed to by the cursor. Thus in order to compute the sum of all true
answers we apply the counting function to the empty list. The following definition provides a

procedure for constructing a counting function for any predicate.

Definition 6.10. The counting function for a configuration is defined by the following equations.

C(⟨return true | γ | []⟩) [] = 1

C(⟨return false | γ | []⟩) [] = 0

C(⟨p V | γ | σ ⟩) [] = C(⟨return true | γ | σ ⟩) [] + C(⟨return false | γ | σ ⟩) []
C(⟨p V | γ | σ ⟩) (b :: bs) ≃ C(⟨return b | γ | σ ⟩) bs

C(⟨M | γ | σ ⟩) bs ≃ C(⟨M ′ | γ ′ | σ ′⟩) bs, if ⟨M | γ | σ ⟩ −→ ⟨M ′ | γ ′ | σ ′⟩

where p is a distinguished free variable such that in all of the above equations γ (p) = γ ′(p) = p. As
with T , we write C(P) for C(P p).

We can now give a precise definition of generic count programs.

Definition 6.11 (generic count program). A program C : ((Nat→ Bool) → Bool) → Nat is said to
be an n-count program if for every n-standard predicate P

C P {+ return V , such that JV K = C(P)([])

There is a convenient correspondence between the size, n, of an n-standard predicate P and

its maximum count value C(P)([]). In the extreme case P answers true for every point. Since the

model of P has height n it must have 2
n
leaves, thus it follows that C(P)([]) ≤ 2

n
. In fact, this

correspondence generalises for all boolean lists bs of at most length n, that is C(P)(bs) ≤ 2
n−|bs |

.
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6.5 Complexity of Effectful Generic Counting
In this section we sketch the proof of correctness and asymptotic runtime bound for running the

effectful generic counting program effcount on a predicate P . Full details are in Appendix A.

A key feature of the proof is that we must alternate between intensional and extensional modes

of reasoning. As effcount is a fixed program, we can reason intensionally about its behaviour and

thereby directly observe machine transitions. But we must also consider the transitions of P . Since
the code for P is unknown we cannot employ the same reasoning technique. Instead, we reason

extensionally by making use of the fact that the timed decision tree model of P contains the exact

number of transitions that P performs in each branch of computation.

Theorem 6.12. For all n > 0 and any n-standard predicate P it holds that
(1) The program effcount is a generic counting program, that is:

effcount P {+ return V , such that NJV K = C(P)([]) ≤ 2
n

(2) The runtime complexity of effcount P is given by the following formula:

|bs | ≤n∑
bs∈B∗

steps(T (P))(bs) + O(2n)

Proof. Proof by downwards induction on the length of bs and alternating between intensional

and extensional reasoning as needed. □

6.6 Pure Generic Counting
Thus far we have shown that there exists an implementation of count in λh with a particular

asymptotic runtime bound. Now, we are going to show that no implementation of count in λb can
achieve this runtime bound. To obtain this result we exhibit two properties of the decision model

(1) there are no shortcuts, i.e. every leaf must be visited,

(2) and there can be no sharing of work amongst branches.

Together these two properties imply that every count program must have at least time complexity

Ω(n2n), because it must construct 2
n
points, one for each leaf in the model, and apply the predicate

once to each point. Due to the lack of sharing, each application of the predicate performs some

redundant work, because in the worst case the path to two neighbouring leaves share exactly n
edges in the model. We formalise the first property in Section 6.7 and the second in Section 6.8. First,

we give an example of a pure generic count program and discuss better possible implementations.

The following program is a direct implementation of count in λb.

purecountn : ((Natn → Bool) → Bool) → Nat

purecountn
def

= λP .count′ n⊥
where count′ 0 p def

= if P p then 1 else 0

count′ (1 + n′) p def

= count′ n′ (λi.if i = n′ then true else p i)
+ count′ n′ (λi.if i = n′ then false else p i)

⊥ _
def

= rec f i.f i

The implementation materialises 2
n
points which are encoded using a standard functional linked list

representation. The auxiliary function count′ exhibits a recursion pattern reminiscent of the classic

recursive definition of the Fibonacci function. The function is initially applied to the divergent

function ⊥, which is partly used to seed the list generation, but also used to respond to queries

i ≥ n such that they diverge. The base case of count′ applies the predicate P to the generated point.
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As mentioned in Section 1 more clever implementation is a counting variation of the search

algorithm due to Berger [1990], which takes advantage of the observation that when a predicate

queries a point, the point may reinvoke the predicate and use the result to determine the response

to the initial query. We do not provide an example implementation here, but the interested reader

may consult Escardó [2007], who demonstrates various refinements of Berger’s algorithm in order

to speed up the search procedure, though his setting is slightly different from ours as he considers

exhaustive search on infinite sets.

At this point the reader may wonder why we cannot simply use known continuation passing

style (CPS) [Hillerström et al. 2017] or monadic [Leijen 2017] transforms of effect handlers, or

implement an interpreter for effect handlers [Hillerström and Lindley 2016] in λb to achieve the

sharing of computation. Such global implementation techniques are ruled out in our setting, because

they would change the type of count. For example, as any predicate P is a higher-order function

(supplied externally to count), we cannot even CPS transform count locally as the interface of P
would be incompatible with the CPS interface. Many such transforms are possible in a first-order

setting, but they are not an option for us due to the inherent higher-order nature of our setting.

6.7 No Shortcuts
We sketch the idea behind the proof of the fact that any n-count program in λb must construct 2

n

points. Full details are in Appendix B.2. The proof makes use of the observation that the decision

tree model encodes the canonical structure of any n-standard predicate. We can reify a (semantic)

n-standard model as a (syntactic) n-standard predicate. This procedure provides a means for

converting any n-standard predicate P into a canonical form (first compute the model, then reify, a

la normalisation by evaluation [Berger et al. 1998]).

Lemma 6.13. Let P be an n-standard predicate. Suppose C is an n-count program, then C must
apply P to at least 2n distinct n-points.

Proof. Proof by contradiction. Pick any leaf in the model of P and construct its corresponding

cursor bs ∈ B. Suppose there exists an n-count program C which does not construct a point pc for
the leaf pointed to by bs. Moreover, let b denote the answer yielded by P pc if it were applied. Now
negate b in the model of P and construct a canonical predicate P ′ using the modified model. We

have that P and P ′ yield the same answers except at pc , where P ′ pc = ¬b. Moreover, it follows that

|C(P ′)(bs) − C(P)(bs)| = 1, and because [] ⊏ bs we further obtain that |C(P ′)([]) − C(P)([])| = 1.

Now there are two cases to consider:

(1) If C P = C P ′ then C cannot be an n-count program, because C(P)([]) , C(P ′)([]), which
contradicts the assumption.

(2) If C P , C P ′ then we invoke a variation of Milner’s Context Lemma [Milner 1977] which

gives us that for any multi-hole context F [−] such that F [P] = C P , the reduction sequence

F [P] {+ return V can be tracked by F [P ′] {∗ return V . The Context Lemma tells us

that C P and C P ′ both reduce to the same value, which contradicts the assumption.

□

The lemma guarantees that any n-count program constructs an n-point corresponding to each

leaf in the model of any given n-standard predicate.

6.8 No Sharing
We now show that distinct predicate applications cannot share computation. In order to do so,

we introduce the notion of threads. Intuitively, a thread corresponds to a path in a decision tree

model. Each thread of an n-standard model is composed of n + 1 sections, where each corresponds
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to an edge in the model. Thus we can identify the start and end of any section by looking for point

queries and responses. Definition 6.15 makes use of an auxiliary reduction relation↠ to define

threads and sections. Intuitively, this reduction relation ensures that we cannot inadvertently “step

over” an application of a point.

Definition 6.14 (↠). E[M]↠ E[N ] iff E[M] { E[N ] and M is not of the form p V where p is a

point.

Definition 6.15 (Sections and threads). A section is a pair of computations, where the first compo-

nent marks the start of the section and the second marks the end. For an n-standard predicate P , a
thread of P consists of n + 1 sections. Given a denotation, f , of a concrete n-point, and taking p to

be a distinguished free variable, a single thread for P can be computed as follows

Th : Comp × (Nn → B)⇀ [(Comp,Comp)]

Th(P p, f ) def= (P p, E[p V ]) :: Th(E[return LbM], f ),
where Sec(P p) = E[p V ] and b = f (NJV K)

Th(E[return W ], f ) def= (E[return W ], E ′[p V ]) :: Th(E[return LbM], f )
where Sec(E[return W ]) = E ′[p V ] and b = f (NJV K)

Th(E[return W ], f ) def= (E[return W ], return V ) :: []
where Sec(E[return W ]) = return V

The auxiliary procedure Sec computes the end of a section from the start.

Sec(E[M]) def=

{
E ′[p V ] if E[M]↠+ E ′[p V ]
return V if E[M]↠∗ return V

Now we show that every predicate application gives rise to a corresponding thread via Th(−,−).

Lemma 6.16. Suppose P is an n-standard predicate, p is an n-point, and f = PJpK, then

P p ↠+ E1[p V1] {
+ E1[return Lf (NJV1K)M]↠+ · · ·

↠+ En[p Vn] {
+ En[return Lf (NJVnK)M]↠∗ return W

if and only if

Th(P p, f ) =



(P p, E1[p V1]),
(E1[return Lf (NJV1K)M], E2[p V2]),
...
(En[p Vn], En[return Lf (NJVnK)M]),
(En[return Lf (NJVnK)M], return W )


Proof. For both directions the proof is by induction on n. □

The lemma tells us that every predicate application has an associated thread and vice versa. By

Lemma 6.13 we know that any n-count program must construct at least 2
n
distinct threads. To

establish the desired result, we need some way of characterising disjointness of threads.

Definition 6.17. Let C denote an n-count program and P an n-standard predicate. Any two

threads T0 and T1 arising from distinct applications of P in C are said to be disjoint if every section

computation of T0 is distinct from every section computation of T1, where the section computations

of a thread comprise the set of all start and end computations of the sections in that thread.

Now we are in a position to argue that no two distinct predicate applications can share computa-

tion, or in other words every section of their associated threads must be evaluated.
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Lemma 6.18. Suppose P is an n-standard predicate and C is an n-count program, and let p0 and p1
be distinct n-points, then the predicate applications P p0 and P p1 within C have disjoint threads.

Proof. Let T0 = Th(P p0,PJp0K) and T1 = Th(P p1,PJp1K) be the threads arising from the two

distinct predicate applications. Suppose, without loss of generality, that P is applied to p0 before p1,
that is C P {+ E0[P p0] {+ E1[P p1] {+ · · · which by Lemma 6.16 implies that T0 starts before
T1. There are now two possible cases to consider.

(1) T0 finishes before T1 starts. It follows immediately that T0 and T1 are disjoint.
(2) T1 starts in between the sections of T0. We now argue that T1 must finish before evaluation

of T0 can continue. Suppose for any i < n that the i-th query qi starts T1, i.e

Ei[p0 qi] { Ei[E ′[P p1]]

then by the ‘n-ness’ of C, P , and p1 and since the reduction relation { is deterministic it

follows that E ′ reduces to a boolean valueW which is plugged into the continuation of Ei[−]

Ei[p0 qi] { Ei[E ′[P p1]] {+ Ei[return W ]

Thus, T1 must finish executing before evaluation of T0 can resume.

□

6.9 Complexity of Pure Generic Counting
Now we can plug together the formal machinery developed in the previous sections to state and

prove the complexity result for pure generic counting programs.

Theorem 6.19. For all n > 0 and every n-count program count ∈ λb, and n-standard predicate the
runtime of count P is at least

|bs | ≤n∑
bs∈B∗

2
n−|bs |steps(t)(bs) + Ω(n2n)

where t = T(P).

Proof. By Lemma 6.13 we know that P is invoked at least 2
n
times with distinct n-points.

Moreover, by Lemma 6.18 we know that every reduction sequence arising from an application of P
must be realised independently, which in terms of the model t of P means that in the worst case n
edges are revisited. Taking bs ∈ B∗ such that |bs | ≤ n to be any cursor into the model, we obtain

that an edge is revisited 2
n−|bs |

times.

Lemmas 6.13 and 6.18 are stated in terms of the operational semantics, so we invoke the correspon-

dence Theorem 5.3 between{ and −→ to obtain the result in terms of the abstract machine. □

7 CONCLUSIONS AND FUTUREWORK
In this paper we have taken a variation of call-by-value PCF and extended it with effect handlers.

We have shown that this extension exhibits an asymptotically more efficient implementation of

generic search than any possible implementation in the base language. Thus establishing that there

exists a complexity gap between the two languages due to the presence of effect handlers. This

result also extends to other control operators by appealing to existing results on interdefinability

of handlers and other control operators [Forster et al. 2017; Piróg et al. 2019].

Our theorems no longer apply directly if we add an effect type system to λh, as the handler
implementation of the counting program then requires the type of predicates to reflect the ability

to perform effectful operations, whereas the pure PCF implementation does not. In future we plan

to investigate how to account for effect type systems as well as further testing the robustness of

our results by endowing the base language with primitives such as mutable state and exceptions.
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A PROOF DETAILS FOR THE COMPLEXITY OF EFFECTFUL GENERIC COUNTING
In this appendix we give proof details and artefacts for Theorem 6.12. Throughout this section we

let Hcount denote the handler definition of count, that is

Hcount
def

=


val x 7→ if x then return 1 else return 0

Branch ⟨⟩ r 7→ let x ← r true in
let y ← r false in
x + y


The timed decision tree model embeds timing information. For the proof we must also know the

abstract machine environment and the pure continuation. Thus we decorate timed decision trees

with this information.

Definition A.1 (decorated timed decision trees). A decorated timed decision tree is a partial function

t : B∗ ⇀ (Lab × Nat) × (Env × PureCont) such that its first projection bs 7→ t(bs).1 is a timed

decision tree. As an abbreviation, we define DT
def

= B∗ ⇀ (Lab × Nat) × (Env × PureCont).

We extend the projections labs and steps in the obvious way to work over decorated timed

decision trees. We define two further projections. The first env(t) def= bs 7→ t(bs).2.1 projects the
environment, whilst the second pure(t) def= bs 7→ t(bs).2.2 projects the pure continuation.

The following definition gives a procedure for constructing a decorated timed decision tree. The

construction is similar to that of Definition 6.4.

Definition A.2. The decorated timed decision tree of a configuration is defined by the following

equations

D : Conf ⇀ DT
D(⟨return true | γ | []⟩) [] = ((!true, 0), (γ , []))
D(⟨return false | γ | []⟩) [] = ((!false, 0), (γ , []))

D(⟨p V | γ | σ ⟩) [] = ((?JV Kγ , 0), (γ ,σ ))

D(⟨p V | γ | σ ⟩) (b :: bs) ≃ D(⟨return b | γ | σ ⟩) bs
D(⟨M | γ | σ ⟩) bs ≃ I(D(⟨M ′ | γ ′ | σ ′⟩) bs),

if ⟨M | γ | σ ⟩ −→ ⟨M ′ | γ ′ | σ ′⟩

where I((ℓ, s), (γ ,σ )) def= ((ℓ, s + 1), (γ ,σ )) and p is a distinguished free variable such that in all of

the above equations γ (p) = γ ′(p) = p.

We shall write D(P) to mean D(⟨P p | ∅[p 7→ p] | []⟩).
We define some functions, that given a list of booleans and a n-standard predicate, compute

configurations of the effectful abstract machine at particular points of interest during evaluation of

the given predicate. Let χcount(V )
def

= (∅[pred 7→ JV K∅],Hcount) denote the handler closure of Hcount.

Notation. For an n-standard predicate P wewrite |P | = n for the size of the predicate. Furthermore,

we define χid for the identity handler closure (∅, {val x 7→ x}).

Definition A.3 (computing machine configurations). For any given n-standard predicate P and a

list of booleans bs, such that |bs | ≤ n, we can compute machine configurations at points of interest

during evaluation of count P .
To make the notation slightly simpler we use the following conventions whenever n, t, and c

appear free: n = |P |, t = D(P), and c = C(P).
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• The function arrive either computes the configuration at a query node, if |bs | < n, or the
configuration at an answer node.

arrive : B∗ × Val⇀ Conf

arrive(bs, P) def= ⟨V j | γ | (σ , χcount(P)) :: residual(bs, P)⟩, if |bs | < n
where γ = env(t)(bs), ?j = labs(t)(bs), and JV Kγ = (env⊥(P), λ_.do Branch ⟨⟩)

arrive(bs, P) def= ⟨return b | γ | ([], χcount(P)) :: residual(bs, P)⟩, if |bs | = n
where γ = env(t)(bs) and !b = labs(t)(bs)

• Correspondingly, the depart function computes the configuration either after the completion

of a query or handling of an answer.

depart : B∗ × Val⇀ Conf

depart(bs, P) def= ⟨return m | γ | residual(bs, P)⟩, if |bs | < n
where γ = env↑false(bs, P) and m = c(true :: bs) + c(false :: bs)
depart(bs, P) def= ⟨return m | γ | residual(bs, P)⟩, if |bs | = n

where γ = env⊥(P) and m = c(bs)

The two clauses of depart yield slightly different configurations. The first clause com-

putes a configuration inside the operation clause of Hcount. The configuration is exactly

tail-configuration after summing up the two respective values returned by the two invoca-

tions of resumption. Whilst the second clause computes the tail-configuration inside of the

value clause of Hcount after handling a return value of the predicate.

• The residual function computes the residual continuation structure which contains the bits

of computations to perform after handling a complete path in a decision tree.

residual : B∗ × Val⇀ Cont

residual(bs, P) def= [(purecont(bs, P), χid)]

• The function purecont computes the pure continuation.

purecont : B∗ × Val⇀ PureCont

purecont([], P) def= []
purecont(true :: bs, P) def= (γ , xtrue, let xfalse ← r false in xtrue + xfalse) :: purecont(bs, P),

where γ = env↓true(true :: bs, P)
purecont(false :: bs, P) def= (γ , xfalse, xtrue + xfalse) :: purecont(bs, P),

where γ = env↓false(false :: bs, P)

• The function env⊥ computes the initial environment of the handler. The family of functions

env↓b∈B contains two functions, one for each instantiation of b, which describe how to compute

the environment prior descending down a branch as the result of invoking a resumption with

b. Analogously, the functions in the family env↑b∈B describe how to compute the environment

after ascending from the resumptive exploration of a branch.
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env⊥ : Val→ Env

env⊥(P) def= ∅[pred 7→ JPK∅]

env↓true : B∗ × Val⇀ Env

env↓true(bs, P)
def

= env⊥(V )[r 7→ (σ , χcount(P))],
where σ = pure(t)(bs)

env↓false : B∗ × Val⇀ Env

env↓false(bs, P)
def

= γ [x 7→ i],
where γ = env↓true(bs, P) and i = c(true :: bs)

env↑false : B∗ × Val⇀ Env

env↑false(bs, P)
def

= γ [y 7→ j],
where γ = env↓false(bs, P) and j = c(false :: bs)

We require an auxiliary lemma, because we need to be able to reason about bits of predicate

computation, specifically when the predicate is first applied, going from a departure configuration

to an arrival configuration, and from a departure configuration to an answer configuration. The

following lemma states that for an n-standard predicate, handler machine transitions in lock-step

with the base machine.

For a given predicate P wewrite χcount(P)val to mean χcount(P)val = (∅[pred 7→ JPK∅],Hcount)
val =

Hval
count, that is the projection of the success clause of Hcount.

Lemma A.4. For any given n-standard predicate P and a list of booleans bs ∈ B∗ such that |bs | ≤ n
along with two value V : Bool and b ∈ B, then the base machine and handler machine transition in
lock-step in either way
(1) If |bs | = [], then

⟨P p | γ | []⟩
−→ steps(t)([])

⟨p LiM | γ ′ | σ ⟩,
where ?i = labs(t)([]), γ = ∅[P 7→ P], γ ′ = env(t)([]), and σ = pure(t)([]); implies the handler
machine perform the same amount of transitions

⟨P p | γ | ([], χcount(P)) :: residual(P, [])⟩[(λ_.do Branch ⟨⟩)/p]
−→ steps(t)([])

⟨p LiM | γ ′ | (σ , χcount(P)) :: residual(P, [])⟩[(λ_.do Branch ⟨⟩)/p]

(2) For bs = b :: bs′ we have the following two subcases
• If |bs | < n, then

⟨return b | γ | σ ⟩
−→ steps(t)(b::bs)

⟨p LiM | γ ′ | σ ⟩,

where ?i = labs(t)(b :: bs), γ = env↓b , γ
′ = env(t)(b :: bs), and σ = pure(t)(bs); implies the

handler machine perform the same amount of transitions

⟨return LbM | γ | (σ , χcount(P)) :: residual(P, b :: bs, n, t, c)⟩[(λ_.do Branch ⟨⟩)/p]
−→ steps(t)(b::bs)

⟨p LiM | γ ′ | (σ , χcount(P)) :: residual(P, b :: bs, n, t, c)⟩[(λ_.do Branch ⟨⟩)/p]
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• If |bs | = n, then

⟨return LbM | γ | σ ⟩
−→ steps(t)(b::bs′)

⟨return Lb′M | γ ′ | []⟩,

where !b′ = labs(t)(b :: bs), γ = env(t)(bs), γ ′ = env(t)(b :: bs), and σ = pure(t)(bs); implies
the handler machine perform the same amount of transitions

⟨return LbM | γ | (σ , χcount(P)) :: residual(P, b :: bs, n, t, c)⟩[(λ_.do Branch ⟨⟩)/p]
−→ steps(t)(b::bs′)

⟨return Lb′M | γ ′ | ([], χcount(P)) :: residual(P, b :: bs, n, t, c)⟩[(λ_.do Branch ⟨⟩)/p]

Proof. Proof by induction on the transition relation −→. □

Let control : Conf ⇀ Val denote a partial function that hoists a value out of a given machine

configuration, that is

control(⟨M | γ | κ⟩) def=

{
JV Kγ if M = return V
⊥ otherwise

The following lemma performs most of the heavy lifting for the proof of Theorem 6.12.

Lemma A.5. Suppose P is an n-standard predicate, then for any list of booleans bs ∈ B∗ such that
|bs | ≤ n

arrive(bs, P) {T (bs,n) depart(bs, P),

and control(depart(bs, P)) ≤ 2
n−|bs | with the function T defined as

T (bs, n) =

{
9 ∗ (2n−|bs | − 1) + 2n−|bs |+1 +

∑
1≤ |bs′ | ≤n−|bs |
bs′∈B∗ steps(t)(bs′ ++ bs) if |bs | < n

2 if |bs | = n

Proof. By downward induction on bs.

Base step We have that |bs | = n. Since the predicate is n-standard we further have that n ≥ 1.

We proceed by direct calculation.

arrive(bs, P)
= (definition of arrive when n = |bs |)
⟨return b | γ | ([], χcount(P)) :: residual(bs, P)⟩

where γ = env(t)(bs) and !b = labs(t)(bs)
−→ (M-RetHandler, χcount(P)val = {val x 7→ · · · })
⟨if x then return 1 else return 0 | γ ′[x 7→ JbKγ ′] | residual(bs, P)⟩

where γ ′ = χcount(P).1

The value b can assume either of two values. We consider first the case b = true.

= (assumption b = true, definition of J−K (2 value steps))
⟨if x then return 1 else return 0 | γ ′[x 7→ true] | residual(bs, P)⟩

−→ (M-If-tt (and log |γ ′[x 7→ true]| = 1 environment operations))

⟨return 1 | γ ′[x 7→ true] | residual(bs, n, P, t, c)⟩
= (definition of depart when n = |bs |)
depart(bs, P)
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We have that control(depart(bs, P)) = 1 ≤ 2
0 = 2

n−|bs |
. Next, we consider the case when

b = false.

= (assumption b = false, definition of J−K (2 value steps))
⟨if x then return 1 else return 0 | γ ′[x 7→ false] | residual(bs, P)⟩

−→ (M-If-tt (and log |γ ′[x 7→ false]| = 1 environment operations))

⟨return 0 | γ ′[x 7→ false] | residual(bs, n, P, t, c)⟩
= (definition of depart when n = |bs |)
depart(bs, P)

Again, we have that control(depart(bs, P)) = 0 ≤ 2
0 = 2

n−|bs |
.

Step analysis. In either case, the machine uses exactly 2 transitions. Thus we get that

2 = T (bs, n), when |bs | = n

Inductive step The induction hypothesis states that for all b ∈ B and |bs | < n

arrive(b :: bs, P) {T (b::bs,n) depart(b :: bs, P),

such that control(depart(b :: bs, P)) ≤ 2
n−|b::bs |

. We proceed by direct calculation.

arrive(bs, P)
= (definition of arrive when n < |bs |)
⟨V j | γ | (σ , χcount(P)) :: residual(bs, P)⟩

where ?j = labs(t)(bs),γ = env(t)(bs),σ = pure(t)(bs), and V = (env⊥(P), λ_.do Branch ⟨⟩)
−→ (M-App)

⟨do Branch ⟨⟩ | γ ′[_ 7→ JjKγ ′] | (σ , χcount(P)) :: residual(bs, P)⟩
where γ ′ = env⊥(P)

−→ (M-Handle-Op, χcount(P)Branch = {Branch ⟨⟩ r 7→ · · · })〈let xtrue ← r true in
let xfalse ← r false in
xtrue + xfalse

| γ [r 7→ J(σ , χcount(P))Kγ ] | residual(bs, P)

〉
where γ = env⊥(P)

= (definition of J−K (1 value step))〈let xtrue ← r true in
let xfalse ← r false in
xtrue + xfalse

| γ ′ | residual(bs, P)

〉
where γ ′ = γ [r 7→ (σ , χcount(P))]

−→ (M-Let, definition of residual)
⟨r true | γ ′ | residual(true :: bs, P)⟩

−→ (M-Resume, JrKγ ′ = (σ , χcount(P)) (log |γ ′ | = 1 environment operations))

⟨return true | γ ′ | (σ , χcount(P)) :: residual(true :: bs, P)⟩

We now use Lemma A.4 to reason about the progress of the predicate computation σ . There
are two cases consider, either 1 + |bs | < n or 1 + |bs | = n.
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Case 1 + |bs | < n. We obtain the following configuration.

−→ steps(t)(true::bs) (by Lemma A.4)

⟨V j | γ ′′ | (σ ′, χcount(P)) :: residual(true :: bs, P)⟩
where ?j = labs(t)(true :: bs),γ ′′ = env(t)(true :: bs),σ ′ = pure(t)(true :: bs)

and JV Kγ ′′ = (env⊥(P), λ_.do Branch ⟨⟩)
= (definition of arrive when 1 + |bs | < n)
arrive(true :: bs, P)

−→ T (true::bs,n) (induction hypothesis)

depart(true :: bs, P)
= (definition of depart when 1 + |bs | < n)
⟨return i | γ | residual(true :: bs, P)⟩

where i = c(true :: true :: bs) + c(false :: true :: bs) and γ = env↑false(true :: bs, P)
= (definition of residual and purecont)
⟨return i | γ | [((γ ′, xtrue, let xfalse ← r false in xtrue + xfalse) :: purecont(bs, P), χid)]⟩

where γ ′ = env↓true(bs, P)
−→ (M-AppCont)

⟨let xfalse ← r false in xtrue + xfalse | γ ′′ | [(purecont(bs, P), χid)]⟩
where γ ′′ = γ ′[xtrue 7→ JiKγ ′]

−→ (M-Let)

⟨r false | γ ′′ | [((γ ′′, xfalse, xtrue + xfalse) :: purecont(bs, P), χid)]⟩
= (definition of purecont and residual)
⟨r false | γ ′′ | residual(false :: bs, P)⟩

−→ (M-Resume)

⟨return false | γ ′′ | (σ , χcount(P)) :: residual(false :: bs, P)⟩
where σ = pure(t)(bs)

−→ steps(t)(false::bs) (by Lemma A.4 and assumption |false :: bs | < n)
⟨V j | γ | (σ , χcount(P)) :: residual(false :: bs, P)⟩

where ?j = labs(t)(false :: bs),σ = pure(t)(false :: bs),γ = env(t)(false :: bs)
and JV Kγ = (env⊥(P), λ_.do Branch ⟨⟩)
= (definition of arrive when 1 + |bs | < n)
arrive(false :: bs, P)

−→ T (false::bs,n) (induction hypothesis)

depart(false :: bs, P)
= (definition of depart when 1 + |bs | < n)
⟨return j | γ | residual(false :: bs, P)⟩

where j = c(true :: false :: bs) + c(false :: false :: bs) and γ = env↑false(false :: bs, P)
= (definition of residual and purecont)
⟨return j | γ | [((γ ′′, xfalse, xtrue + xfalse) :: purecont(bs, P), χid)]⟩

−→ (M-AppCont)

⟨xtrue + xfalse | γ ′′[xfalse 7→ JjKγ ′′] | residual(bs, P)⟩
−→ (M-Plus)

⟨return m | γ ′′[xfalse 7→ JjKγ ′′] | residual(bs, P)⟩
where m = c(true :: true :: bs) + c(false :: true :: bs) + c(true :: false :: bs) + c(false :: false :: bs)

= c(true :: bs) + c(false :: bs) = c(bs) ≤ 2
n−|bs |

= (definition of depart when |bs | < n)
depart(bs, P)
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Step analysis. The total amount of machine transitions is given by

9 + steps(t)(true :: bs) + T (true :: bs, n) + steps(t)(false :: bs) + T (false :: bs, n)
= (reorder)

9 + T (true :: bs, n) + steps(t)(false :: bs) + steps(t)(true :: bs) + steps(t)(false :: bs)
= (definition of T )
9 + 9 ∗ (2n−|true::bs | − 1) + 9 ∗ (2n−|false::bs | − 1) + 2n−|true::bs |+1 + 2n−|false::bs |+1

+

1≤ |bs′ | ≤n−|true::bs |∑
bs′∈B∗

steps(t)(bs′ ++ true :: bs) +
1≤ |bs′ | ≤n−|false::bs |∑

bs′∈B∗
steps(t)(bs′ ++ false :: bs)

+steps(t)(true :: bs) + steps(t)(false :: bs)
= (simplify)

9 + 9 ∗ (2n−|true::bs | − 1) + 9 ∗ (2n−|false::bs | − 1) + 2n−|bs |+1

+

1≤ |bs′ | ≤n−|true::bs |∑
bs′∈B∗

steps(t)(bs′ ++ true :: bs) +
1≤ |bs′ | ≤n−|false::bs |∑

bs′∈B∗
steps(t)(bs′ ++ false :: bs)

+steps(t)(true :: bs) + steps(t)(false :: bs)
= (merge sums)

9 + 9 ∗ (2n−|true::bs | − 1) + 9 ∗ (2n−|false::bs | − 1) + 2n−|bs |+1

+

(
2≤ |bs′ | ≤n−|bs |∑

bs′∈B∗
steps(t)(bs′ ++ bs)

)
+ steps(t)(true :: bs) + steps(t)(false :: bs)

= (rewrite binary sum)

9 + 9 ∗ (2n−|true::bs | − 1) + 9 ∗ (2n−|false::bs | − 1) + 2n−|bs |+1

+

2≤ |bs′ | ≤n−|bs |∑
bs′∈B∗

steps(t)(bs′ ++ bs) +
1≤ |bs′ | ≤1∑
bs′∈B∗

steps(t)(bs′ ++ bs)

= (merge sums)

9 + 9 ∗ (2n−|true::bs | − 1) + 9 ∗ (2n−|false::bs | − 1) + 2n−|bs |+1 +

1≤ |bs′ | ≤n−|bs |∑
bs′∈B∗

steps(t)(bs′ ++ bs)

= (factoring)

9 + 2 ∗ 9 ∗ (2n−|bs |−1 − 1) + 2n−|bs |+1 +

1≤ |bs′ | ≤n−|bs |∑
bs′∈B∗

steps(t)(bs′ ++ bs)

= (distribute)

9 + 9 ∗ (2n−|bs | − 2) + 2n−|bs |+1 +

1≤ |bs′ | ≤n−|bs |∑
bs′∈B∗

steps(t)(bs′ ++ bs)

= (distribute)

9 + 9 ∗ 2n−|bs | − 18 + 2n−|bs |+1 +

1≤ |bs′ | ≤n−|bs |∑
bs′∈B∗

steps(t)(bs′ ++ bs)

= (simplify)

9 ∗ 2n−|bs | − 9 + 2n−|bs |+1 +

1≤ |bs′ | ≤n−|bs |∑
bs′∈B∗

steps(t)(bs′ ++ bs)

= (factoring)

9 ∗ (2n−|bs | − 1) + 2n−|bs |+1 +

1≤ |bs′ | ≤n−|bs |∑
bs′∈B∗

steps(t)(bs′ ++ bs)

= (definition of T )
T (bs, n)
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Case 1 + |bs | = n. We obtain the following configuration.

−→ steps(t)(true::bs) (by Lemma A.4)

⟨return b | γ ′′ | ([], χcount(P)) :: residual(true :: bs, P)⟩
where !b = labs(t)(true :: bs),γ ′′ = env(t)(true :: bs)

= (definition of arrive when 1 + |bs | = n)
arrive(true :: bs, P)

−→ T (true::bs,n) (induction hypothesis)

depart(true :: bs, P)
= (definition of depart when 1 + |bs | = n)
⟨return i | γ | residual(true :: bs, P)⟩

where i = c(true :: bs) ≤ 2
n−|true::bs | = 1 and γ = env⊥(P)

= (definition of residual and purecont)
⟨return i | γ | [((γ ′, xtrue, let xfalse ← r false in xtrue + xfalse) :: purecont(bs, P), χid)]⟩

−→ (M-AppCont)

⟨let xfalse ← r false in xtrue + xfalse | γ ′[xtrue 7→ JiKγ ′] | [(purecont(bs, P), χid)]⟩
= (definition of J−K (1 value step))
⟨let xfalse ← r false in xtrue + xfalse | γ ′′ | [(purecont(bs, P), χid)]⟩

where γ ′′ = γ ′[xtrue 7→ i]
−→ (M-Let, definition of residual)
⟨r false | γ ′′ | residual(false :: bs, P)⟩

−→ (M-Resume)

⟨return false | γ ′′ | (σ , χcount(P)) :: residual(false :: bs, P)⟩
where σ = pure(t)(bs)

−→ steps(t)(false::bs) (by Lemma A.4 and assumption 1 + |bs | = n)
⟨return b | γ | ([], χcount(P)) :: residual(false :: bs, P)⟩

where !b = labs(t)(false :: bs),γ = env(t)(false :: bs)
= (definition of arrive when 1 + |bs | = n)
arrive(false :: bs, P)

−→ T (false::bs,n) (induction hypothesis)

depart(false :: bs, P)
= (definition of depart when 1 + |bs | = n)
⟨return j | γ | residual(false :: bs, P)⟩

where j = c(false :: bs) ≤ 2
n−|false::bs | = 1 and γ = env⊥(P)

= (definition of residual and purecont)
⟨return j | γ | [((γ ′, xfalse, xtrue + xfalse) :: purecont(bs, P), χid)]⟩

where γ ′ = env↓false(bs, P)
−→ (M-AppCont)

⟨xtrue + xfalse | γ ′′ | [(purecont(bs, P), χid)]⟩
where γ ′′ = γ ′[xfalse 7→ JjKγ ′] = γ ′[xfalse 7→ j]

−→ (M-Plus)

⟨return m | γ ′′ | [(purecont(bs, P), χid)]⟩
where m = c(true :: bs) + c(false :: bs) ≤ 2

n−|bs |

= (definition of residual and depart when |bs | < n)
depart(bs, P)
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Step analysis. The total amount of machine transitions is given by

9 + steps(t)(true :: bs) + T (true :: bs, n) + steps(t)(false :: bs) + T (false :: bs, n)
= (reorder)

9 + T (true :: bs, n) + T (false :: bs, n) + steps(t)(true :: bs) + steps(t)(false :: bs)
= (definition of T when |bs | + 1 = n)
9 + 2 + 2 + steps(t)(true :: bs) + steps(t)(false :: bs)
= (simplify)

9 + 22 + steps(t)(true :: bs) + steps(t)(false :: bs)
= (rewrite 2 = n − |bs | + 1)
9 + 2n−|bs |+1 + steps(t)(true :: bs) + steps(t)(false :: bs)
= (multiply by 1)

9 ∗ (2n−|bs | − 1) + 2n−|bs |+1 + steps(t)(true :: bs) + steps(t)(false :: bs)
= (rewrite binary sum)

9 ∗ (2n−|bs | − 1) + 2n−|bs | +

1≤ |bs′ | ≤n−|bs |∑
bs′∈B∗

steps(t)(bs′ ++ bs)

= (definition of T )
T (bs, n)

□

The following theorem is a copy of Theorem 6.12.

Theorem A.6. For all n > 0 and any n-standard predicate P it holds that

(1) The program effcount is a generic counting program, that is:

effcount P {+ return V , such that NJV K = C(P)([]) ≤ 2
n

(2) The runtime complexity of effcount P is given by the following formula:

|bs | ≤n∑
bs∈B∗

steps(T (P))(bs) + O(2n)
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Proof. The proof begins by direct calculation.

⟨effcount P | ∅ | [([], χid)]⟩
= (definition of residual)
⟨effcount P | ∅ | residual(P, [], t, c)⟩

−→ (M-App, JeffcountK∅ = (∅, λpred. · · · ))
⟨handle pred (λ_.do Branch ⟨⟩) with Hcount | γ | residual(P, [])⟩

where γ = env⊥(P)
−→ (M-Handle)

⟨pred (λ_.do Branch ⟨⟩) | γ | ([], (γ ,Hcount)) :: residual(P, [])⟩
= (definition of χcount)
⟨pred (λ_.do Branch ⟨⟩) | γ | ([], χcount(P)) :: residual(P, [])⟩

−→ steps(t)([]) (by Lemma A.4)

⟨(λ_.do Branch ⟨⟩) j | γ ′ | (σ , χcount(P)) :: residual(P, [])⟩
where γ ′ = env(t)([]),σ = pure(t)(bs) and ?j = labs(t)(bs)
= (definition of arrive)
arrive(P, [])

−→ T ([],n) (by Lemma A.5)

depart(P, [])
= (definition of depart)
⟨return m | γ | residual(P, [])⟩

where γ = env⊥(P) and m = c([]) ≤ 2
n−|bs | = 2

n

= (definition of residual)
⟨return m | γ | [([], χid)]⟩

−→ (M-Handle-Ret, H val
id = {val x 7→ return x})

⟨return x | ∅[x 7→ m] | []⟩
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Analysis. The machine yields the valuem. By Lemma A.5 it follows thatm ≤ 2
n−|bs | = 2

n−|[] | = 2
n
.

Furthermore, the total amount of transitions used were

5 + steps(t)([]) + T ([], n)
= (definition of T )

5 + steps(t)([]) + 9 ∗ 2n + 2n+1 +
1≤ |bs′ | ≤n∑
bs′∈B∗

steps(t)(bs′)

= (simplify)

5 + steps(t)([]) + 9 ∗ 2n + 2n+1 +
1≤ |bs′ | ≤n∑
bs′∈B∗

steps(t)(bs′)

= (reorder)

5 +

(
1≤ |bs′ | ≤n∑
bs′∈B∗

steps(t)(bs′)

)
+ steps(t)([]) + 9 ∗ 2n + 2n+1

= (rewrite as unary sum)

5 +

(
1≤ |bs′ | ≤n∑
bs′∈B∗

steps(t)(bs′) +
0≤ |bs′ | ≤0∑
bs′∈B∗

steps(t)(bs′)

)
+ 9 ∗ 2n + 2n+1

= (merge sums)

5 +

(
0≤ |bs′ | ≤n∑
bs′∈B∗

steps(t)(bs′)

)
+ 9 ∗ 2n + 2n+1

= (definition of O)(
0≤ |bs′ | ≤n∑
bs′∈B∗

steps(t)(bs′)

)
+ O(2n)

□

B PROOF DETAILS FOR THE NO SHORTCUTS LEMMA
The proof of Lemma 6.13 rely on the fact that any n-standard predicate has a canonical form.

Section B.1 disseminate canonical predicates, whilst Section B.2 proves Lemma 6.13.

B.1 Canonical Predicates
The decision tree model (Definition 6.2) captures the interaction between a given predicate P and

its point p. The interior nodes correspond to those places where P queries p, whilst the leaves
represent answers ultimately conferred from the dialogue between the predicate and its point.

The abstract nature of the decision tree model means that concrete syntactic structure of the

predicate is lost. Thus we cannot hope to reconstruct a particular predicate from its model. Indeed

many syntactically distinct predicates may share the same model. However, we can construct some
predicate from a given model, namely, the canonical predicate. Intuitively, the canonical predicate
P ′ of P is a predicate which exhibits the same dialogue as P for every (valid) point.

LetU(P) def= bs 7→ T (P)(bs).1 denote the procedure for constructing an untimed decision tree of a
given predicate P .

Definition B.1 (Canonical predicate). A canonical predicate P ′ of an n-standard predicate P is

itself an n-standard predicate whose body (syntactically) consists entirely of let-bindings of point
applications and whose continuation is either another let-expression of the same form or return b
for some boolean b. Moreover, P ′ exhibits the same dialogue as P , that is for all bs ∈ B∗ such that
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|bs | ≤ n that

U(P)(bs) = U(P ′)(bs)

Next we define a procedure for constructing canonical predicate of any given n-standard predicate.

Definition B.2 (Normalisation procedure for predicates). The meta-procedure norm takes as input

an n-standard untimed decision tree, and outputs a program whose type is Point→ Bool, which is

exactly the type of predicates. The procedure makes use of an auxiliary procedure body to generate
the predicate body.

norm : (B∗ ⇀ Lab) → Val

norm(t) def

= λpPoint.body(t, [], p)

body : (B∗ ⇀ Lab) × B∗ × Val→ Comp

body(t, bs, p) def=


return b t(bs) =!b

let b← p i in
if b then body(t, true :: bs, p)
else body(t, false :: bs, p)

if t(bs) =?i

As convenient notation we write norm(P) to mean norm(bs 7→ U(P)(bs)). Next we show that

the meta-procedure norm produces canonical predicates.

Lemma B.3. Suppose P is an n-standard predicate then P ′ def= norm(P) is an n-standard predicate
such that for all bs ∈ B∗, |bs | ≤ n

U(P)(bs) = U(P)(bs′)

Proof. By induction on n and body.
□

Lemma B.4. The procedure norm generates canonical predicates.

Proof. First observe that the syntax produced by the body procedure of norm conforms with the

syntactic restrictions of canonical predicates (Definition B.1). The rest follows as by Lemma B.3. □

B.2 No Shortcuts
We now have the necessary machinery to show that every n-count program in λb has at least
exponential time complexity. The following lemma is a copy of Lemma 6.13.

Lemma B.5. Let P be an n-standard predicate. Suppose C is an n-count program, then C must apply
P to at least 2n distinct n-points.

Proof. Proof by contradiction. Pick a boolean sequence bs ∈ Bn. Suppose there exists an n-count
program C which does not construct the critical point pc corresponding to bs. Let b be the answer
yielded by P p. Now construct a predicate P ′ which yields the same answers as P except that at pc
it yields ¬b. Such a predicate can be constructed by negating b in the untimed decision tree model

of P , i.e.

t ′ def= bs′ 7→

{
¬b if bs = bs′

U(P)(bs′) otherwise

Then P ′ = norm(t ′) constructs a canonical predicate, whose count is either one less or one more

than that of P , that is at bs we have

|C(P ′)(bs) − C(P)(bs)| = 1
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because [] ⊏ bs we further obtain that |C(P ′)([]) − C(P)([])| = 1. Now there are two cases to

consider:

(1) If C P = C P ′ then C cannot be an n-count program, because C(P)([]) , C(P ′)([]), which
contradicts the assumption.

(2) If C P , C P ′ then we continue to reason about the length of the reduction sequences arising

from applications of P and P ′.

Lemma B.6. Let F [−] be any multi-hole context in C such that F [P] = C P and the type of
F [P] is either Nat or Bool. If F [P] {m return V then F [P ′] {∗ return V where the type
of V is either Nat or Bool.

Proof. Proof by induction on the length of the reduction sequence, m.

Base step We have that m = 0 which implies F [P] {0 return V from which it follows that

F [−] is simply return V , thus it follows immediately that F [P ′] {0 return V .
Induction step We have that m = 1 +m′. The induction hypothesis is

∀F .F [P] {m′ return V implies F [P ′] {∗ return V .

There are two cases to consider depending on whether applications of P occur in F .

Case F [P] is not an application of P . By assumption there is at least one reduction step,

unroll this step to obtain

F [−] { F ′[−] {m′ return V

Now plug in P ′ and then the result follows by a single application of the induction

hypothesis.

Case F [P] is an application of P . It must be that P is applied to values of type Point.
Moreover by assumption, we know that denotation of those values are distinct from

the critical point pc . Now write F [P] = G[P, P p[P]] such that the first component of G

tracks residuals of P and the second component focuses on the expression in evaluation

position, which in our particular case is an application of P to some point p in which P
may occur again. We need to show that

G[P, P p[P]] { G[P, return W ] { return V

for someW : Bool. Looking at the reduction sequence modulo G[P,−], we have that

P p[P] {+ F0[p[P] i0] { F0[return V0] {
+ F1[p[P] i1] { · · · {+ returnW ,

where each reduction step is justified by the untimed decision tree model of P . From this

we can deduce that

G[P, P p[P]] {+ G[P, return W ] {∗ return V

where the last step follows by the induction hypothesis and V : Bool. Now, we argue that
the above reduction sequence is tracked by G[P ′,−]. The n-standardness of P ′ guarantees
that it contains n queries, and moreover, since the decision tree model for P ′ is the same

as P except for at one leaf, we know that the queries appear the in same order, so by

appeal to the decision tree for P ′ we obtain that

P ′ p[P ′] {+ F ′
0
[p[P ′] i0]

The term in evaluation position corresponds exactly to the first query node in the decision

tree model. Now we can apply the induction hypothesis to obtain

F ′
0
[p[P ′] i0] {∗ F ′0 [return V0]
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The value V0 is exactly the same answer to p i0 as P obtained. Now there are two cases

to consider depending on the value of n. If n = 1 then by the 1-standardness of P ′ we
know that there will be no further queries, and it ultimately yields the sameW as P p,
because by assumption p , pc . Otherwise if n > 1 then there must be further queries,

and in particular, those queries must occur in the same order as those of P . Thus by the

n-standardness of P ′ we get

F ′
0
[return V0] {

+ F ′
1
[p[P ′] i1]

Yet again we find ourselves in a position where we can again apply the induction hypoth-

esis to obtain an answer. By repeating this argument n times, we get that P ′ p eventually

yieldsW , we can lift this back into the outer context to obtain

G[P ′, P ′ p[P ′]] {+ G[P ′, return W ]

and by the induction hypothesis, we get that

G[P ′, return W ] {∗ return V .

□

Recall that C P , C P ′, but by the Context Lemma B.6 both C P and C P ′ reduce to the same

value which contradicts the initial assumption.

□
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