
Embedding F

Sam Lindley
The University of Edinburgh

Sam.Lindley@ed.ac.uk

Abstract
This millennium has seen a great deal of research into embedded
domain-specific languages. Primarily, such languages are simply-
typed. Focusing on System F, we demonstrate how to embed poly-
morphic domain specific languages in Haskell and OCaml. We ex-
ploit recent language extensions including kind polymorphism and
first-class modules.

1. Introduction
With the advent of GADTs it has become common to embed
domain-specific languages in Haskell. HOAS (Higher Order Ab-
stract Syntax) [20] representations are convenient for program-
ming, as hygiene is handled by the host language. However, some-
times first-order representations are more appropriate, for instance,
when implementing intensional algrorithms, such as compiler opti-
misations, that inspect the structure of object terms. Previously [3],
we showed how to “unembed” simply-typed HOAS terms as first-
order well-typed de Bruijn terms [14], allowing DSL programmers
to have their cake and eat it.

Others [21, 23] have considered HOAS embeddings of System
F [15] in richer languages. In this paper, we focus primarily on the
problem of extending the first-order representation of well-typed
de Bruijn terms with polymorphism. We also show how to extend
unembedding with polymorphism.

The main contributions of this paper are threefold:

• Well-typed first-order encodings of System F in Fω , Haskell,
and OCaml, using a de Bruijn representation for System F
terms, and host language types as System F types.
• A well-typed first-order encoding of Fω in Haskell, using a de

Bruijn representation for Fω terms, and Haskell types as Fω
types.
• An extension of previous work on unembedding HOAS repre-

sentations as first-order representations to support polymorphic
languages.

The rest of the paper is structured as follows. Section 2 ex-
tends the standard GADT-based de Bruijn encoding of simply-
typed lambda calculus to System F. Section 3 shows that essen-
tially the same approach can be adapted to embed System F in Fω
by decomposing the GADTs into existentials and equality proofs.
Section 4 retargets the embedding to OCaml 3.12, making use of

[Copyright notice will appear here once ’preprint’ option is removed.]

first-class recursive modules to encode existentials and equality.
Section 5 returns to the Haskell implementation, showing that as of
GHC 7.4, it actually provides an embedding of Fω in Haskell. Sec-
tion 6 adapts the approach to a HOAS representation and shows that
unembedding scales to polymorphic object languages. Section 7
discusses related work, and finally Section 8 concludes.

2. System F in Haskell
2.1 Well-typed terms
The first-order de Bruijn encoding of typing judgements for simply-
typed lambda calculus in GHC using GADTs is rather direct. First,
variable judgements are defined as follows:

data Var :: ? → ? → ? where
Z :: Var (Γ, a) a
S :: Var Γ a → Var (Γ, b) a

The first argument to Var is a type environment and the second
argument is a type. Thus, n :: Var Γ a states that in type envi-
ronment Γ the variable n has type a. The variables themselves are
simply unary de Bruijn variables.

Typing judgements for terms are defined as follows:

data Exp :: ? → ? → ? where
Var :: Var Γ a → Exp Γ a
Lam :: Exp (Γ, a) b → Exp Γ (a → b)
App :: Exp Γ (a → b) → Exp Γ a → Exp Γ b

Again, the first argument to Exp is a type environment and the
second argument is a type. Thus, e :: Exp Γ a states that in type
environment Γ, the term e has type a. Notice, for instance, how the
type for Lam exactly parallels the introduction rule for functions:
if we have a term e whose type is b in type environment (Γ, a),
then we can abstract over a to introduce a term Lam e whose type
is a→ b in type environment Γ.

If we construct a term using the constructors of Exp, then it
must, by construction, represent a well-typed term, because we
have directly encoded the typing rules in the GADT. The idea of
this representation dates back at least to Altenkirch and Reus [1],
who applied it in a dependent type theory.

In order to extend well-typed terms to support polymorphism,
we must encode type abstractions and applications. Just as lambda
abstractions can be encoded either using a de Bruijn representation
or using host language lambda abstractions [20], so type abstrac-
tions can be encoded either using a de Bruijn representation or host
language polymorphism. In this paper we explore the latter option,
aiming to choose an encoding of object types that is as close as
possible to the equivalent host language types.

2.2 Polymorphism
Let us try to extend the Exp type to include type lambda and type
application expressions. This amounts to encoding the introduction
and elimination rules for universal quantification. The introduction

1 2012/6/3

rule is:
Γ `M : A

Γ ` (Λα.M) : ∀α.Aα /∈ FTV (Γ)

Note that the typeAmay contain the type variable α. We can model
this property by representing A as a type constructor applied to a
Haskell type variable. But we need to be careful to appropriately
quantify over the Haskell type variable:

TLam :: (∀a.Exp Γ (k a)) → Exp Γ (∀a.k a)

For the premise we quantify over a outside the Exp type construc-
tor; for the conclusion, we quantify over a inside the Exp type con-
structor. This is all well and good, but unfortunately Haskell does
not play well with GADTs indexed by polymorphic types. It is pos-
sible to work around this problem by hand-coding GADTs using
Leibniz equality and enabling the ImpredicativeTypes language
extension. However, doing so requires some effort, and type infer-
ence in this setting is rather fragile. A more robust work-around is
to define a newtype for boxing the polymorphism, which eases the
job that type inference must perform:

newtype Poly k = Poly {unPoly :: ∀a.k a}

Now, we have:

TLam :: (∀a.Exp Γ (k a)) → Exp Γ (Poly k)

The elimination rule for polymorphism is:

Γ `M : ∀α.A
Γ `M B : A[B/α]

We again use the Poly constructor for the polymorphic type in the
premise, while the substitution in the conlusion is implemented
simply by applying the type constructor:

TApp :: Exp Γ (Poly k) → Exp Γ (k a)

The datatype for expressions becomes:

Exp :: ? → ? → ? where
Var :: Var Γ a → Exp Γ a
Lam :: Exp (Γ, a) b → Exp Γ (a → b)
App :: Exp Γ (a → b) → Exp Γ a → Exp Γ b
TLam :: (∀a.Exp Γ (k a)) → Exp Γ (Poly k)
TApp :: Exp Γ (Poly k) → Exp Γ (k a)

GHC is happy to accept this, but we still have a problem. Look
carefully at the types, and it becomes clear that it is impossible
to actually construct any interesting TLam expressions because the
only way of constructing an expression of type k a is as a variable
(which admits any type at all). The only other possibility would be
a type application, but that requires us to have already constructed
a polymorphic expression using TLam.

The problem is that in Haskell type constructors are second-
class citizens. We must define them as newtypes, and then we
need to explicitly box and unbox values to and from the newtype.
For instance, suppose we wish to define the polymorphic identity
function. We first define a type constructor of the appropriate type:

newtype AtoA a = AtoA { unAtoA :: a → a }

The identity function Lam (Var Z) has type Exp (a -> a), but we
need to inject it into the type forall a.Exp (AtoA a) before pass-
ing it as an argument to TLam. Correspondingly, after instantiat-
ing the polymorphic identity function at a particular type, we must
project from the boxed type before we can apply it to an argument.

2.3 Deriving isomorphisms
In order to coordinate injection and projection we define a type
class representing the isomorphism between newtypes and their
representations.

class Iso a b where
inject :: a → b
project :: b → a

instance Iso a a where
inject x = x
project x = x

The special newtype deriving mechanism of GHC allows suitable
instances to be derived semi-automatically from the canonical in-
stance for Iso a a.

Let us add a deriving clause to AtoA:

newtype AtoA a = AtoA { unAtoA :: a → a }
deriving (Iso (a → a))

This clause automatically derives the functions:

inject :: (a → a) → AtoA a
inject x = AtoA (inject x)
project :: AtoA → (a → a)
project x = unAtoA (project x)

As newtypes are unboxed in the backend, both inject and project

are actually realised as the identity function.
Now we add constructors for injection and projection to our

expression type:

data Exp :: ? → ? → ? where
Var :: Var Γ a → Exp Γ a
Lam :: Exp (Γ, a) b → Exp Γ (a → b)
App :: Exp Γ (a → b) → Exp Γ a → Exp Γ b
TLam :: (∀a.Exp Γ (k a)) → Exp Γ (Poly k)
TApp :: Exp Γ (Poly k) → Exp Γ (k a)
Inject :: Iso a b ⇒ Exp Γ a → Exp Γ b
Project :: Iso a b ⇒ Exp Γ b → Exp Γ a

Finally, we add smart constructors that make Inject and Project

more convenient to work with.

inj :: Iso a b ⇒ (a → b) → Exp Γ a → Exp Γ b
inj _ = Inject

proj :: Iso a b ⇒ (a → b) → Exp Γ b → Exp Γ a
proj _ = Project

The inj and Proj functions are smart constructors for Inject and
Project. The first argument for each is only used to aid type
inference. In both cases it will always be a newtype constructor.

2.4 Examples
We define the polymorphic identity function as follows:

id_poly :: Exp () (Poly AtoA)
id_poly = TLam (inj AtoA (Lam (Var Z)))

and instantiate it at a concrete type:

id_int :: Exp () (Int → Int)
id_int = proj AtoA (TApp id_poly)

We can now use polymorphism wherever we like. We just need
to define an appropriate newtype including a deriving (Iso ...)

clause, inject into the newtype becore using TLam, and project from
it after using TApp.

In use, the embedded object language we have developed is not
quite the same as System F, but it is equivalent. We do not need
to annotate lambdas with their inputs as GHC infers them for us.
For type abstractions, rather than providing a type variable, we
provide a description of the polymorphic type in the form of a type
constructor into which we inject the body of the type abstraction.
For type applications, instead of providing a type, we again provide
the type constructor, from which we project a concrete instantiation
of a polymorphic term. The resulting presentation of System F is

2 2012/6/3

closely related to Russo and Vytniotis’s QML language [25], which
extends ML with System F polymorphism.

The need to define a new type constructor for each polymor-
phic type is inconvenient, but it seems unavoidable given that type
constructors are not first-class in Haskell.

2.5 Nested quantifiers
In Haskell, newtypes can only be defined at the top-level. This
means that if a type variable from an outer quantifier appears in-
side a polymophic type then we need to define a multi-paramter
type constructor. For instance, here is how we define the K combi-
nator, which takes two arguments, ignores the first and returns the
second:

newtype KC’ a b = KC’ { unKC’ :: a → b → a }
deriving (Iso (a → b → a))

newtype KC a = KC { unKC :: Poly (KC’ a) }
deriving (Iso (Poly (KC’ a)))

kc :: Exp () (Poly K)
kc = TLam (inj KC

(TLam (inj KC’ (Lam (Lam (Var (S Z)))))))

2.6 An evaluator
In order to test that our implementation is at least somewhat sensi-
ble, we provide an implementation of an evaluator.

data Env :: ? → ? where
Empty :: Env ()
Extend :: Env Γ → a → Env (Γ, a)

lookupVar :: Env Γ → Var Γ a → a
lookupVar (Extend _ v) Z = v
lookupVar (Extend env _) (S n) = lookupVar env n

eval :: Env Γ → Exp Γ a → a
eval env (Var x) = lookupVar env x
eval env (Lam e) = λv → (eval (Extend env v) e)
eval env (App f a) = eval env f $ eval env a
eval env (TLam e) = Poly (eval env e)
eval env (TApp e) = unPoly (eval env e)
eval env (Inject e) = inject (eval env e)
eval env (Project e) = project (eval env e)

The cases for variables, lambdas and applications are standard. The
other cases just deal with the necessary boxing and unboxing of
newtypes.

As a trivial example, let us instantiate the identity function at
type Int:

id_int :: Exp () (Int → Int)
id_int = proj AtoA (TApp id_poly)

If we now do eval Empty id int 42, then GHC returns 42 as
expected.

3. System F in Fω
Having developed an embedding of System F in Haskell, we now
show that the same idea can be adapted to embed System F in Fω
by translating away the GADTs into existential types and type-level
equality coercions. Though Fω does not have GADTs, it does have
first-class type constructors in the form of lambda abstractions at
the level of types, which do make life considerably easier. In the
next Section we use the embedding in Fω as inspiration for an
embedding in OCaml using recursive first-class modules.

The syntax of Fω is given in Figure 3.
[TODO: The final version of the paper will include a full description of

the completely standard typing rules and reduction rules for System F and
Fω in an appendix.]

(kinds) K ::= ? | K → K
(types) A,B ::= α | A→ B | ∀αK .A | λαK .A | A B
(terms) e, f ::= x | λxA.e | e f | ΛαK .e | e A
(environments) Γ,∆ ::= · | Γ, α : K | Γ, x : A

Figure 1. Fω syntax

Eq :: ?→ ?→ ?
Eq = λαβ.∀φ?→?.φ α→ φβ

refl : ∀α.Eq αα
refl = Λαφ?→?.λxφα.x

cast : ∀αβ.Eq αβ → α→ β
cast = Λαβ.λpEq αβ xα.p (λγ.γ)x

Figure 2. Type equality in Fω

3.1 Syntactic sugar
We assume standard encodings of n-ary lambdas (A1 → · · · →
An → B), products (A1 × · · · × An), sums (A1 + · · · +
An), and universal quantifiers (∀αK1

1 . . . αKn
n .A). In addition,

we assume a standard encoding of n-ary existential quantifiers
(∃αK1

1 . . . αKn
n .A) in terms of universal quantifiers, and the fol-

lowing sugar for using n-ary existentials.

∃.A ≡ A
∃α1 . . . αn.A ≡ ∃α1.∃α2 . . . αn.A

pack []e asB ≡ e
pack [A1 . . . An]e asB ≡

pack [A1](pack [A2 . . . An]e asB′) asB
where B −→∗ ∃α1.B

′ and B′ = ∃α2 . . . αn.B
′′

unpack e as []x in e′ ≡ e′[e/x]
unpack e as [α1, . . . , αm]x in e′ ≡

unpack e as [α1]z1 in unpack z1 as [α2, . . . , αm]zm in [zm/x]
where z1, . . . , zm are not free in e′

injk [α1 . . . αm](x1, . . . , xn)⇒ e ≡
injk y ⇒ unpack y as [α1, . . . , αm]z in

e[proj1 z/x1, . . . , projm z/xn]
where x and y are not free in e

3.2 Leibniz equality
In order to simulate GADTs in Fω , we must encode type-level
equality constraints. Leibniz equality is expressed in Fω as the type
∀αβ φ?→?→?.φ α→ φβ (see, e.g., [4]). The intuition is that if the
types bound to α and β are equal then they should be equal in any
context, where a context is exactly a type constructor φ?→?→?.

Figure 2 defines Leibniz equality. We write Eq AB for the type
of proofs that typeA and typeB are equal. We write refl A (reflex-
ivity) for the proof that type A is equal to itself, and cast AB p for
the function that uses equality proof p of type Eq AB to convert
any value of type A to the same value at type B. (It is also straight-
forward to define functions for symmetry and transitivity, but they
are not necessary here.)

3.3 The embedding
To simplify the presentation, we will assume that our version of
Fω has been extended with recursive types, and define our type

3 2012/6/3

Z, S :: ?→ ?→ ?
Z = λΓα. ∃∆. Eq Γ (∆× α)
S = λΓα. ∃∆β.Eq Γ (∆× β)×Var ∆α

Var ,Lam,App,TLam,TApp :: ?→ ?→ ?
Var = λΓα. Z Γα+ S Γα

Lam
App

TLam
TApp

=
=
=
=

λΓα. ∃β γ. Eq (β → γ)α× Exp (Γ× β) γ
λΓα. ∃β. Exp Γ (β → α)× Exp Γβ
λΓα. ∃φ?→?. Eq (∀β.φ β)α× (∀β.Exp Γ (φβ))
λΓα. ∃β φ?→?. Eq (φβ)α× Exp Γ (∀γ.φ γ)

Exp :: ?→ ?→ ?
Exp = λΓα.Var Γα +

Lam Γα+ App Γα +
TLam Γα+ TApp Γα

Figure 3. Embedding System F in Fω

constructors mutually recursively using a Scott encoding [18]. The
embedding is given in Figure 3.

For variables we have type constructors Z and S. For Z Γα,
we just need to provide a proof that the first element of Γ is α,
that is, a proof that there exists an environment ∆, such that Γ
is equal to (∆ × α). For S Γα, we must provide a proof that Γ
is non-empty, along with a variable that can be typed by the tail
of Γ. These type constructors are really just the same as those in
the Haskell implementation. The key difference is that the implicit
equality proofs provided by the GADT representation have had to
be made explicit.

The type constructors for expressions follow a similar pattern.
The Var constructor just dispatches to S and Z. The Lam con-
structor existentially quantifies over the argument and result types
and includes a proof that they combine to form the type of the
resulting expression. The App constructor existentially quantifies
over the function argument type. Both TLam and TApp existen-
tially quantify over the type constructor φ that is used to encode
a universal quantifier. The TApp constructor additionaly existen-
tially quantifies over the type argument. Apart from the existential
quantification and equality proofs, the embedding is essentially the
same as the Haskell implementation, and can equally well be read
as a fairly direct transcription of the typing rules for System F.

The Exp constructor gathers together all of the expression con-
structors into a single sum type.

3.4 An evaluator
Assuming we have recursive functions (which we can define any-
way once we have recursive types), we can write an evaluator
for our System F embedding in Fω , which is again similar to the
Haskell implementation (Figure 4). A key difference is that the en-
vironment is just Γ rather than the encoding of a GADT represent-
ing well-formed environments. This works for our use-case, and
indeed we could have done the same for the Haskell implementa-
tion. It does not, however, seem possible to realise a faithful repre-
sentation of the Env GADT from the Haskell implementation in the
Fω version. This is due to a well-known limitation of the Leibniz
encoding of GADTs, which is unable to capture the injectivity of
GADTs [11]. (Essentially the problem is that the type system is un-
able to capture the property that φA = φB implies that A = B.)

The other main difference from the Haskell evaluator is that we
must explicitly apply the equality proofs using the cast function.

lookup : ∀Γα.Γ→ Var Γα→ α
lookup = ΛΓα.λenvΓnVar Γα.

case n of inj1 [∆](p) ⇒ proj2 (cast p env)
inj2 [∆β](p, n)⇒ lookup (proj1 (cast p env))n

eval : ∀Γα.Γ→ Exp Γα→ α
eval = ΛΓα.λenvΓeExp Γα.
case e of inj1 n ⇒ lookup env n

inj2 [β γ](p, b) ⇒ cast p (λvβ .eval (env , v) b)
inj3 [β](f, a) ⇒ (eval env f) (eval env a)
inj4 [φ?→?](p, b) ⇒ cast p (Λβ.eval env (b β))
inj5 [β φ?→?](p, e)⇒ cast p ((eval env e)β)

Figure 4. An evaluator for System F in Fω

(types) A,B ::= α | A→ B | ∀α.A
(variables) n ::= z | s n
(terms) M,N ::= n | λA.M |M N | Λα.M |M A
(environments) Γ,∆ ::= · | Γ, A

Figure 5. System F de Bruijn syntax

3.5 Soundness of the embedding
For System F we use a de Bruijn representation, whereas for Fω we
use variable names. The syntax of our de Bruijn representation of
System F is given in Figure 3.5.

We now define a function for embedding System F typing
judgements in Fω , and give a soundess result. The function J−K
maps System F typing judgements (Γ `F M : A) to Fω typing
judgements (Γ `Fω e : A). (Note that J−K is a meta-level function
defined outside any of either language.) The auxiliary System F
judgement Γ 3F n : A states that in type environment Γ de Bruijn
variable n has type A.

Informally, the soundness result we seek should state that if
we evaluate an embedded System F term, then the result is βη-
convertible to the lifting of the System F term to the equivalent Fω
term. Thus, as well as the embedding function J−K, we also need to
define a function d−e to lift a de Bruijn representation of a System
F term to a standard Barendregt-style representation of an Fω term.
The embedding and lifting functions are defined in Figure 6.

We write Γ `Fω e = f : A if Γ `Fω e : A, Γ `Fω f : A and e
is βη-convertible to f .

THEOREM 1 (Soundness).

1. If ∆ `Fω env : Γ and Γ 3F n : A, then

∆ `Fω lookup ΓA env JΓ 3F n : AK = dneenv : A

2. If ∆ `Fω env : Γ and Γ `F M : A, then

∆ `Fω eval ΓA env JΓ `F M : AK = dMeenv : A

The proof is by induction on the structure of derivations.

COROLLARY 2. If `F M : A, then

`Fω eval ΓA () J`F M : AK = dMe : A

4. System F in OCaml
We will now show that the whole development can be redone
in OCaml. Mostly this makes the implementation more painful,
primarily because the current version of OCaml 3.12.1 does not
support GADTs and module syntax can be somewhat heavyweight

4 2012/6/3

JΓ 3F AK : Var ΓA
JΓ, A 3F z : AK = inj1 (pack [Γ](refl (Γ×A)) asZ (Γ×A)A)

JΓ, A 3F sn : BK = inj2 (pack [ΓA](refl (Γ×A), JΓ 3F n : BK) asS (Γ×A)B)

JΓ `F AK : Exp ΓA
JΓ, A `F n : AK = inj1 (JΓ, A 3F n : AK)

JΓ `F λA.M : A→ BK = inj2 (pack [AB](refl (A→ B), JΓ, A `F M : BK) as Lam Γ (A→ B))
JΓ `F MA→B N : BK = inj3 (pack [A](JΓ `F M : A→ BK, JΓ `F N : AK) as App ΓB)
JΓ `F Λα.M : ∀α.AK = inj4 (pack [∀α.A](refl (∀α.A),Λα.JΓ `F M : AK) as TLam Γ (∀α.A))

JΓ `F M∀α.B
′
A : BK = inj5 (pack [A (λα.B′)](refl B, JΓ `F M : ∀α.B′K) as TApp ΓB)

dzeenv = proj2 env
dsneenv = dne(proj1 env)

dMe = dMe()

dλA.Meenv = λxA.dMe(env,x), x fresh
dM Neenv = dMeenvdNeenv
dΛα.Meenv = Λα.dMeenv
dM Aeenv = dMeenv A

Figure 6. The embedding and lifting functions

as a way for implementing existentials. However, in at least one
way the implementation is a little cleaner. Unlike in GHC, OCaml
type constructors do not have to be boxed. This means that the
expression language does not need to be extended with forms for
injection and projection.

Our starting point is Yallop and Kiselyov’s encoding of GADTs
in OCaml [27]. As we have already observed, GADTs are essen-
tially just existential types with type-level equality coercions. Ex-
istentials can be encoded in OCaml using higher-rank universal
types, which can be encoded using records, objects, or modules.
We will, however, adopt a more direct encoding in terms of first-
class recursive modules. As we have already seen, equality con-
versions can be implemented using Leibniz equality, which is de-
finable as soon as one has universal quantification over type con-
structors. Yallop and Kiselyov, implement Leibniz equality using
first-class modules.

We will not repeat Yallop and Kiselyov’s development here, but
instead just include the interfaces we use. First we define a unary
type constructor:

module type TyCon = sig type ’a tc end

As modules are first-class in OCaml 3.12, we can treat this module
signature as a first-class type.

The signature for Leibniz equality is show in Figure 7. For our
purposes we only need the equality type eq, the reflexivity axiom
refl, and the cast operation cast.

We begin with the encoding of variable typing judgements,
which is shown in Figure 8. The sub-modules Z and S each rep-
resents an existential. The existentially bound type variables are
those that are not bound in the var datatype. The value components
of the module define the body of the existential. For instance the
Z module represents the type ∃∆.(Γ,∆ ∗ α) eq . It uses Leibniz
equality to encode a proof that there exists some ∆ such that Γ is
equal to ∆ ∗ α.

The encoding of expressions (Figure 9) is similar. Polymorphic
types are boxed inside an object type similarly to the Poly newtype

used in the GHC implementation. Notice, however, that we create a
thunk for the body of a type abstraction. This is in order to prevent
the ML value restriction from getting in the way of polymorphism.
We choose objects here instead of records as being structural rather
than nominal they are more convenient.

Before writing some examples, we first define some smart con-
structors (Figures 10 and 11). These allow us to invoke each non-
polymorphic syntax constructor without having to explicitly de-
fine a module, and to invoke each polymorphic syntax constructor

module type EQ =
sig

(* A value of type (s, t) eq is a proof that types
s and t are the same. *)

type (’a, ’b) eq

(* The reflexivity axiom. *)
val refl : unit → (’a, ’a) eq

(* Leibniz’s substitution axiom. *)
module Subst (TC : TyCon) :
sig

val subst : (’a, ’b) eq → (’a TC.tc, ’b TC.tc) eq
end

(* Given a proof that type s and type t are equal, we
can convert s to t. *)

val cast : (’a, ’b) eq → ’a → ’b
end

Figure 7. Leibniz equality in OCaml

module type Z =
sig

type Γ type a
type ∆
val p : (Γ, ∆ * a) eq

end

module type S =
sig

type Γ type a
type ∆ type b
val p : (Γ, ∆ * b) eq
val n : (∆, a) Var.var

end

type (’Γ,’a) var =
| Z of (module Z with type Γ=’Γ and type a=’a)
| S of (module S with type Γ=’Γ and type a=’a)

end = Var

open Var

Figure 8. De Bruijn variables in OCaml

5 2012/6/3

module rec Exp : sig
module type LAM =
sig

type Γ type a
type b type c
val p : (b → c, a) eq
val e : (Γ * b, c) Exp.exp

end

module type APP =
sig

type Γ type a
type b
val f : (Γ, b → a) Exp.exp
val e : (Γ, b) Exp.exp

end

module type TLAM =
sig

type Γ type a
type ’b tc
val p : (〈poly : ’b.’b tc〉, a) eq
val e : 〈poly : ’b.unit → (Γ, ’b tc) Exp.exp〉

end

module type TAPP =
sig

type Γ type a
type b type ’c tc
val p : (b tc, a) eq
val e : (Γ, 〈poly : ’c.’c tc〉) Exp.exp

end

type (’Γ,’a) exp =
| Var of (’Γ,’a) var
| Lam of (module LAM with type Γ=’Γ and type a=’a)
| App of (module APP with type Γ=’Γ and type a=’a)
| TLam of (module TLAM with type Γ=’Γ and type a=’a)
| TApp of (module TAPP with type Γ=’Γ and type a=’a)

end = Exp

open Exp

Figure 9. System F expressions in OCaml

let z : ’Γ ’a . unit → (’Γ * ’a, ’a) var =
fun (type ∆’) (type a’) () →

let module M = struct
type Γ = (∆’ * a’)
type a = a’
type ∆ = ∆’
let p = refl()

end in
Z (module M : Var.Z with

type Γ=(∆’ * a’) and type a=a’)

let s : ’∆ ’b ’a . (’∆, ’a) var → (’∆ * ’b, ’a) var =
fun (type ∆’) (type b’) (type a’) n’ →

let module M = struct
type Γ = (∆’ * b’)
type a = a’
type ∆ = ∆’
type b = b’
let p = refl()
let n = n’

end in
S (module M : Var.S with

type Γ=(∆’ * b’) and type a=a’)

Figure 10. Smart constructors for de Bruijn variables in OCaml

(* simple terms *)
let var : ’Γ ’a.(’Γ, ’a) var → (’Γ, ’a) exp =

fun n → Var n

let lam : ’Γ ’b ’c.((’Γ * ’b), ’c) exp →
(’Γ, ’b → ’c) exp =

fun (type Γ’) (type b’) (type c’) body →
let module M = struct

type Γ = Γ’
type a = b’ → c’
type b = b’
type c = c’
let p = refl()
let e = body

end in
Lam (module M : Exp.LAM with

type Γ=Γ’ and type a=b’ → c’)

let app : ’Γ ’b ’a.(’Γ, ’b → ’a) exp →
(’Γ, ’b) exp → (’Γ, ’a) exp =

fun (type Γ’) (type b’) (type a’) f e →
let module M = struct

type Γ = Γ’
type a = a’
type b = b’
let f = f
let e = e

end in
App (module M : Exp.APP with

type Γ=Γ’ and type a=a’)

(* polymorphic terms *)
module TL (TC : TyCon) = struct

type ’Γ body = {poly : ’a.unit → (’Γ, ’a TC.tc) exp}
let tlam : ’Γ.’Γ body →

(’Γ, 〈poly : ’b.’b TC.tc〉) exp =
fun (type Γ’) body →

let module M = struct
type Γ = Γ’
type a = 〈poly : ’b.’b TC.tc〉
type ’a tc = ’a TC.tc
let p = refl()
let e =

object
method poly : ’a.unit →

(Γ, ’a TC.tc) exp=body.poly
end

end in
TLam (module M : Exp.TLAM with

type Γ=Γ’ and
type a = 〈poly : ’b.’b TC.tc〉)

end

module TA (TC : TyCon) = struct
let tapp : ’Γ ’b.(’Γ, 〈poly : ’a.’a TC.tc〉) exp →

(’Γ, ’b TC.tc) exp =
fun (type Γ’) (type b’) body →

let module M = struct
type Γ = Γ’
type b = b’
type ’a tc = ’a TC.tc
type a = b tc
let p = refl()
let e = body

end in
TApp (module M : Exp.TAPP with

type Γ=Γ’ and type a=b’ TC.tc)
end

Figure 11. Smart constructors for System F in OCaml

6 2012/6/3

through a module that defines the appropriate type constructor. For
the polymorphic argument to TL.tlam we use a record instead of
an object as callers of the function will actually have to create these
values and record creation syntax is significantly more concise than
object creation syntax.

Now, consider the polymorphic identity function. Its type con-
structor is given by the module:

module AtoA = struct type ’a tc = ’a → ’a end

We write the polymorphic identity function as:

let id_poly () : (unit, 〈poly : ’a.’a → ’a〉) exp =
let module M = TL(AtoA) in

M.tlam {M.poly=fun () → lam (var (z()))}

and we can specialise it to integers as follows:

let id_int : (unit, int → int) exp =
let module M = TA(AtoA) in

M.tapp (id_poly())

Notice that although the syntax is not exactly concise, unlike in
GHC we do not have to box and unbox type constructors: OCaml
knows that ’a AtoA.tc is the same type as ’a→’a.

Now let us consider the K combinator. As OCaml supports
local module declarations, we need only ever define unary type
constructors:

let ck () :
(unit, 〈 poly : ’a.〈poly : ’b.’a → ’b → ’a〉 〉) exp =
let module M =

TL(struct
type ’a tc = 〈poly : ’b.’a → ’b → ’a〉 end) in

M.tlam {M.poly = fun (type a) () →
let module N =

TL(struct type ’b tc = a → ’b → a end) in
N.tlam {N.poly=fun () → lam(lam(s(z())))}}

Also note that we can inline functor parameters.
We can write an evaluator for our OCaml implementation (Fig-

ure 12) that is essentially the same as the Fω one. The only real
difference is the boilerplate for managing modules and polymor-
phism.

5. Fω in Haskell
GHC 7.4 supports polymorphism over kinds. It turns out that this
means our embedding of System F is actually an embedding of Fω .
All we need to do is generalise the argument of Poly to operate over
arbitrary kinds. In fact we do not need to change the code at all,
we just need to enable the PolyKinds language extension. Without
PolyKinds, the Poly constructor is assigned the type:

Poly :: (∀a. k a) → Poly k

With PolyKinds enabled, it receives the mysterious type:

Poly :: (∀a. k a) → Poly ? k

which indicates that the k type constructor is polymorphic. Cur-
rently there is no way for the programmer to assert that a kind
should be polymorphic, but GHC can infer this for itself.

Given that we can embed Fω in GHC and we can embed System
F in Fω , we could of course embed System F in the embedded Fω!

As a simple example, let us just consider the basic interface to
Leibniz equality. The type constructor is:

newtype Leibniz a b (k :: ? → ?) =
Leibniz { unLeibniz :: k a → k b }

deriving (Iso (k a → k b))

The definitions of refl and cast are straightforward:

newtype Id a = Id { unId :: a }
deriving (Iso a)

refl :: Exp () (Poly (Leibniz a a))
refl = TLam (inj Leibniz (Lam (Var Z)))

cast :: Exp () (Poly (Leibniz a b) → Id a → Id b)
cast = Lam (proj Leibniz (TApp (Var Z)))

Unfortunately, the definition of cast leaves us with some incon-
venient Id constructors. We can eliminate them by η-expanding:

cast’ :: Exp () (Poly (Leibniz a b) → a → b)
cast’ = Lam (Lam

(proj Id (App (proj Leibniz (TApp (Var (S Z))))
(inj Id (Var Z)))))

As illustrated by cast, GHC’s second-class type constructors are
generally more problematic in the Fω setting.

6. HOAS, type representations and unembedding
6.1 HOAS
Higher-order abstract syntax (HOAS) [20], is often more conve-
nient for writing terms than a de Bruijn representation, because it
allows the programmer to use the bindings of the host language to
encode bindings of an object language. Others [21, 23] have con-
sidered HOAS embeddings of System F in Fω (and in the latter
case, embeddings of richer languages in extensions of Fω). We can
straightforwardly adapt Rendel et al.’s embedding [23], and imple-
ment it in Haskell. This also scales to an embedding of Fω , taking
advantage of kind polymorphism.

First, let us begin with a HOAS representation for simply-typed
lambda calculus.

class Lambda exp where
lam :: (exp a → exp b) → exp (a → b)
app :: exp (a → b) → exp a → exp b

Following our previous work on unembedding [3], where we used
the so-called “finally tagless” approach [7] (which amounts to a
Church encoding of lambda terms), we encode HOAS terms using a
Haskell type class. The idea is that different instances of the Lambda

type class implement different interpreters for simply-typed lambda
calculus.

We can straightforwardly extend Lambda with polymorphism in
almost exactly the same way that we added polymorphism to the
first-order representation.

class Lambda exp where
lam :: (exp a → exp b) → exp (a → b)
app :: exp (a → b) → exp a → exp b
tlam :: (∀a.exp (k a)) → exp (Poly k)
tapp :: exp (Poly k) → (∀a.exp (k a))
hinject :: Iso a b ⇒ exp a → exp b
hproject :: Iso a b ⇒ exp b → exp a

The first four functions above have almost the same signatures as
the embedding of System F in Rendel et al.’s work [23] (except
they embed a richer language in a richer language). The last two
functions deal with boxing and unboxing constructors. As with the
first-order case, it is convenient to define wrapper functions in order
to aid type inference:

hinj :: (Lambda exp, Iso a b) ⇒
(a → b) → exp a → exp b

hinj _ = hinject

hproj :: (Lambda exp, Iso a b) ⇒
(a → b) → exp b → exp a

hproj _ = project

7 2012/6/3

let rec lookup : ’Γ ’a . ’Γ → (’Γ,’a) var → ’a =
fun (type Γ) (type a) env →

function
| Z m →
let module M = (val m : Z with type Γ=Γ and type a=a) in

snd (cast M.p env)
| S m →
let module M = (val m : S with type Γ=Γ and type a=a) in

lookup (fst (cast M.p env)) M.n

let rec eval : ’Γ ’a . ’Γ → (’Γ,’a) Exp.exp → ’a =
fun (type Γ) (type a) env →

function
| Var n → lookup env n
| Lam m →

let module M = (val m : LAM with type Γ=Γ and type a=a) in
cast M.p (fun v → eval (env, v) M.e)

| App m →
let module M = (val m : APP with type Γ=Γ and type a=a) in

(eval env M.f) (eval env M.e)
| TLam m →

let module M = (val m : TLAM with type Γ=Γ and type a=a) in
(cast M.p) (object method poly : ’b.’b M.tc = eval env (M.e#poly ()) end)

| TApp m →
let module M = (val m : TAPP with type Γ=Γ and type a=a) in

(cast M.p) (eval env M.e)#poly

Figure 12. System F evaluator in OCaml

Closed HOAS terms of type a are represented simply as Lambda
expressions of type a:

type ClosedHoas a = Lambda exp ⇒ exp a

For instance, we can now define the polymorphic identity func-
tion as:

hoas_id_poly :: ClosedHoas (Poly AtoA)
hoas_id_poly = tlam (hinj AtoA (lam (λx → x)))

One of the canonical instances we can specify defines an evalu-
ator for HOAS System F terms:

newtype Val a = Val {unVal :: a}

instance Lambda Val where
lam f = Val $ unVal ◦ f ◦ Val
Val f ‘app‘ Val a = Val $ f a
tlam v = Val $ Poly (unVal v)
tapp v = Val $ unPoly (unVal v)
hinject v = Val $ inject (unVal v)
hproject v = Val $ project (unVal v)

Carette et al. [7] explore a range of interesting interpretations for
implementing fold-like operations on simply-typed languages. In
Section 6.3 we provide another canonical instance for converting
the HOAS representation to a first-order representation.

6.2 Type representations
One issue with naive attempts at implementing HOAS is that in
order to correctly represent an embedded language we need to re-
strict the form of host language functions admissible in the encod-
ing of object language lambdas. Without such a restriction, it be-
comes possible to write exotic terms, which can inspect the form
of function arguments and behave differently depending on their
form. Using the “finally tagless” / Church encoding approach, this
is not possible. In particular, in our type class-based implementa-
tion, the exp type constructor is abstract, so it is not possible to do
anything untoward with function arguments.

A more subtle issue is that if we do not restrict the types some-
how, then universal quantification allows us to create term rep-
resentations whose types are not object types: exotic types. Ex-
otic types are less of a concern than exotic terms, because exotic
types behave like abstract types; they do not introduce any new be-
haviours. Nonetheless, we can rule out exotic types by encoding
representable types [12] using GADTs and type classes. In fact,
even our first-order encoding does not preclude exotic types.

For simple types, we can define the following GADT:

data Rep :: ? → ? where
Int :: Rep Int
(:→) :: Rep a → Rep b → Rep (a → b)

By construction, if v :: Rep A, then A can only be built from the
Int and -> type constructors. For convenience, following Cheney
and Hinze [10], we also define a type class Representable:

class Representable a where rep :: Rep a
instance Representable Int where rep = Int
instance (Representable a, Representable b) ⇒

Representable (a → b) where
rep = rep :→ rep

Now we can enforce simple typing by adding type class constraints
of the form Representable a =>.

Let us now consider how to extend these definitions to enforce
System F typing. In order to define representations for polymor-
phism and type constructor applications we need to define what it
is to be a representable type constructor.

class RepresentableCon (k :: ? → ?) where
instance (Iso a (k b)) ⇒ RepresentableCon k where

The RepresentableCon typeclass asserts that a type constructor k

is representable if it is a newtype constructor for a newtype that
derives the Iso type class.

Now we extend the Rep GADT:

data Rep :: ? → ? where
Int :: Rep Int
(:→) :: Rep a → Rep b → Rep (a → b)

8 2012/6/3

All :: (RepresentableCon k) ⇒ Rep (Poly k)
Con :: (RepresentableCon k) ⇒ Rep a → Rep (k a)

and correspondingly the Representable type class:

class Representable a where rep :: Rep a
instance Representable Int where rep = Int
instance (Representable a, Representable b) ⇒

Representable (a → b) where
rep = rep :→ rep

instance (RepresentableCon k) ⇒
Representable (Poly k) where

rep = All
instance (Representable a, RepresentableCon k) ⇒

Representable (k a) where
rep = Con rep

Having defined representable types, we can now put them to
use. We use them to constrain the Exp type:

data Exp :: ? → ? → ? where
Var :: Representable a ⇒ Var Γ a → Exp Γ a
Lam :: Representable a ⇒

Exp (a, Γ) b → Exp Γ (a → b)
App :: Exp Γ (a → b) → Exp Γ a → Exp Γ b
TLam :: (∀a.Representable a ⇒ Exp Γ (k a)) →

Exp Γ (Poly k)
TApp :: Representable a ⇒

Exp Γ (Poly k) → Exp Γ (k a)
Inject :: Iso a (k b) ⇒ Exp Γ a → Exp Γ (k b)
Project :: Iso a (k b) ⇒ Exp Γ (k b) → Exp Γ a

The type of a variable must be representable. We need to constrain
the argument to a lambda abstraction, but we do not need to con-
strain the return type as the other constraints ensure that it is only
possible to construct a body that has a representable type. For poly-
morphism, we constrain the argument types for type constructors
to be representable. We also need to amend Poly to quantify over
representable types:

newtype Poly k =
Poly {unPoly :: ∀a.Representable a ⇒ k a}

What we pay for this is that we can no longer embed Fω , as Poly is
no longer polymorphic in the kind k:

Poly :: (∀a.Representable a ⇒ k a) → Poly k

The modifications to the HOAS representation are similar:

class Lambda exp where
lam :: Representable a ⇒

(exp a → exp b) → exp (a → b)
app :: exp (a → b) → exp a → exp b
tlam :: (∀a.Representable a ⇒ exp (k a)) →

exp (Poly k)
tapp :: exp (Poly k) →

(∀a.Representable a ⇒ exp (k a))
hinject :: Iso a (k b) ⇒ exp a → exp (k b)
hproject :: Iso a (k b) ⇒ exp (k b) → exp a

Now if we write:

(Lam (Var Z)) :: Exp () (Exp () Int → Exp () Int)

then we get an error message:

No instance for (Iso a (Exp () b))
arising from a use of ‘Lam’

Possible fix: add an instance declaration for
(Iso a (Exp () b))

In the expression:
(Lam (Var Z)) :: Exp () (Exp () Int → Exp () Int)

as Exp () Int → Exp () Int is not a representable System F
type.

6.3 Unembedding
In prior work [3], we demonstrated how to unembed well-typed
higher-order abstract syntax as well-typed first-order syntax for
simply-typed object languages. We now show how to extend un-
embedding to polymorphic object languages.

The motivation for unembedding is that while higher-order ab-
stract syntax is generally more convenient for the programmer to
write, and also well-suited to implementing fold-like operations us-
ing the finally-tagless approach [7], first-order abstract syntax is of-
ten better suited for implementing intensional analyses (e.g., com-
piler optimisations typically operate on a first-order intermediate
representation).

Following our previous work [3], we begin with a GADT for
representing typing contexts:

data Ctx :: ? → ? where
CtxZ :: Ctx ()
CtxS :: Representable a ⇒ Ctx Γ → Ctx (Γ, a)

We now represent (open) terms as first-order System F expressions
parameterised by typing contexts:

newtype Term a = Term {unTerm :: ∀Γ.Ctx Γ → Exp Γ a}

The type class instance for interpretting HOAS terms as first-order
terms is as follows:

instance Lambda Term where
lam f =

Term $ λc → Lam (unTerm (f (Term $ λd →
Var (shift d (CtxS c)))) (CtxS c))

(Term m) ‘app‘ (Term n) =
Term $ λc → App (m c) (n c)

tlam m = Term $ λc → TLam (unTerm m c)
tapp m = Term $ λc → TApp (unTerm m c)
hinject m = Term $ λc → Inject (unTerm m c)
hproject m = Term $ λc → Project (unTerm m c)

It is entirely straightforward apart from the shift function for the
lam case, which is far from straightforward. The issue is that we
need to generate an occurrence of the bound variable, but it may
be used inside other lambda abstractions, in which case we need
to increment it for each one. Even in the untyped case, proving
correctness requires parametricity [2], so we cannot hope to capture
all of the desired static typing constraints in Haskell. We define
shift as follows:

-- precondition: Ctx (∆, a) is a prefix of Ctx Γ
shift :: Ctx Γ → Ctx (∆, a) → Var Γ a
shift c1 c2 = shift’ (len c1 - len c2) c1

where
shift’ :: Int → Ctx Γ → Var Γ a
shift’ 0 (CtxS _) = unsafeCoerce Z
shift’ n (CtxS c) = S (shift’ (n-1) c)

len :: Ctx n → Int
len CtxZ = 0
len (CtxS c) = 1 + len c

Previously [3], we used a type-safe cast [26] in place of the unsafe
coercion, but given that this part of the code cannot be validated by
GHC anyway, we choose to simplify it here and use unsafeCoerce.
Informally, it is clear that the precondition will be satisfied, as in-
side the body of a lambda the typing context can only be extended.
We leave formal verification in the style of Atkey [2] to future work.

For convenience, we wrap the Term type class in a function for
converting closed HOAS expressions to closed first-order expres-
sions:

toClosedExp :: ClosedHoas a → Exp () a
toClosedExp v = unTerm v CtxZ

9 2012/6/3

Now we can write:

toClosedExp hoas_id_poly

One can of course extend the HOAS representation to open
terms by parameterising by an environment representing free vari-
ables. Having done that one can define functions to convert from
the HOAS representation to open first-order terms, and vice-versa:

type Hoas Γ a = Lambda exp ⇒ HEnv exp Γ → exp a
toExp :: Ctx Γ → Hoas Γ a → Exp Γ a
toHoas :: Exp Γ a → Hoas Γ a

(See [3] for details on how to implement these functions.) The
extension to System F is straightforward.

7. Related work
Some related work has already been discussed in the many body of
the paper.

Other unpublished attempts at embedding System F in Haskell
include Ryan Ingram’s de Bruijn representation [16] and Dan Bur-
ton’s HOAS representation [6]. Both differ from our approach in
that the representation of object types diverges significantly from
the representation. The former uses a de Bruijn representation for
type abstractions as well as term abstractions. This is also the ap-
proach taken, for instance, by Benton et al.’s encoding of System F
in Coq [5].

A number of recent articles have considered languages that sup-
port typed self-representation, that is an internal typed representa-
tion of the entire host language. Rendel et al [23] generalise Fω ,
defining a universal kind of kinds, which leads to an inconsistent
logic, but also a language that can interpret itself. Jay and Pals-
berg [17] introduce a pattern calculus that supports typed-self in-
terpretation. Carette and Stump [8] present a variant of lambda cal-
culus called Archon, which supports “direct-reflection” — the abil-
ity to inspect and decompose all terms. They do not include a type
system for Archon, but express an intention to design one.

Another line of work looks at encoding dependent type theory
in dependent type theory using universe constructions [9, 13, 19].

8. Conclusion
We have succeeded in what we set out to do in the sense that
we have developed well-typed first-order encodings of System F
in Haskell and OCaml that use essentially the same representation
for host and object language types. By extending unembedding to
support polymorphism, we can even write embedded code using
higher-order abstract syntax, and subsequently convert it to the
first-order representation for intensional analysis.

We have not yet explored practical applications of this work.
It is clear that extending embedded languages with polymorphism
adds expressive power, but it it not yet clear to what extent this
extra expressive power is necessary. Often one can get away with
using the polymorphism of the host language as a proxy for poly-
morphism in the embedded language.

In Haskell, the second-class nature of type constructors makes
our representation somewhat inconvenient to use. Although OCaml
does not suffer from that problem, it is lacking in other ways.
In particular, it does not have GADTs and the first-class module
syntax is rather verbose for our purposes. OCaml version 4 will
include GADTs, which should help somewhat.

Ultimately, we wonder whether meta programming based on
well-typed quotation [22, 24] may prove more fruitful in practice.

References
[1] T. Altenkirch and B. Reus. Monadic presentations of lambda terms

using generalized inductive types. In CSL, pages 453–468, 1999.

[2] R. Atkey. Syntax for free: Representing syntax with binding using
parametricity. In Typed Lambda Calculi and Applications (TLCA),
volume 5608 of Lecture Notes in Computer Science, pages 35–49.
Springer, 2009.

[3] R. Atkey, S. Lindley, and J. Yallop. Unembedding domain-specific
languages. In Haskell, pages 37–48, 2009.

[4] A. I. Baars and S. D. Swierstra. Typing dynamic typing. In ICFP ’02,
pages 157–166, New York, NY, USA, 2002. ACM.

[5] N. Benton, C.-K. Hur, A. Kennedy, and C. McBride. Strongly typed
term representations in Coq. Journal of Automated Reasoning, 2011.

[6] D. Burton, 2012. https://github.com/DanBurton/Blog/blob/
master/Literate%20Haskell/SystemF.lhs.

[7] J. Carette, O. Kiselyov, and C. chieh Shan. Finally tagless, partially
evaluated: Tagless staged interpreters for simpler typed languages. J.
Funct. Program., 19(5):509–543, 2009.

[8] J. Carette and A. Stump. Towards typing for small-step direct reflec-
tion. In PEPM, pages 93–96, 2012.

[9] J. Chapman. Type theory should eat itself. Electr. Notes Theor.
Comput. Sci., 228:21–36, 2009.

[10] J. Cheney and R. Hinze. A lightweight implementation of generics
and dynamics. In Haskell ’02, New York, NY, USA, 2002. ACM.

[11] J. Cheney and R. Hinze. First-class phantom types. Technical Report
TR2003-1901, Cornell University, July 2003.
http://ecommons.library.cornell.edu/handle/1813/5614.

[12] K. Crary, S. Weirich, and J. G. Morrisett. Intensional polymorphism
in type-erasure semantics. In ICFP, pages 301–312, 1998.

[13] N. A. Danielsson. A formalisation of a dependently typed language as
an inductive-recursive family. In TYPES, pages 93–109, 2006.

[14] N. G. de Bruijn. Lambda calculus notation with nameless dummies:
A tool for automatic formula manipulation, with application to the
church-rosser theorem. Indagationes Mathematicae, 1972.

[15] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge
University Press, 1989.

[16] R. Ingram. Type-system fun: a type-safe embedding of System F
lambda calculus into Haskell, 2007. http://www.haskell.org/
pipermail/haskell-cafe/2007-December/037246.html.

[17] C. B. Jay and J. Palsberg. Typed self-interpretation by pattern match-
ing. In ICFP, pages 247–258, 2011.

[18] Y. Mandelbaum and A. Stump. GADTs for the OCaml masses. In
Workshop on ML, 2009.

[19] C. McBride. Outrageous but meaningful coincidences: dependent
type-safe syntax and evaluation. In WGP, pages 1–12, 2010.

[20] F. Pfenning and C. Elliott. Higher-order abstract syntax. In PLDI,
pages 199–208, 1988.

[21] F. Pfenning and P. Lee. Metacircularity in the polymorphic lambda-
calculus. Theor. Comput. Sci., 89(1):137–159, 1991.

[22] B. Pientka. A type-theoretic foundation for programming with higher-
order abstract syntax and first-class substitutions. In POPL, pages
371–382, 2008.

[23] T. Rendel, K. Ostermann, and C. Hofer. Typed self-representation. In
PLDI, pages 293–303, 2009.

[24] M. Rhiger. Staged computation with staged lexical scope. In ESOP,
pages 559–578, 2012.

[25] C. V. Russo and D. Vytiniotis. QML: Explicit first-class polymor-
phism for ML. In Workshop on ML, 2009.

[26] S. Weirich. Type-safe cast. Journal of Functional Programming,
14(6):681–695, 2004.

[27] J. Yallop and O. Kiselyov. First-class modules: hidden power and
tantalizing promises. In Workshop on ML, 2010.

10 2012/6/3

