
On the Expressive Power of User-Defined Effects
Effect Handlers, Monadic Reflection, Delimited Control

Yannick Forster1,2, Ohad Kammar2,3, Sam Lindley4, and Matija Pretnar5

1 Saarland University forster@ps.uni-saarland.de
2 University of Cambridge Computer Laboratory

3 University of Oxford Department of Computer Science ohad.kammar@cs.ox.ac.uk
4 University of Edinburgh School of Informatics sam.lindley@ed.ac.uk

5 University of Ljubljana Faculty of Mathematics and Physics
matija.pretnar@fmf.uni-lj.si

Abstract. We compare the expressive power of three programming ab-
stractions for user-defined computational effects: Bauer and Pretnar’s
effect handlers, Filinski’s monadic reflection, and delimited control. This
comparison allows a precise discussion about the relative merits of each
programming abstraction.
We present three calculi, one per abstraction, extending Levy’s call-
by-push-value. These comprise syntax, operational semantics, a natural
type-and-effect system, and, for handlers and reflection, a set-theoretic
denotational semantics. We establish their basic meta-theoretic prop-
erties: adequacy, soundness, and strong normalisation. Using Felleisen’s
notion of a macro translation, we show that these abstractions can macro-
express each other, and show which translations preserve typeability. We
use the adequate finitary set-theoretic denotational semantics for the
monadic calculus to show that effect handlers cannot be macro-expressed
while preserving typeability either by monadic reflection or by delimited
control. We supplement our development with a mechanised Abella for-
malisation.

1 Introduction

How should we compare abstractions for user-defined effects?
The use of computational effects, such as file, terminal, and network I/O,

random-number generation, and memory allocation and mutation, is controver-
sial in functional programming. While languages like Scheme and ML allow these
effects to occur everywhere, pure languages like Haskell restrict the use of effects.
The main reason for restricting the use of effects is that computational effects
deviate from the lambda calculus, violating its most basic equational proper-
ties like β-equality, referential transparency, and confluence. The loss of these
properties may lead to unpredictable behaviour in lazy languages like Haskell,
or limit the applicability of correctness preserving transformations like common
subexpression elimination or code motion.

Monads [60] are the established abstraction for incorporating effects into pure
languages. The introduction of monads into Haskell led to their additional use

2 Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar

as a programming abstraction, allowing new effects to be declared and used as
if they were native. Examples include parsing [27], backtracking and constraint
solving [55], and mechanised reasoning [63, 6]. Libraries now exist for monadic
programming even in impure languages such as OCaml6, Scheme7, and C++ [58].

Bauer and Pretnar [5] propose to use algebraic effects and handlers to struc-
ture programs with user-defined effects. In this approach, the programmer first
declares algebraic operations as the syntactic constructs she will use to cause the
effects, in analogy with declaring new exceptions. Then, she defines effect han-
dlers that describe how to handle these operations, in analogy with exception
handlers. While exceptions immediately transfer control to the enclosing handler
without resumption, a computation may continue in the same position following
an effect operation. In order to support resumption, an effect handler has access
to the continuation at the point of effect invocation. Thus algebraic effects and
handlers provide a form of delimited control.

Delimited control operators have long been used to encode effects [7] and
algorithms with sophisticated control flow [16]. There are many variants of such
control operators, and their inter-relationships are subtle [57], and often appear
only in folklore.

We study these three different abstractions for user-defined effects: effect han-
dlers, monads, and delimited control operators. Our goal is to enable language
designers to conduct a precise and informed discussion about the relative expres-
siveness of each abstraction. In order to compare them, we build on an idealised
calculus for functional-imperative programming, namely call-by-push-value [42],
and extend it with each of the three abstractions and their corresponding nat-
ural type systems. We then assess the expressive power of each abstraction by
rigorously comparing and analysing these calculi.

We use Felleisen’s [14] notion of macro expressibility: when a programming
language L is extended by some feature, we say that the extended language L+

is macro expressible when there is a syntax-directed translation from L+ to L
that keeps the features in L fixed. Felleisen introduces this notion of reduction
to study the expressive power of Turing-complete calculi, as macro expressivity
is more sensitive in these contexts than computability and complexity notions of
reduction. We adapt Felleisen’s notion to the situation where one extension L1

+

of a base calculus L is macro expressible in another extension L2
+ of the same

base calculus L. Doing so enable us to formally compare the expressive power
for each approach to user-defined effects.

In the first instance, we show that, disregarding types, all three abstrac-
tions are macro-expressible in terms of one another, giving six macro-expression
translations. Some of these translations are known in less rigorous forms, either
published, or in folklore. One translation, macro-expressing effect-handlers in
delimited control, improves on previous concrete implementations [30], which
rely on the existence of recursive types. The translation from monadic reflection
to effect handlers is completely novel.

6 http://www.cas.mcmaster.ca/~carette/pa_monad/
7 http://okmij.org/ftp/Scheme/monad-in-Scheme.html

On the Expressive Power of User-Defined Effects 3

We also establish whether these translations preserve typeability: the transla-
tions of some well-typed programs are untypeable. We show that the translation
from delimited control to monadic reflection preserves typeability. We conjecture
that the converse translation also preserves typeability, but do not yet have a
proof. We also give a negative result: we demonstrate how to use the denota-
tional semantics for the monadic calculus to prove that no macro translation
exists that preserves typeability. This set-theoretic denotational semantics and
its adequacy for Filinski’s multi-monadic metalanguage [20] is another piece of
folklore. We conjecture that a similar proof, though with more mathematical so-
phistication, can be used to prove the non-existence of a typeability preserving
macro-expression translation from the monadic calculus to effect handlers. To
this end, we give adequate set-theoretic semantics to the effect handler calculus
with its type-and-effect system, and highlight the critical semantic invariant a
monadic calculus will invalidate. Fig. 1 summarises our contributions and con-
jectured results. Unlabelled arrows between the typed calculi signify that the
corresponding macro translation between the untyped calculi preserves typeabil-
ity. Arrows labelled by @ signify that no macro translation exists between the
calculi, not even a partial macro translation that is only defined for well-typed
programs.

eff

mon

del

typed eff

typed del

typed mon

established

conjectured

existence status

@?

@?

@

@

Fig. 1: Existing and conjectured macro translations

We supplement our pencil-and-paper proofs with a mechanised formalisation
in the Abella proof assistant [22, 23], which complement, rather than duplicate,
our formal development. Specifically, we prove a Felleisen-style [62] progress-
and-preservation soundness theorem for each calculus, and only present three of
our translations in prose, leaving the folklore to our formalisation.

We make the following contributions:

– three formal calculi, i.e., syntax and semantics, for effect handlers, monadic
reflection, and delimited control extending a shared call-by-push-value core,
and their meta-theory:
• adequate set-theoretic denotational semantics for effect handlers;
• adequate set-theoretic denotational semantics for monadic reflection;
• a denotational soundness proof for effect handlers and delimited control;
• strong normalisation for monadic reflection and delimited control;

– six macro-translations between the three untyped calculi;

4 Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar

– formally mechanised meta-theory in Abella8 comprising:
• progress and preservation theorems;
• the translations between the untyped calculi; and
• their correctness proofs in terms of formal simulation results;

– typeability preservation of the macro translation from delimited control to
monadic reflection; and

– that there exists no typeability-preserving macro translation from effect han-
dlers to either monadic reflection or delimited control.

We structure the remainder of the paper as follows. Sections 2, 3, 4, and 5
present the core calculus and its extensions with effect handlers, monadic re-
flection, and delimited control, respectively, and their meta-theoretic properties.
Section 6 presents the macro translations between these calculi, their correctness,
and typeability preservation. Section 7 concludes and outlines further work.

2 The core-calculus: mam

We are interested in a functional-imperative calculus where effects and higher-
order features interact well. Levy’s [42] call-by-push-value (CPBV) calculus serves
this purpose. The CBPV paradigm subsumes call-by-name and call-by-value,
both syntactically and semantically. In CBPV evaluation order is explicit, and
the way it combines computational effects with higher-order features yields sim-
pler program logic reasoning principals [48, 29]. CBPV allows us to uniformly
deal with call-by-value and call-by-name evaluation strategies, making the the-
oretical development relevant to both ML-like and Haskell-like languages. We
extend it with a type-and-effect system, and, as adjunctions form the semantic
basis for CBPV, we call the resulting calculus the multi-adjunctive metalanguage
(mam).

V,W ::= values
x variable
| () unit value
| (V1, V2) pairing
| inj` V variant
| {M} thunk

M,N ::= computations
case V of product

(x1, x2)→M matching
case V of { variant

inj`1 x1 →M1 matching...
inj`n xn →Mn}

| V ! force
| return V returner
| x ←M ; N sequencing
| λx .M abstraction
|M V application
| 〈M1,M2〉 pairing
| prjiM projection

Fig. 2: mam syntax

Fig. 2 presents mam’s raw term syntax, which distinguishes between values
(data) and computations (processes). We assume a countable set of variables
ranged over by x, y, . . ., and a countable set of variant constructor literals
ranged over by `. The unit value, product of values, and finite variants/sums
8 https://github.com/matijapretnar/user-defined-effects-formalization

On the Expressive Power of User-Defined Effects 5

are standard. A computation can be suspended as a thunk {M}, which may
be passed around. Products and variants are eliminated with standard pattern
matching constructs. Thunks can be forced to resume their execution. A com-
putation may simply return a value, and two computations can be sequenced, as
in Haskell’s do notation. Function computations abstract over a value to which
they can be applied. In order to pass a function as data, it must first be thunked.
For completeness, we also include CBPV’s binary computation products, which
subsume projections on product values in call-by-name languages.

Frames and contexts B ::= x← []; N | [] V | prji [] basic frames
F ::= B computation frames
C ::= [] | C[F []] evaluation context
H ::= [] | H[B[]] hoisting context

Beta reduction M β M
′

(×) case (V1, V2) of (x1, x2)→M β M [V1/x1, V2/x2]
(+) case inj` V of {. . . inj` x →M . . .} β M [V/x]
(F) x ← return V ; M β M [V/x]

(U) {M}! β M
(→) (λx .M) V β M [V/x]
(&) prji 〈M1,M2〉 β Mi

Reduction M M ′
M β M

′

C[M] C[M ′]

Fig. 3: mam operational semantics

Fig. 3 presents mam’s standard structural operational semantics, in the style
of Felleisen [15]. In order to reuse the core definitions as much as possible, we
refactor the semantics into β-reduction rules and a single congruence rule. As
usual, a β-reduction reduces a matching pair of introduction and elimination
forms. We specify in the definition of evaluation contexts the basic frames, which
all our extensions will share. Later, in each calculus we will make use of hoisting
frames in order to capture continuations, stacks of basic frames, extending from
a control operator to the nearest delimiter. As usual, a reducible term can be
decomposed into at most one unique pair of evaluation context and β-reducible
term, making the semantics deterministic.

In this development, we use the following standard syntactic sugar. We use
nested patterns in our pattern matching constructs. We allow the application of
functions and the elimination constructs to arbitrary computations, and not just
values, by setting for example M N B x ← N ; M x for some fresh x, giving a
more readable, albeit call-by-value, appearance.

Fig. 4 presents mam’s types and effects. It is a variant of Kammar and
Plotkin’s [29] multi-adjunctive intermediate language without effect operations
or coercions. As a core calculus for three calculi with very different notions of
effect, mam is pure, and the only shared effect is the empty effect ∅. We include
a kind system, unneeded in traditional CBPV where a context-free distinction
between values and computations forces types to be well-formed. The two points
of difference from CBPV are the kind of effects, and the refinement of the compu-

6 Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar

tation kind by well-kinded effects E. The other available kinds are the standard
value kind and a kind for well-formed environments (without type dependencies).
Our type system includes value type variables (which we will later use for defin-
ing monads parametrically). Simple value types are standard CBPV value types,
and each type of thunks includes an effect annotation describing the effects of
these thunks. Computation types include returners FA, which are computations
that return a value of type A, similar to the monadic type Monad m =⇒ m a
in Haskell. Functions are computations and only take values as arguments. We
include CBPV’s computation products, which account for product elimination
via projection in call-by-name languages. To ensure the well-kindedness of types,
which may contain type-variables, we use type environments in a list notation
that denotes sets of type-variables. Similarly, we use a list notation for environ-
ments, which are functions from a finite set of variable names to the set of value
types.

E ::= effects
∅ pure effect

K ::= kinds
| Eff effects
| Val values
| CompE computations
| Ctxt environments

A,B ::= value types
α type variable
| 1 unit
| A1 ×A2 products
| {inj`1 A1 variants
| . . . | inj`n An}
| UEC thunks

C,D ::= computation types
FA returners
| A→ C functions
| C1 & C2 products

environments:
Θ ::= α1, . . . , αn
Γ,∆ ::= x1 : A1, . . . , xn : An

Fig. 4: mam kinds and types

Fig. 5 presents the kind and type systems. The only effect (∅) is well-kinded.
Type variables must appear in the current type environment, and they are always
value types. The remaining value and computation types and environments have
straightforward structural kinding conditions. Thunks of E-computations of type
C require the type C to be well-kinded, which includes the side-condition that E
is a well-kinded effect. This kind system has the property that each valid kinding
judgements has a unique derivation. Value type judgements assert that a value
term has a well-formed value type under a well-formed environment in some type
variable environment. The rules for simple types are straightforward, and note
how the effect annotation moves between the E-computation type judgement
and the type of E-thunks. The side condition for computation type judgements
asserts that a computation term has a well-formed E-computation type under a
well-formed environment for some well-formed effect E under some type variable
environment. The rules for variables, value and computation products, variants,
and functions are straightforward. The rules for thunking and forcing ensure the
computation’s effect annotation agrees with the effect annotation of the thunk.
The rule for return allows us to return a value at any effect annotation, reflecting
the fact that this is a may-effect system: the effect annotations track which
effects may be caused, rather than a more prescriptive description. The rule for
sequencing reflects our choice to omit any form of effect coercion, subeffecting,

On the Expressive Power of User-Defined Effects 7

or effect polymorphism: the three effect annotations must agree. There are more
sophisticated effect system which allow more flexibility [32]. We conjecture such
mechanisms do not change the expressivity of each abstraction qualitatively.

For uniformity’s sake, we let typesX range over both value and E-computation
types, and phrases P range over both value and computation terms. Judgements
of the form Θ;Γ `E P : X are meta-judgements, ranging over value judgements
Θ;Γ ` P : X and E-computation judgement Θ;Γ `E P : X.

For the purpose of contextual equivalence, define the subclass of ground types:

(ground values) G ::= 1 | G1 ×G2 | {inj`1 G1 | . . . | inj`n Gn}

The type of booleans bit is {injFalse 1 | injTrue 1}. The definition of program
contexts X [] and their type judgements is straightforward but tedious and
lengthy with four kinds of judgements, and we omit it. Type judgements

Θ;Γ `E X [] : X[Θ′;∆ `E′ Y :]

assert that the hole in the program context expects a term of type Y , and possible
effect E′, well-typed in type variable environment Θ′ and environment ∆. The
context will then be typeable in type variable environment Θ and environment
Γ , and will be a well-typed term of type X, and possible effect E. Finally, we
say that an environment Γ ′ extends an environment Γ , and write Γ ′ ≥ Γ if Γ ′
extends Γ as a partial function from identifiers to value types.

Let Θ;Γ `E P,Q : X be two mam phrases. We say that P and Q are
contextually equivalent and write Θ;E `Γ P ' Q : X when, for all closed well-
typed ground-returner contexts

; `∅ X [] : FG[Θ′;Γ ′ `E X :]

with Θ′ ⊇ Θ, Γ ′ ≥ Γ and for all closed ground value terms ; ` V : G, we have:

X [P] ? return V ⇐⇒ X [Q] ? return V

Our operational semantics is sufficiently well-behaved that for all well-typed
computations Θ;Γ `E M,M ′ : C, if M M ′ then M 'M ′. This property will
hold for each of our calculi.

mam has a straightforward set-theoretic denotational semantics. Presenting
the semantics for the core calculus will simplify our later presentation. To do
so, we first recall the following established facts about monads, specialised and
concretised to the set-theoretic setting.

A monad is a triple 〈T, return,�=〉 where T assigns to each set X a set
TX, return assigns to each set X a function returnX : X → TX and �=
assigns to each function f : X → TY a function �=f : TX → TY , and more-
over these assignments satisfy well-known algebraic identities. Given a monad
〈T, return,�=〉 we define for every function f : X → Y the functorial action
fmap f : TX → TY as fmap f xs B xs�=(return◦f). A T -algebra for a monad
〈T, return,�=〉 is a pair C = 〈|C|, c〉 where |C| is a set and c : T |C| → |C|

8 Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar

Effect kinding Θ `k E : Eff Θ `k ∅ : Eff

Value kinding Θ `k A : Val

α ∈ Θ
Θ `k α : Val Θ `k 1 : Val

Θ `k A1 : Val Θ `k A1 : Val

Θ `k A1 ×A2 : Val

for every 1 ≤ i ≤ n: Θ `k Ai : Val

Θ `k {inj`1 A1 | . . . | inj`n An} : Val

Θ `k C : CompE

Θ `k UEC : Val

Computation kinding Θ `k C : CompE (Θ `k E : Eff)

Θ `k A : Val

Θ `k FA : CompE

Θ `k A : Val Θ `k C : CompE

Θ `k A→ C : CompE

Θ `k C1 : CompE Θ `k C2 : CompE

Θ `k C1 & C2 : CompE

Context kinding Θ `k Γ : Ctxt
for all x ∈ Dom (Γ): Θ `k Γ (x) : Val

Θ `k Γ : Ctxt

Value typing Θ;Γ ` V : A (Θ `k Γ : Ctxt, A : Val)

(x : A) ∈ Γ
Θ;Γ ` x : A Θ;Γ ` () : 1

Θ;Γ ` V1 : A1 Θ;Γ ` V2 : A2

Θ;Γ ` (V1, V2) : A1 ×A2

Θ;Γ ` V : Ai

Θ;Γ ` inj`i V : {inj`1 A1 | . . . | inj`n An}
Θ;Γ `E M : C

Θ;Γ ` {M} : UEC

Computation typing Θ;Γ `E M : C (Θ `k Γ : Ctxt, E : Eff , C : CompE)

Θ;Γ ` V : A1 ×A2 Θ;Γ, x1 : A1, x2 : A2 `E M : C

Θ;Γ `E case V of (x1, x2)→M : C

Θ;Γ ` V : UEC

Θ;Γ `E V ! : C

Θ;Γ ` V : {inj`1 A1 | · · · | inj`n An} for every 1 ≤ i ≤ n: Θ;Γ, xi : Ai `E Mi : C

Θ;Γ `E case V of {inj`1 x1 →M1; · · · ; inj`n xn →Mn} : C

Θ;Γ ` V : A

Θ;Γ `E return V : FA

Θ;Γ `E M : C1 & C2

Θ;Γ `E prjiM : Ci

Θ;Γ `E M : FA Θ;Γ, x : A `E N : C

Θ;Γ `E x ←M ; N : C

Θ;Γ, x : A `E M : C

Θ;Γ `E λx .M : A→ C

Θ;Γ `E M : A→ C Θ;Γ ` V : A

Θ;Γ `E M V : C

Θ;Γ `E M1 : C1 Θ;Γ `E M2 : C2

Θ;Γ `E 〈M1,M2〉 : C1 & C2

Fig. 5: mam kind and type system

On the Expressive Power of User-Defined Effects 9

is a function satisfying c(return x) = x, and c(fmap c xs) = c(xs�=id) for
all x ∈ |C| and xs ∈ T 2 |C|. The set |C| is called the carrier and we call c the
algebra structure. For each set X, the pair FX B 〈TX,�=id〉 forms a T -algebra
called the free T -algebra over X.

Effects ⟦∅⟧θ B 〈Id, id, λf.f〉
Values ⟦α⟧θ B θ(α) ⟦1⟧θ B {?} ⟦A1 ×A2⟧θ B ⟦A1⟧θ × ⟦A2⟧θ ⟦UEC⟧θ B

∣∣⟦C⟧θ∣∣
⟦{inj`1 A1 | . . . | inj`n An}⟧θ B ({`1} × ⟦A1⟧θ) ∪ · · · ∪ ({`n} × ⟦An⟧θ)

Computations

⟦FA⟧θ B F ⟦A⟧θ ⟦A→ C⟧θ B 〈
∣∣⟦C⟧θ∣∣⟦A⟧θ , λfs.λx.c(fmap (λf.f(x)) fs)〉

⟦C1 & C2⟧θ B
〈∣∣⟦C1⟧θ

∣∣× ∣∣⟦C2⟧θ
∣∣, λcs. 〈c1(fmap π1 cs), c2(fmap π2 cs)〉

〉
Fig. 6: mam denotational semantics for types

We parameterise mam’s semantics function ⟦Θ `k E : Eff⟧ by an assignment
θ of sets θ(α) to each of the type variables α in Θ. Given such a type variable
assignment θ, we assign to each

– effect: a monad ⟦Θ `k E : Eff⟧θ, denoted by
〈
T⟦E⟧θ , return⟦E⟧θ ,�=⟦E⟧θ

〉
;

– value type: a set ⟦Θ `k A : Val⟧θ;
– E-computation type: a T⟦E⟧θ -algebra ⟦Θ `k C : CompE⟧θ; and
– context: the set ⟦Θ `k Γ : Ctxt⟧θ B

∏
x∈Dom(Γ) ⟦Γ (x)⟧θ.

Fig. 6 defines the standard set-theoretic semantics function over the structure
of types. The pure effect denotes the identity monad, which sends each set to
itself, and extends a function by doing nothing. The extended languages in the
following sections will assign more sophisticated monads to other effects. The
semantics of type variables uses the type assignment given as parameter. The
unit type always denotes the singleton set. Product types and variants denote the
corresponding set-theoretic operations of cartesian product and disjoint union,
and thus the empty variant type 0 B {} denotes the empty set. The type of
thunked E-computations of type C denotes the carrier of the T⟦E⟧θ -algebra⟦C⟧θ. The E-computation type of A returners denotes the free ⟦E⟧θ-algebra.
Function and product types denote well-known algebra structures over the sets
of functions and pairs, correspondingly [3, Theorem 4.2, e.g.].

Terms can have multiple types, for example the function λx.return x has the
types 1→ 1 and 0→ 0, and type judgements can have multiple type derivations.
We thus give a Church-style semantics [54] by defining the semantics function
for type judgement derivations rather than for terms. To increase readability, we
write ⟦P ⟧ instead of including the entire typing derivation for P .

The semantics function for terms is parameterised by an assignment θ of sets
to type variables. It assigns to each well-typed derivation for a:

– value term: a function ⟦Θ;Γ ` V : A⟧θ : ⟦Γ ⟧θ → ⟦A⟧θ; and

10 Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar

– E-computation term: a function ⟦Θ;Γ `E M : C⟧θ : ⟦Γ ⟧θ → |⟦C⟧θ|.
Fig. 7 defines the standard set-theoretic semantics function over the structure

of derivations. The semantics of sequencing uses the Kleisli extension function
(�=f) : TX → |⟦C⟧| for functions into non-free algebras f : X → |⟦C⟧|, given
by (�=f) B c ◦ return ◦f .

Value terms ⟦x⟧θ (γ) B πx (γ) ⟦()⟧θ (γ) B ? ⟦inj` V ⟧θ (γ) B
〈
`, ⟦V ⟧θ (γ)

〉
⟦(V1, V2)⟧θ (γ) B

〈⟦V1⟧θ (γ), ⟦V2⟧θ (γ)
〉 ⟦{M}⟧θ (γ) B ⟦M⟧θ (γ)

Computation terms

⟦case V of (x1, x2)→M⟧θ (γ) B ⟦M⟧θ (γ[x1 7→ a1, x2 7→ a2]), where ⟦V ⟧θ (γ) = 〈a1, a2〉
LPPPPPPPN

case V of {inj`1 x1 →M1

...
inj`n xn →Mn}

MQQQQQQQOθ

B


⟦M1⟧θ (γ[x1 7→ a1]) ⟦V ⟧θ (γ) = 〈`1, a1〉
...
⟦Mn⟧θ (γ[xn 7→ an]) ⟦V ⟧θ (γ) = 〈`n, an〉

⟦〈〉⟧θ (γ) B ? ⟦V !⟧θ (γ) B ⟦V ⟧θ (γ) ⟦return V ⟧θ (γ) B return (⟦V ⟧θ (γ))
⟦x ←M ; N⟧θ (γ) B ⟦M⟧θ (γ)�=λa. ⟦N⟧θ (γ[x 7→ a])

⟦λx .M⟧θ (γ) B λa. ⟦M⟧θ (γ[x 7→ a]) ⟦M V ⟧θ (γ) B (⟦M⟧θ (γ))(⟦V ⟧θ (γ))
⟦〈M1,M2〉⟧θ (γ) B

〈⟦M1⟧θ (γ), ⟦M2⟧θ (γ)
〉 ⟦prjiM⟧θ (γ) B πi(⟦M⟧θ (γ))

Fig. 7: mam denotational semantics for terms

We prove adequacy using standard logical relations techniques, i.e., by defin-
ing a relational interpretation to types and establishing a basic lemma. We use
the lifting in Hermida’s [25] thesis to define the monadic lifting of a relation.

Theorem 1 (adequacy). Denotational equivalence implies contextual equiva-
lence: for all Θ;Γ `E P,Q : X, if ⟦P ⟧ = ⟦Q⟧ then P ' Q.
We strengthen the existing CBPV’s strong normalisation theorem [11, 12]:

Corollary 2 (soundness and strong normalisation). All well-typed closed
ground returners must reduce to a unique normal form: for all ; `∅ M : FG there
exists some ; ` V : G such that ⟦return V ⟧ = ⟦M⟧ and M ? return V .

Our Abella formalisation further contains progress and preservation theorems.
In the following sections, we will extend the mam calculus using the following

convention. We use an ellipsis to mean that a new definition consists of the old
definition verbatim with the new description appended, as in the following:

M,N ::= · · · | op V effect operation

3 Effect handlers: eff

Bauer and Pretnar [5] propose algebraic effects and handlers as a basis for mod-
ular programming with user-defined effects. Programmable effect handlers arose

On the Expressive Power of User-Defined Effects 11

as part of Plotkin and Power’s [49] algebraic account of computational effects,
which investigates the consequences of using the additional structure in algebraic
presentations of monadic models of effects. This account refines Moggi’s [47]
monadic account by incorporating into the theory the syntactic constructs that
generate effects as algebraic operations for a monad [50]: each monad is accom-
panied by a collection of syntactic operations, whose interaction is specified by
a collection of equations, i.e., an algebraic theory, which fully determines the
monad. To fit exception handlers into this account, Plotkin and Pretnar [51]
generalise to the handling of arbitrary algebraic effects, giving a computational
interpretation to algebras for a monad. By allowing the user to declare opera-
tions, the user can describe new effects in a composable manner. By defining
algebras for the free monad with these operations, users give the abstract oper-
ations different meanings similarly to Swierstra’s [59]’s use of free monads.

M,N ::= . . . computations
| op V operation call
| handle M with H handling construct

H ::= handlers
{return x 7→M} return clause
| H] {op p k 7→ N} operation clause

(a) Syntax extensions to Fig. 2

Frames and contexts · · · F ::= . . . | handle [] with H computation frame
Beta reduction · · · For every H = {return x 7→ Nret}] {op1 p1 k1 7→ N1}] . . .

]{opn pn kn 7→ Nn}(ret)handle (return V) with H β M [V/x]

(op) handle H[op V] with H β N [V/p, {λx .handle H[return x] with H}/k]

(b) Operational semantics extensions to Fig. 3

Fig. 8: eff

Fig. 8(a) presents the extension eff, Kammar et al.’s [30] core calculus of
effect handlers. We assume a countable set of elements of a separate syntactic
class, ranged over by op. We call these operation names. For each operation name
op, eff’s operation call construct allows the programmer to cause the effect
associated with op by passing it a value as an argument. Operation names are
the only interface to effects the language has. The handling construct allows the
programmer to use a handler to interpret the operation calls in a given returner
computation. As the given computation may call thunks returned by functions,
the decision which handler will handle a given operation call is dynamic. Handlers
are specified by two kinds of clauses. A return clause describes how to proceed
when we return a value. A operation clause describes how to proceed when we
an operation op. The body of tan operation clause can access the value passed
in the operation call using the first bound variable p, which is similar to the
bounding occurrence of an exception variable when handling exceptions. But
unlike exceptions, we expect arbitrary effects like reading from or writing to
memory to resume. Therefore the body of an operation clause can also access the
continuation at the operation’s calling point. Even though we use a list notation

12 Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar

in this presentation of the syntax, the abstract syntax tree representation of a
handler H is in fact a pair H =

〈
Hreturn, H−

〉
consisting of a single return

clause Hreturn, and a function H− from a finite subset of the operation names
assigning to each operation name op its associated operation clause Hop.

Fig. 8(b) presents eff’s extension to mam’s operational semantics. Compu-
tation frames F now include the handling construct, while the basic frames B
do not, allowing a handled computation to β-reduce under the handler. We add
two β-reduction cases. When the returner computation inside a handler is fully
evaluated, the return clause proceeds with the return value. When the returner
computation inside a handler needs to evaluate an operation call, the definition
of hoisting contexts H ensures H is precisely the continuation of the operation
call delimited by the handler. Put differently, it ensures that the handler in the
root of the reduct is the closest handler to the operation call in the call stack. The
operation clause corresponding to the operation called then proceeds with the
supplied parameter and current continuation. Rewrapping the handler around
this continuation ensures that all operation calls invoked in the continuation are
handled in the same way. The alternative [30, 35, 43] is to define instead:

handle H[op V] with H β N [V/p, {λx .H[return x]}/k]

This variant is known as shallow handlers, as opposed to the deep handlers of
Fig. 8(b). We focus on deep handlers that are closer to monadic reflection. See
Pretnar’s [53] tutorial for additional exposition to programming with handlers.

E ::= . . . effects
| {op : A→ B}] E arity assignment

K ::= . . . kinds
| Hndlr handlers
R ::= A E⇒E′

C handler types · · ·

Fig. 9: Kinds and types extension to Fig. 4

Fig. 9 presents eff’s types and effects. The effect annotations in eff are
functions from finite sets of operation names, assigning to each operation name
its parameter type A and its return type B. We add a new kind for handler
types, which describe the kind and the returner type the handler can handle,
and the kind and computation type the handling clause will have.

Fig. 10 presents how eff extends mam’s kind system. The types in each oper-
ation’s arity assignment must be value types. The kinding judgement for handlers
requires all the types and effects involved to be well-kinded. Computation type
judgements now include two additional rules for each of the new computation
constructs. An operation call is well-typed when the parameter and return type
agree with the arity assignment in the effect annotation. A use of the handling
construct is well-typed when the type and effect of the handled computation
and the type-and-effect of the construct agree with the types and effects in the
handler type. The set of operations the handler can handle must strictly agree
with the set of operations in the effect annotation in the type. The variable

On the Expressive Power of User-Defined Effects 13

Effect kinding · · ·
Θ `k A : Val Θ `k B : Val op /∈ E Θ `k E : Eff

Θ `k {op : A→ B}] E : Eff

Handler kinding Θ `k R : Hndlr
Θ `k A : Val Θ `k E,E′ : Eff Θ `k C : CompE′

Θ `k A E⇒E′
C : Hndlr

Computation typing

· · ·
(op : A→ B) ∈ E Θ;Γ ` V : A

Θ;Γ `E op V : FB

Θ;Γ `E M : FA Θ;Γ ` H : A E⇒E′
C

Θ;Γ `E′ handle M with H : C

Handler typing Θ;Γ ` H : R (Θ `k Γ : Ctxt, R : Hndlr)

Θ;Γ, x : A `E M : C for all 1 ≤ i ≤ n: Θ;Γ, p : Ai, k : UE(Bi → C) `E Ni : C

Θ;Γ ` {return x 7→M}] {opi p k 7→ Ni|1 ≤ i ≤ n} : A {opi:Ai→Bi|1≤i≤n}⇒E C

Fig. 10: Kinding and typing extensions to Fig. 5

bound to the return value has the returner type in the handler type. In each op-
eration clause, the bound parameter variable has the parameter type from the
arity assignment for this operation, and the continuation variable’s input type
matches the return type in the operation’s arity assignment. The overall type
of all operation clauses agrees with the computation type of the handler. The
second effect annotation on the handler type matches the effect annotations on
the continuation and the body of the operation and return clauses, in accordance
with the deep handler semantics.

eff’s ground types are the same as mam’s. We omit the full definition of
program contexts, and define contextual equivalence as in mam.

eff’s design involves several decisions. First, handlers have their own kind,
unlike Pretnar’s [53] calculus in which they are values. This distinction is minor,
as handlers as values can be expressed by thunking the handling construct. Next,
the effect annotations involved in the handling construct have to agree precisely.
The other option is to check inclusion of operation sets, i.e., a handler may
handle more effects than the annotation on the effect. This distinction is minor,
as we can express coercions from an effect annotation into a superset of effects
using a trivial handler:

{λx .return x}] {op p k 7→ k(op p)|op ∈ E} : A E⇒E]E′
FA

A more significant choice is to use closed handlers: execution halts/crashes when
a handled computation calls an operation the handler does not handle. The other
option is to use forwarding handlers [30], in which unhandled operation calls are
forwarded to the nearest enclosing handler that can handle them. In our simple
type-and-effect system, this decision has no immediate impact, as we can use the
trivial handler above to re-raise unhandled effects whenever needed. However, in
more expressive type systems, which we do not consider here, in particular type
systems with effect polymorphism [44, 41, 26], this distinction is more significant.

14 Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar

In this case, we believe that the language should include both variants: the
forwarding variant to support code extensibility and modularity, and the closed
variant to allow the programmer to guarantee that a computation cannot cause
unhandled effects. Finally, it is possible to remove the effect system. In that case,
the arity assignments for the operations need to be placed globally at the top
level of the program, as in Pretnar’s [53] tutorial. Removing the effect system
has dramatic consequences on expressivity: as we are about to see, well-typed
eff terms are strongly normalising. If we remove the effect annotations, we can
encode a form of Landin’s [40] knot, making the calculus non-terminating.

We give an adequate set-theoretic denotational semantics for eff. First, recall
the following well established concepts in universal and categorical algebra. A
signature Σ is a pair consisting of a set |Σ| whose elements we call operation
symbols, and a function arityΣ from |Σ| assigning to each operation symbol
f ∈ |Σ| a (possibly infinite) set arity(f). We write (f : A) ∈ Σ when f ∈ |Σ|
and arityΣ(f) = A. Given a signature Σ and a set X, we inductively form the
set TΣX of Σ-terms over X by:

t ::= x | f 〈ta〉a∈A (x ∈ X, (f : A) ∈ Σ)

The assignment TΣ together with the following assignments form a monad

return x B x t�=f B t[f(x)/x]x∈X (f : X → TΣY)

The TΣ-algebras 〈C, c〉 are in bijective correspondence with Σ-algebras on the
same carrier. These are pairs 〈C, ⟦−⟧〉 where ⟦−⟧ assigns to each (f : A) ∈ Σ a
function ⟦−⟧ : CA → C from A-ary tuples of C elements to C. The bijection is
given by setting ⟦f⟧ 〈ξa〉a∈A to be c(f 〈ξa〉a∈A).

eff’s denotational semantics is given by extending mam’s semantics as fol-
lows. Given a type variable assignment θ, we assign to each

· · · – handler type: a pair ⟦Θ `k X : Hndlr⟧ = 〈C, f〉 consisting of an algebra C
and a function f into the |C| carrier of this algebra.

Fig. 11(a) presents how eff extends mam’s denotational semantics for types.
Each effect E gives rise to a signature whose operation symbols are the opera-
tion names in E tagged by an element of the denotation of the corresponding
parameter type. This signature gives rise to the monad E denotes. When E = ∅,
the induced signature is empty, and gives rise to the identity monad, and so this
semantic function extends mam’s semantics. Handlers handling E-computations
returning A-values using E′-computations of type C denote a pair. Its first com-
ponent is an ⟦E⟧θ-algebra structure over the carrier |⟦C⟧θ|, which may have
nothing to do with the ⟦E′⟧θ-algebra structure ⟦C⟧θ already possesses. The sec-
ond component is a function from ⟦A⟧θ to the carrier |⟦C⟧θ|.

Fig. 11(b) presents how eff extends mam’s denotational semantics for terms.
The denotation of an operation call op makes use of the fact that the effect anno-
tation E contains the operation name op. Consequently, the resulting signature
contains an operation symbol opq for every q ∈ ⟦A⟧θ. The denotation of op is

On the Expressive Power of User-Defined Effects 15

then the term opq 〈a〉a∈⟦B⟧θ . The denotation of the handling construct uses the
Kleisli extension of the second component in the denotation of the handler. The
denotation of a handler term defines the TΣ-algebras by defining a Σ-algebra for
the associated signature Σ. The operation clause for op allows us to interpret
each of the operation symbols associated to op. The denotation of the return
clause gives the second component of the handler.

Effects ⟦E⟧θ B T{opp:⟦A⟧θ|(op:A→B)∈E,p∈⟦A⟧θ}
Handler types ⟦A E⇒E′

C⟧ B {⟦E⟧-algebras with carrier |⟦C⟧|} × |⟦C⟧|⟦A⟧
(a) Type denotation extensions to Fig. 6

Computation terms · · · ⟦op V ⟧θ (γ) B op⟦V ⟧θγ 〈return a〉a∈⟦B⟧θ⟦handle M with H⟧θ (γ) B ⟦M⟧θ (γ)�=f where ⟦H⟧ (γ) = 〈D, f : ⟦A⟧→ |⟦C⟧|〉
Handler terms ⟦{return x 7→M}] {op p k 7→ Nop}op⟧θ (γ) B 〈D, f〉

with D’s algebra structure and f given by:
⟦opq⟧D 〈ξa〉a B ⟦Nop⟧θ (γ[q/p, 〈ξa〉a/k] f(a) B ⟦M⟧θ (γ[a/x])

(b) Term denotation extensions to Fig. 7

Fig. 11: eff denotational semantics

We use the lifting in Kammar’s [28] thesis to prove adequacy:

Theorem 3 (adequacy). Denotational equivalence implies contextual equiva-
lence: for all Γ `E P,Q : X, if ⟦P ⟧ = ⟦Q⟧ then P ' Q.

As a consequence, we obtain a new proof for Kammar et al.’s [30] strong
normalisation — well-typed programs that handle all their effects return a value:

Corollary 4 (soundness and strong normalisation). All well-typed, effect-
free closed ground returners must reduce to a normal form: for all `∅ M : FG
there exists some ; ` V : G such that ⟦return V ⟧ = ⟦M⟧ and M ? return V .

Our Abella formalisation includes additional progress and preservation theorems.

4 Monadic reflection: mon

Languages that use monads as an abstraction for user-defined effects employ
other mechanisms to support them, usually an overloading resolution mecha-
nism, such as type-classes in Haskell and Coq, and functors/implicits in OCaml.
As a consequence, such accounts for monads do not study them as an abstraction
in their own right, and are intertwined with implementation details and concepts
stemming from the added mechanism. Filinski’s [17–20] work on monadic reflec-
tion serves precisely this purpose: a calculus in which user-defined monads stand
independently.

16 Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar

T ::= monads
where {return x =M ; return clause

y�=f = N} bind clause

M,N ::= . . . computations
| µ̂(N) reflect
| [N]T reify

(a) Syntax extensions to Fig. 2

Frames and contexts · · · F ::= B | [[]]T computation frames · · ·
Beta reduction · · · for every T = where {λx .Nu;λy .λf.Nb}:

(ret) [return V]T β Nu[V/x]
(reflection) [H[µ̂(N)]]T β Nb[{N}/y , {(λx.[H[return x]]T)}/f]

(b) Operational semantics extensions to Fig. 3

Fig. 12: mon

Fig. 12(a) presents mon’s syntax. The where {return x = Nu; y�=f = Nb}
construct binds x in the term Nu and y and f in Nb. The term Nu describes
the unit and the term Nb describes the Kleisli extension/bind operation. We
elaborate on the choice of the keyword where when we describe mon’s type
system. Using monads, the programmer can write programs as if the new effect
was native to the language. We call the mode of programming when the effect
appears native the opaque view of the effect. In contrast, the transparent mode
occurs when the code can access the implementation of the effect directly in
terms of its defined monad. The reflect construct µ̂(N) allows the programmer
to graft code executing in transparent mode into a block of code executing in
opaque mode. The reify construct [N]T turns a block of opaque code into the
result obtained by the implementation of the effect.

Fig. 12(b) describes the extension to the operational semantics. The ret tran-
sition uses the user-defined monadic return to reify a value. To explain the
reflection transition, note that the hoisting context H captures the continuation
at the point of reflection, with an opaque view of the effect T . The reflected
computation N views this effect transparently. By reifying H, we can use the
user-defined monadic bind to graft the two together.

Fig. 13 presents the natural extension to mam’s kind and type system for
monadic reflection. Effects are a stack of monads. The empty effect is the identity
monad. A monad T = where {return x = M ; y�=f = N} can be layered on
top of an existing stack E:

E ≺ instance monad (α.C) where {return x = M ; y�=f = N}

The intention is that the type constructor C[−/α] has an associated monad
structure given by the bodies of the returnM and the bind N , and can use effects
from the rest of the stack E. To be well-kinded, C must be an E-computation,
and T needs to be a well-typed monad, i.e., the return should have type C[A/α]
when substituted for some value V : A, and the bind should implement a Kleisli
extension operation.

The choice of keywords for monads and their types is modelled on their syntax
in Haskell. We stress that our calculus does not, however, include a type-class

On the Expressive Power of User-Defined Effects 17

E ::= . . . | E ≺ instance monad (α.C)T layered monad

(a) Kinds and types extension to Fig. 4

Effect kinding · · ·
Θ,α `k C : CompE `m T : E ≺ instance monad (α.C)T

Θ `k E ≺ instance monad (α.C)T : Eff

Monad typing Θ `m T : E

Θ,α; x : α `E Nu : C Θ,α, β; y : UEC, f : UE(α→ C[β/α]) `E Nb : C[β/α]

Θ `m where {return x = Nu; y�=f = Nb} :

E ≺ instance monad (α.C)where {return x = Nu; y�=f = Nb}

Computation typing · · ·
Θ;Γ `E N : C[A/α]

Θ;Γ `E≺instance monad(α.C)T µ̂(N) : FA

Θ `m T : E ≺ instance monad (α.C)T Θ;Γ `E≺instance monad(α.C)T N : FA

Θ;Γ `E [N]T : C[A/α]
(b) Typing extensions to Fig. 5

Fig. 13: mon kind and type system

mechanism. The type of a monad contains the return and bind terms, which
means that we need to check for equality of terms during type-checking, for
example, to ensure that we are sequencing two computations with compatible
effect annotation. For our purposes, α-equivalence suffices. This need comes from
our choice to use structural, anonymous, monads. In practice, monads are given
nominally, and two monads are compatible if they have exactly the same name.
It is for this reason also that the bodies of the return and the bind operations
must be closed, apart from their immediate arguments. If they were allowed
to contain open terms, types in type contexts would contain these open terms
through the effect annotations in thunks, requiring us to support dependently-
typed contexts. The monad abstraction is parametric, so naturally requires the
use of type variables, and for this reason we include type variables in the base
calculus mam. We choose monads to be structural and closed to keep them
closer to the other abstractions and to reduce the additional lingual constructs
involved.

Our calculus deviates from Filinski’s [20] in the following ways. First, our
effect definitions are local, whereas Filinski’s allows nominal declaration of new
effects only at the top level. Because we do not allow the bodies of the return of
the bind to contain open terms, this distinction between the two calculi is minor.
As a consequence, effect definitions in both calculi are static, and the monadic
bindings can be resolved at compile time. Filinski’s calculus also includes a so-
phisticated effect-basing mechanism, that allows a computation to immediately
use, via reflection, effects from any layer in the hierarchy below it, whereas our
calculus only allows reflecting effects from the layer immediately below. In the
presence of Filinski’s type system, this deviation does not signficantly change the

18 Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar

expressiveness of the calculus: the monad stack is statically known, and, having
access to the type information, we can insert multiple reflection operations and
lift effects from lower levels into the current level.

As with eff, mon’s ground types are the same as mam’s, and we omit the
full definition of program contexts. While we can define an observational equiva-
lence relation in the same way as for mam and eff, we will not do so. Monads as
a programming abstraction have a well-known conceptual complication — user-
defined monads must obey the monad laws. These laws are a syntactic counter-
part to the three equations in the definition of (set-theoretic/categorical) mon-
ads. The difficulty involves deciding what equality between such terms means.
The natural candidate is observational equivalence, but as the contexts can them-
selves define additional monads, it is not straightforward to do so. Giving an
acceptable operational interpretation to the monad laws is an open problem in
this area. We avoid it by giving a partial denotational semantics to mon.

Effects · · · ⟦E ≺ instance monad (α.C)NuNb⟧θ B 〈T, return,�=〉 where

TX B
∣∣∣⟦C⟧(θ[α 7→X])

∣∣∣ returnX B ⟦Nu⟧(θ[α7→X]) : X → TX

�=X,Y B ⟦Nb⟧(θ[α1 7→X,α2 7→Y]) : TX → (X → TY)→ TY.

provided these form a monad.
(a) Type denotation extensions to Fig. 6

Monads ⟦Θ `m T : E⟧ B ⟦E⟧
Computation terms · · · ⟦[N]T ⟧ (γ) B ⟦N⟧ (γ) ⟦µ̂(N)⟧ (γ) B ⟦N⟧ (γ)

(b) Term denotation extensions to Fig. 7

Fig. 14: mon denotational semantics

We extend mam’s denotational semantics to mon as follows. Given a type
variable assignment θ, we assign to each

· · · – monad type and effect: a monad ⟦Θ `m T : E⟧ θ = ⟦Θ `k E : Eff⟧ θ, if the
sub-derivations have well-defined denotations, and this data does indeed form
a set-theoretic monad.

Consequently, the denotation of any derivation is undefined if at least one of
its sub-derivations has undefined semantics. Moreover, the definition of kinding
judgement denotations now depend on term denotation.

Fig. 14(a) shows how mon extends mam’s denotational semantics for types.
The assigned type-constructor, and user-defined return and bind, if well-defined,
have the appropriate type to give the structure of a monad, and the semantics’s
definition posits they do. To appreciate the extension to the term semantics
from Fig. 14(b), recall that: T⟦E≺instance monad(α.C)T ⟧X =

∣∣∣⟦C⟧(θ[α 7→X])

∣∣∣ and

On the Expressive Power of User-Defined Effects 19

therefore, semantically, we can view any computation of type and kind:

Θ `k FA : CompE≺instance monad(α.C)T

as an E-computation of type C[A/α].
We define a proper derivation to be a derivation whose semantics is well-

defined for all type variable assignments, and a proper term or type to be a
term or type that has a proper derivation. Like the previous cases, we can now
extend the denotational semantics to give a partial semantics to program con-
text derivations. We define proper contexts, and, unlike the previous cases, the
definition of observational equivalence ' is only applicable to proper terms and
restricted to proper contexts.

Theorem 5 (adequacy). Denotational equivalence implies contextual equiva-
lence: for all proper derivations Θ;Γ `E P,Q : X, if ⟦P ⟧ = ⟦Q⟧ then P ' Q.

Consequently:

Corollary 6 (soundness and strong normalisation). All well-typed closed
ground returners must reduce to a unique normal form: for all ; `∅ M : FG
there exists some ; ` V : G such that ⟦return V ⟧ = ⟦M⟧ and M ? return V
and, moreover, all intermediate steps are proper terms.

Unlike for mam and eff, as this corollary does not apply to improper terms,
our Abella formalisation of progress and preservation theorems substantially
improves on this result.

In contrast to eff the semantics for mon is finite:

Lemma 7 (Finite denotation property). For every type variable assignment
θ = 〈Xα〉α∈Θ of finite sets, every proper types A and C denote finite sets.

5 Delimited control: del

Delimited control operators can implement algorithms with sophisticated control
structure, such as tree-fringe comparison, and other control mechanisms, such
as coroutines [13] yet enjoy an improved meta-theory in comparison to their
undelimited counterparts [16]. The operator closest in spirit to handlers, S0

pronounced “shift zero”, was introduced by Danvy and Filinski [9] as part of a
systematic study continuation-passing-style conversion.

Fig. 15(a) presents the extension del. The construct S0k.M captures the
current continuation and binds it to k, and replaces it with M . The construct
〈M |x.N〉, which we will call “reset”, delimits any continuations captured by shift
inside M . Once M runs its course and returns a value, this value is bound to
x and N executes. For delimited control cognoscenti this construct is known as
“dollar”, and it is capable of macro expressing the entire CPS hierarchy [46].

The extension to the operational semantics in Fig. 15(b) reflects this descrip-
tion. The ret rule states that once the delimited computation returns a value,

20 Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar

M,N ::= . . . | S0k.M shift-0 | 〈M |x.N〉 reset

(a) Syntax extensions to Fig. 2

Frames and contexts · · · F ::= . . . | 〈[]|x.N〉 computation frame
Beta reduction· · · (ret) 〈(return V)|x.M〉 β M [V/x]

(capture) 〈H[S0k.M]|x.N〉 β M [λy. 〈H[return y]|x.N〉/k]
(b) Operational semantics extensions to Fig. 3

Fig. 15: del

this value is substituted in the remainder of the reset computation. For the
capture rule, the definition of hoisting contexts guarantees that in the reduct
〈H[S0k.M]|x.N〉 there are no intervening resets in H, and as a consequence H
is the delimited continuation of the evaluated shift. After the reduction takes
place, the continuation is re-wrapped with the reset, while the body of the shift
has access to the enclosing continuation. If we were to, instead, not re-wrap the
continuation with a reset, we would obtain the control/prompt-zero operators,
cf. Shan’s [57] analysis of macro expressivity relationships between these two,
and other, variations on delimited control.

E ::= · · · | E,C enclosing continuation type

(a) Kinds and types extensions to Fig. 4

Effect kinding · · ·
Θ `k E : Eff Θ `k C : CompE

Θ `k E,C : Eff
Computation typing

· · ·
Θ;Γ, k : UE(A→ C) `E M : C

Θ;Γ `E,C S0k.M : FA

Θ;Γ `E,C M : FA Θ;Γ, x : A `E N : C

Θ;Γ `E 〈M |x.N〉 : C

(b) Kinding and typing extensions to Fig. 5

Fig. 16: del kind and type system

Fig. 16 presents the natural extension to mam’s kind and type system for
delimited control. It is based on Danvy and Filinski’s [8] description, who were
the first to propose a type system for delimited control. Effects are now a stack of
computation types, with the empty effect standing for the empty stack. The top
of this stack is the return type of the currently delimited continuation. Thus,
as Fig. 16(b) presents, a shift pops the top-most type off this stack and uses
it to type the current continuation, and a reset pushes the return value of the
delimited returner onto it.

In this type system, the return type of the continuation remains fixed inside
every reset. Ongoing work on type systems for delimited control (see [34] for

On the Expressive Power of User-Defined Effects 21

a substantial list of references) focuses on type systems that allow answer type
modification, as these can express typed printf and type-state computation (see,
e.g., Asai’s analysis [1]).

Our Abella formalisation establishes:

Theorem 8 (Safety).Well-typed programs don’t go wrong: for all closed, ground
returners Θ;`∅ M : FG, either M N for some Θ;`∅ N : FG or else
M = return V for some Θ; ` V : G.

Using the translation from del to mon we present in the next section, del
inherits the strong normalisation property from mon.

6 Macro translations

Felleisen [14] argues that the usual notions of computability and complexity
reduction do not capture the expressiveness of general-purpose programming
languages. The Church-Turing thesis and its extensions assert that any reason-
ably expressive model of computation can be efficiently reduced to any other
reasonably expressive model of computation. As many standard algorithms used
in compilation and interpretation, such as Hindley-Milner type inference [31,
45], already have worst-case exponential time complexity, we can reduce every
general-purpose calculus into another without changing the asymptotic com-
plexity of compilation or interpretation. As an alternative, Felleisen introduces
macro translation: a local reduction of a language extension, in the sense that
it is homomorphic with respect to the syntactic constructs, and conservative, in
the sense that it does not change the core language. We extend this concept to
local translations between conservative extensions of a shared core.

Out of the six possible macro-translations, the ideas behind the following four
already appear in the literature: del→mon [61], mon→del [17], del→eff [5],
and eff→mon [30]. We use del→mon and its meta-theoretic properties in the
sequel and so recall it in prose alongside the full details of the new translations
mon→eff and eff→del. The Abella formalisation contains the full details of
the six translations and their correctness proofs.

Three translations formally simulate the source calculus by the target calcu-
lus: mon→del, del→eff, and mon→eff. The other translations, eff→mon,
eff→del, and del→mon introduce suspended redexes that invalidate simula-
tion on the nose. These are analogous to administrative redexes in continuation-
passing-style (CPS) transformations, and may be eliminated by more sophis-
ticated translations. Danvy et al. [10] give a general survey of compact CPS
transformations. To keep our translations simple, we adopt a relaxed variant
of simulation: for each reduction relation , let cong be the smallest relation
containing that is closed under the term formation constructs. We say that
a translation M 7→ M is a simulation up to congruence if for every reduction
M N in the source calculus we have M +

cong N in the target calculus.

22 Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar

Translation notation We define translations S→T from each source calculus S
to each target calculus T. We allow translations to be hygienic and introduce
fresh binding occurrences. We write M 7→ M for the translation at hand. We
include only the non-homomorphic cases in the definition of each translation.

Delimited continuations as monadic reflection. We adapt Wadler’s [61] analysis
of delimited control using monads. Let Cont be the continuation monad [47]:

Cont B where {return x = λc.c! x;m�=f = λc.m! {λy .f ! y c}}

Lemma 9. For all Θ `k E : Eff , Θ `k C : CompE, the Cont monad is proper:

Θ `m Cont : E ≺ instance monad (α.UE(α→ C)→ C) Cont

Using Cont, define the macro translation del→mon as follows:

S0k.M := µ̂(λk.M) 〈M |x .N〉 := [M]Cont {λx .N}

Theorem 10 (del→mon correctness).mon simulates delup to congruence:

M N =⇒ M + N

del→mon extends to a macro translation at the type level:

E,C B E ≺ instance monad
(
α.UE(α→ C)→ C

)
Cont

Theorem 11 (del→mon preserves typeability). Every well-typed del phrase
Θ;Γ `E P : X translates into a proper well-typed mon phrase: Θ;Γ `E P : X.

We use this result to extend the meta-theory of del:

Corollary 12 (del’s strong normalisation). All well-typed closed ground
returners in del must reduce to a unique normal form: if ; `∅ M : FG then
there exists V such that ; ` V : G and M ? return V .

Monadic reflection as effect handlers. We simulate reflection as an operation
and reification as a handler. Formally, for every anonymous monad T given by
where {return x = Nu; y�=f = Nb} we define mon→eff as follows:

T B {return x 7→ Nu}] {reflect y f 7→ Nb} [M]T B handle M with T
µ̂(N) B reflect {N}

Theorem 13 (mon→eff correctness). eff simulates mon on the nose:

M N =⇒ M + N

mon→eff does not preserve typeability. Define the environment/reader monad:

Reader B where {return x = λe.return x ;m�=f = λe.x ← m! e; f ! x}
`m Reader : ∅ ≺ instance monad (α.bit× U∅(bit→ F bit)→ Fα) Reader

On the Expressive Power of User-Defined Effects 23

Then the following proper computation is a ground return of type F bit in mon

[b← µ̂({λe.case e of (b, f)→ return b});
f ← µ̂({λe.case e of (b, f)→ return f});
f ! b]Reader (injtrue (), {λb.return b})

but its translation into eff is not typeable: reflection can appear at any type,
whereas a single operation is monomorphic. We hypothesise that this observation
can be used to prove no macro translation proper mon→typeable eff exists.

Effect handlers as delimited continuations. Define eff→del as follows:

handle M with

{return x 7→ Nret}
]{op1 p1 k1 7→ N1}
] . . .
]{opn pn kn 7→ Nn}

B

〈
M
∣∣x .λh.Nret

〉
{λy .case y of {

injop1
(p1, k1)→ N1

...
injopn (pn, kn)→ Nn}}

op V B S0k.λh.h! (injop (V , {λy .k! y h}))

We simulate handling by an application of a reset. The continuation of the
reset contains the return clause. We apply this reset to a dispatcher function
that invokes the corresponding operation clause based on the operation encoded
in its argument. We simulate operation invocation by capturing the current
continuation and passing it to the current dispatcher together with the parameter
with the operation encoded.

Theorem 14 (eff→del correctness). del simulates eff up to congruence:

M N =⇒ M +
cong N

The eff→del translation is simpler than Kammar et al.’s [30] who use a global
higher-order memory cell storing the handler stack.

Theorem 15. The following macro translations do not exist:
– typeable eff→proper mon satisfying: M N =⇒ M ' N .
– typeable eff→typeable del satisfying: M N =⇒ M ' N .

Our proof of the first part hinges on the finite denotation property (Lemma 7).
Briefly, assume to the contrary that there was such a translation. Consider a
single effect operation symbol tick : 1→ 1 and the terms:

tick0 B return () tickn+1 B tick(); tickn

All these terms have the same type, and by the homomorphic property of the
hypothesised translation, their translations all have the same type. By the fi-
nite denotation property there are two observationally equivalent translations
and by virtue of a macro translation the two original terms are observationally
equivalent in eff. But every distinct pair of tickn terms is observationally dis-
tinguishable using an appropriate handler. See Forster’s thesis [21] for the full
details. The second part follows from Theorem 11.

24 Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar

7 Conclusion and further work

We have given a uniform family of formal calculi expressing the common abstrac-
tions for user-defined effects: effect handlers, monadic reflection, and delimited
control together with their natural type-and-effect systems. We have used these
calculi to formally analyse the relative expressive power of the abstractions:
monadic reflection and delimited control have equivalent expressivity; both are
equivalent in expressive power to effect handlers when types are not taken into
consideration; and neither abstraction can macro-express effect handlers and
preserve typeability. We have formalised the more syntactic aspects of our work
in the Abella proof assistant, and have used set-theoretic denotational semantics
to establish inexpressivity and strong-normalisation results.

Further work abounds. We would like to extend the natural type systems
such that each translation preserves typeability. We hypothesise that adding
polymorphic effect types would allow effect handlers to express delimited control,
and that recursive types would allow monadic reflection and delimited control
to express effect handlers.

We are also interested in analysing global translations between these ab-
stractions. In particular, while monadic reflection and delimited control allow
reflection/shifts to appear anywhere inside a piece of code, in practice, library
designers define a fixed set of primitives using reflection/shifts and only ex-
pose those primitives to users. This observation suggests calculi in which each
reify/reset is accompanied by declarations of this fixed set of primitives. We
conjecture that mon and del can be simulated on the nose via a global trans-
lation into the corresponding restricted calculus, and that the restricted calculi
can be macro translated into eff while preserving typeability. Such two-stage
translations would give a deeper reason why so many examples typically used for
monadic reflection and delimited control can be directly recast using effect han-
dlers. Other global pre-processing may also eliminate administrative reductions
from our translations and establish simulation on the nose.

The type system for delimited control we consider, while natural, is rather re-
strictive. We hope future extensions that support answer type modification (see,
e.g., [1, 36]) can inform the design of more expressive type systems for effect han-
dlers and monadic reflection, perhaps accounting for type-state [2] and session
types [33]. In practice, effect systems are often extended with sub-effecting or
effect polymorphism [44, 4, 52, 41, 26, 43]. To these we add effect-forwarding [30]
and rebasing [20]. It would be interesting to investigate how such features affect
expressivity.

We have taken the perspective of a programming language designer deciding
which programming abstraction to select for expressing user-defined effects. In
contrast, Schrijvers et al. [56] take the perspective of a library designer for a
specific programming language, Haskell, and compare the abstractions provided
by libraries based on monads with those provided by effect handlers. They argue
that both libraries converge on the same interface for user-defined effects via
Haskell’s type-class mechanism.

On the Expressive Power of User-Defined Effects 25

Felleisen [14] treats macro reduction from an extended language to a re-
stricted language abstractly, proving meta-theoretic results about all such re-
ductions. In contrast, we treat concrete macro reductions between different ex-
tensions of a base calculus. We leave the abstract treatment of this generalisation
to further work.

Relative expressiveness results are subtle, and the potentially negative results
that are hard to establish make them a risky line of research. We view denota-
tional models as providing a fruitful method for establishing such inexpressivity
results. It would be interesting to connect our work with that of Laird [38, 39,
37], who analyses the macro-expressiveness of a hierarchy of combinations of
control operators and exceptions using game semantics, and in particular uses
such denotational techniques to show certain combinations cannot macro ex-
press other combinations. We would like to apply similar techniques to compare
the expressive power of local effects such as ML-style reference cells with effect
handlers.

References

1. Asai, K.: On typing delimited continuations: three new solutions to the printf
problem. Higher-Order and Symbolic Computation 22(3), 275–291 (2009)

2. Atkey, R.: Parameterised notions of computation. J. Funct. Program. 19(3-4), 335–
376 (2009)

3. Barr, M., Wells, C.: Toposes, triples, and theories. Grundlehren der mathematis-
chen Wissenschaften, Springer-Verlag (1985)

4. Bauer, A., Pretnar, M.: An effect system for algebraic effects and handlers. Logical
Methods in Computer Science 10(4) (2014)

5. Bauer, A., Pretnar, M.: Programming with algebraic effects and handlers. J. Log.
Algebr. Meth. Program. 84(1), 108–123 (2015)

6. Bulwahn, L., et al.: Imperative Functional Programming with Isabelle/HOL, pp.
134–149. Springer (2008)

7. Danvy, O.: An Analytical Approach to Programs as Data Objects. Dsc dissertation,
Department of Computer Science, University of Aarhus (2006)

8. Danvy, O., Filinski, A.: A functional abstraction of typed contexts. Tech. Rep.
89/12, DIKU (1989)

9. Danvy, O., Filinski, A.: Abstracting control. In: LISP and Functional Program-
ming. pp. 151–160 (1990)

10. Danvy, O., et al.: On one-pass CPS transformations. J. Funct. Program. 17(6),
793–812 (2007)

11. Doczkal, C.: Strong normalization of CBPV. Tech. rep., Saarland University (2007)
12. Doczkal, C., Schwinghammer, J.: Formalizing a strong normalization proof for

moggi’s computational metalanguage. In: LFMTP. pp. 57–63. ACM (2009)
13. Felleisen, M.: The theory and practice of first-class prompts. In: Ferrante, J., Mager,

P. (eds.) POPL. pp. 180–190. ACM Press (1988)
14. Felleisen, M.: On the expressive power of programming languages. Sci. Comput.

Program. 17(1-3), 35–75 (1991)
15. Felleisen, M., Friedman, D.P.: A reduction semantics for imperative higher-order

languages, pp. 206–223. Springer (1987)

26 Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar

16. Felleisen, M., et al.: Abstract continuations: A mathematical semantics for handling
full jumps. In: LISP and Functional Programming. pp. 52–62 (1988)

17. Filinski, A.: Representing monads. In: POPL. ACM (1994)
18. Filinski, A.: Controlling effects. Ph.D. thesis, School of Computer Science, Carnegie

Mellon University, Pittsburgh, Pennsylvania (May 1996)
19. Filinski, A.: Representing layered monads. In: POPL. ACM (1999)
20. Filinski, A.: Monads in action. SIGPLAN Not. 45(1), 483–494 (Jan 2010)
21. Forster, Y.: On the expressive power of effect handlers and monadic reflection.

Tech. rep., University of Cambridge (2016)
22. Gacek, A.: The Abella interactive theorem prover (system description). In: Ar-

mando, A., et al. (eds.) IJCAR. vol. 5195, pp. 154–161. Springer (2008)
23. Gacek, A.: A Framework for Specifying, Prototyping, and Reasoning about Com-

putational Systems. Ph.D. thesis, University of Minnesota (September 2009)
24. Gordon, A.D. (ed.): POPL 2016, to appear. ACM Press (2017)
25. Hermida, C.: Fibrations, logical predicates and related topics. Ph.D. thesis, Uni-

versity of Edinburgh, 1993 (1993)
26. Hillerström, D., Lindley, S.: Liberating effects with rows and handlers. In: Chap-

man, J., Swierstra, W. (eds.) TyDe. pp. 15–27 (September 2016)
27. Hutton, G., Meijer, E.: Monadic parsing in haskell. J. Funct. Program. 8(4), 437–

444 (1998)
28. Kammar, O.: An Algebraic Theory of Type-and-Effect Systems. Ph.D. thesis, Uni-

versity of Edinburgh (2014)
29. Kammar, O., Plotkin, G.D.: Algebraic foundations for effect-dependent optimisa-

tions. In: POPL. ACM (2012)
30. Kammar, O., et al.: Handlers in action. SIGPLAN Not. 48(9), 145–158 (Sep 2013)
31. Kanellakis, P.C., Mitchell, J.C.: Polymorphic unification and ML typing. In: POPL.

pp. 105–115. ACM Press (1989)
32. Katsumata, S.: Parametric effect monads and semantics of effect systems. SIG-

PLAN Not. 49(1), 633–645 (Jan 2014)
33. Kiselyov, O.: Parameterized extensible effects and session types (extended ab-

stract). In: Chapman, J., Swierstra, W. (eds.) TyDe. pp. 41–42 (2016)
34. Kiselyov, O., Shan, C.: A substructural type system for delimited continuations.

In: TLCA. pp. 223–239 (2007)
35. Kiselyov, O., et al.: Extensible effects: an alternative to monad transformers. In:

Haskell. pp. 59–70. ACM (2013)
36. Kobori, I., Kameyama, Y., Kiselyov, O.: Answer-type modification without tears:

Prompt-passing style translation for typed delimited-control operators. In: WoC
2015. EPTCS, vol. 212, pp. 36–52 (2015)

37. Laird, J.: Combining control effects and their models. Annals of Pure and Applied
Logic (2016), to appear

38. Laird, J.: Exceptions, continuations and macro-expressiveness. In: ESOP. pp. 133–
146 (2002)

39. Laird, J.: Combining and relating control effects and their semantics. In: COS. pp.
113–129 (2013)

40. Landin, P.J.: The mechanical evaluation of expressions. The Computer Journal
6(4), 308–320 (1964)

41. Leijen, D.: Type directed compilation of row-typed algebraic effects. In: Gordon
[24]

42. Levy, P.B.: Call-By-Push-Value: A Functional/Imperative Synthesis, Semantics
Structures in Computation, vol. 2. Springer (2004)

On the Expressive Power of User-Defined Effects 27

43. Lindley, S., McBride, C., McLaughlin, C.: Do be do be do. In: Gordon [24]
44. Lucassen, J.M., Gifford, D.K.: Polymorphic effect systems. In: POPL. pp. 47–57.

ACM Press (1988)
45. Mairson, H.G.: Deciding ML typability is complete for deterministic exponential

time. In: Allen, F.E. (ed.) POPL. pp. 382–401. ACM Press (1990)
46. Materzok, M., Biernacki, D.: A dynamic interpretation of the CPS hierarchy. In:

Jhala, R., Igarashi, A. (eds.) APLAS. LNCS, vol. 7705, pp. 296–311. Springer
(2012)

47. Moggi, E.: Computational lambda-calculus and monads. In: (LICS. pp. 14–23.
IEEE Computer Society (1989)

48. Plotkin, G., Pretnar, M.: A logic for algebraic effects. In: LICS. pp. 118–129 (2008)
49. Plotkin, G.D., Power, J.: Notions of computation determine monads. In: FoSSaCS.

Springer-Verlag (2002)
50. Plotkin, G.D., Power, J.: Algebraic operations and generic effects. Appl. Categ.

Structures 11(1), 69–94 (2003)
51. Plotkin, G.D., Pretnar, M.: Handlers of algebraic effects. In: ESOP. Springer-Verlag

(2009)
52. Pretnar, M.: Inferring algebraic effects. Logical Methods in Computer Science 10(3)

(2014)
53. Pretnar, M.: An introduction to algebraic effects and handlers. invited tutorial

paper. Electr. Notes Theor. Comput. Sci. 319, 19–35 (2015)
54. Reynolds, J.C.: Theories of Programming Languages. Paperback re-issue, Cam-

bridge University Press (2009)
55. Schrijvers, T., Tack, G., Wuille, P., Samulowitz, H., Stuckey, P.J.: Search combi-

nators. Constraints 18(2), 269–305 (2013)
56. Schrijvers, T., et al.: Monad transformers and modular algebraic effects. Tech. rep.,

University of Leuven (2016)
57. Shan, C.: A static simulation of dynamic delimited control. Higher-Order and Sym-

bolic Computation 20(4), 371–401 (2007)
58. Sinkovics, Á., Porkoláb, Z.: Implementing monads for C++ template metapro-

grams. Science of Computer Programming 78(9), 1600 – 1621 (2013)
59. Swierstra, W.: Data types à la carte. J. Funct. Program. 18(4), 423–436 (2008)
60. Wadler, P.: Comprehending monads. In: LISP and Functional Programming. pp.

61–78 (1990)
61. Wadler, P.: Monads and composable continuations. Lisp and Symbolic Computa-

tion 7(1), 39–56 (1994)
62. Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Inf. Comput.

115(1), 38–94 (1994)
63. Ziliani, B., et al.: Mtac: A monad for typed tactic programming in Coq. J. Funct.

Program. 25 (2015)

