
Do Be Do Be Do

Sam Lindley
The University of Edinburgh

Conor McBride
University of Strathclyde

Craig McLaughlin
The University of Edinburgh

Abstract
We explore the design and implementation of Frank, a strict func-
tional programming language with a bidirectional effect type sys-
tem designed from the ground up around a novel variant of Plotkin
and Pretnar’s effect handler abstraction.

Effect handlers provide an abstraction for modular effectful pro-
gramming: a handler acts as an interpreter for a collection of com-
mands whose interfaces are statically tracked by the type system.
However, Frank eliminates the need for an additional effect han-
dling construct by generalising the basic mechanism of functional
abstraction itself. A function is the special case of a Frank opera-
tor that interprets no commands. Moreover, Frank’s operators can
be multihandlers which simultaneously interpret commands from
several sources at once, without disturbing the direct style of func-
tional programming with values.

Effect typing in Frank employs a novel form of effect polymor-
phism which avoids all mention of effect variables in source code.
This is achieved by propagating an ambient ability inwards, rather
than accumulating unions of potential effects outwards.

We introduce Frank by example, and then give a formal ac-
count of the Frank type system and its semantics. We introduce
Core Frank by elaborating Frank multihandlers into functions, case
expressions, and unary handlers, and then give a sound small-step
operational semantics for Core Frank.

Programming with effects and handlers is in its infancy. We con-
tribute an exploration of future possibilities, particularly in combi-
nation with other forms of rich type system.

1. Introduction
Shall I be pure or impure?

—Philip Wadler

We say ‘Yes.’: this is a choice to make locally. We introduce
Frank, an applicative language where the ambient ability to ex-
press ‘impure’ computations is open to renegotiation, based on
Plotkin and Power’s algebraic effects [30–33], in conjunction with
Plotkin and Pretnar’s handlers for algebraic effects [34, 35]—a rich
foundation for effectful programming. By separating effect inter-
faces from their implementation, algebraic effects offer a high de-
gree of modularity. Programmers can express effectful programs

[Copyright notice will appear here once ’preprint’ option is removed.]

independently of the concrete interpretation of their effects. A han-
dler gives one interpretation of the effects of a computation.

Frank programs are written in direct style in the spirit of effect
type systems [22, 43]. Frank operators generalise functions to han-
dle effects. An effect handler acts as an interpreter for a specified
set of commands whose interfaces are statically tracked by the type
system. A function is the special case of an operator whose handled
command set is empty.

The contributions of this paper are:

• Frank, a strict functional programming language featuring a
bidirectional effect type system, effect polymorphism, and ef-
fect handlers;

• a novel approach to effect polymorphism which avoids all men-
tion of effect variables, crucially relying on the observation that
one must always instantiate the effects of a function being ap-
plied with the current ambient ability;

• operators as both multihandlers for handling multiple compu-
tations over distinct effect sets simultaneously and as functions
acting on values;

• a description of pattern matching compilation from Frank into
a core language, Core Frank;

• a straightforward small-step operational semantics for Core
Frank and a proof of type soundness;

• an exploration of future research, combining effect-and-handlers
programming with substructural typing, dependent types and
totality.

Whilst we have implemented and learned from various proto-
types of Frank, we do not yet have a full implementation matching
the current system described in the paper.

A number of other languages and libraries are built around ef-
fect handlers and algebraic effects. Bauer and Pretnar’s Eff [4] lan-
guage is an ML-like language extended with effect handlers. A sig-
nificant difference between Frank and the original version of Eff is
that the latter provides no support for effect typing. Recently Bauer
and Pretnar have designed an effect type system for Eff [3]. Their
implementation [36] supports Hindley-Milner type inference, and
the type system incorporates effect sub-typing. In contrast, Frank
uses bidirectional type inference, and avoids sub-typing altogether.

Kammar et al [15] describe a number of effect handler libraries
for languages ranging from Racket, to SML, to Haskell. Apart
from the Haskell library, these other libraries have no effect typing
support. The Haskell library takes advantage of type classes to
simulate an effect type system not entirely dissimilar to that of
Frank. As Haskell is lazy, the Haskell library cannot be used to
write direct-style effectful programs - one must instead adopt a
monadic style. Furthermore, although there are a number of ways
of almost simulating effect type systems in Haskell, none is without
its flaws. Kiselyov and collaborators [16, 17] have designed another

1 2016/7/16

Haskell library for effect handlers, making a different collection of
design choices.

Brady [5] has designed a library and DSL for programming with
effects in his dependently typed Idris language. Like the Haskell
libraries, Brady’s library currently requires the programmer to write
effectful code in a monadic style.

The rest of the paper is structured as follows. Section 2 in-
troduces Frank by example. Section 3 presents a type system for
Frank. Section 4 describes how to elaborate multihandlers and pat-
tern matching into Core Frank, a language of plain call-by-value
functions, explicit case analysis and unary handler constructs. Sec-
tion 5 gives a semantics for Core Frank and proves types sound-
ness. Section 6 discusses the means to store computations in data
structures. Section 7 outlines related work and Section 8 discusses
future work.

2. A Frank Tutorial
‘To be is to do’—Socrates.
‘To do is to be’—Sartre.
‘Do be do be do’—Sinatra.

—anonymous graffiti, via Kurt Vonnegut

Frank is a functional programming language with effects and
handlers in the style of Eff [4] controlled by a type system inspired
by Levy’s call-by-push-value [19]. Doing and Being are clearly
separated, and managed by distinguished notions of computation
and value types.

2.1 Datatypes and First-Order Functions
Concrete values live in inductive datatypes. By convention (not
compulsion), type constructors get uppercase initials, and may ap-
ply prefixed to parameters, also written uppercase. Data construc-
tors are prefix and, by convention, initially lowercase.

data Zero =
data Unit = unit
data Bool = tt | ff

data Nat = zero | suc Nat
data List X = nil | cons X (List X)

data Pair X Y = pair X Y

Note that cons is not a function and thus cannot be ‘partially
applied’.

We can write perfectly ordinary first-order functional programs
by pattern matching. Type signatures are compulsory, universally
quantifying implicitly over freely occurring type variables, and
insisting on the corresponding parametric polymorphism.

append : List X -> List X -> List X
append nil ys = ys
append (cons x xs) ys = cons x (append xs ys)

2.2 Computations in Ambient Silence
To do is to be: computations, such as functions, have computation
types, which embed explicitly into the value types: braces play the
role of ‘suspenders’ in types and values. Accordingly, we can write
typical higher-order functions.

map : {X -> Y} -> List X -> List Y
map f nil = nil
map f (cons x xs) = cons (f x) (map f xs)

So, a value type A is a datatype D A1 ... An, a suspended
computation type {C}, or a type variable X. A computation type
resembles a function type T1 -> ... -> Tn -> [I1 ... In]B

with n ports and a peg showing the ability the computation needs—
a bracketed list of enabled interfaces—and the value type it deliv-
ers. In Frank, names stand for values (a simplifying decision which
we shall re-examine in section 8). Top level definitions give names
to suspended computations, but we omit the outer braces in their
types for convenience.

Type checking separates cleanly into checking the compatibility
of value types and checking that required abilities are available.
Empty brackets may be omitted. We could have written

map : {X -> []Y} -> List X -> []List Y

but have a care: the empty bracket stands for the ambient ability,
not for pure inability.

The type of map in Frank says that whatever ability a usage re-
ceives will be offered in turn to the operator that acts on each ele-
ment. That is, we have written something like ML’s map but without
giving up control over effects, and we have written something like
Haskell’s map but acquired something like its monadic mapM, as we
shall see just as soon as we acquire nontrivial ability.

2.3 Controlling Evaluation
Frank is a call-by-value language, so we should be careful when
defining control operators. E.g., we may define a sequential com-
position operators

fst : X -> Y -> X
fst x y = x

snd : X -> Y -> Y
snd x y = y

Both arguments are evaluated (given the ambient ability), before
the one value is returned. We shall take the liberty of writing
snd x y as x; y, echoing the ML semicolon, and note its asso-
ciativity.

Meanwhile, if we want to avoid evaluation, we must do so
explicitly. This

iffy : Bool -> X -> X -> X
iffy tt t f = t
iffy ff t f = f

is the conditional expression operator which forces evaluation of
the condition and both branches, before choosing between the val-
ues. To write the traditional conditional, we must suspend:

if : Bool -> {X} -> {X} -> X
if tt t f = t!
if ff t f = f!

Again, Frank variables stand for values, but t and f are not values
of type X. Rather, what they are is suspended computations of type
{X}, but we must do one. To be is to do: the postfix ! denotes
nullary application of a suspended computation. (Other notational
possibilities exist, but we defer their discussion to section 8.)

Suspended computations are written in braces, with a choice of
zero or more pattern matching clauses separated by | symbols. In
a nullary suspension, we have one choice, which is just written as
an expression in braces, e.g.,

if fire! {launch missiles} {unit}

assuming that launch is a command permitted by the ambient
ability, granted to both branches by the silently ability-polymorphic
type of if.

Non-nullary suspensions let us simulate case-expressions inline
by reverse application

on : X -> {X -> Y} -> Y
on x f = f x

2 2016/7/16

as in this example of the short-circuited ‘and’:

shortAnd : Bool -> {Bool} -> Bool
shortAnd x c = on x { tt -> c! | ff -> ff }

2.4 Abilities Collect Interfaces; Interfaces Offer Commands
Abilities are collections of parameterised interfaces, each of which
describes a choice of commands (also known as operations, else-
where in the literature). Command types may refer to the parame-
ters of their interface but are not otherwise polymorphic. Here are
some simple interfaces.

interface Send X = send : X -> Unit

interface Receive X = receive : X

interface State S = get : S
| set : S -> Unit

interface Abort = aborting : Zero

The send command takes an argument of type X and returns a
value of type Unit. The receive command returns a value of type
X. The State interface offers get and set commands. Note that,
unlike constructors, commands are first-class values. In particular,
while Zero is uninhabited, {[Abort]Zero} contains the value
aborting. Correspondingly, we can define a polymorphic abort
which we can use whenever Abort is enabled.

abort : [Abort]X
abort! = on aborting! {}

by empty case analysis.
We may use our silent ability polymorphism nontrivially, to

make map send a list of things, one at a time:

sends : List X -> [Send X]Unit
sends xs = map send xs; unit

The reason this type checks at all is because map is implicitly
polymorphic in its effects. The bracket [Send X] demands that
the ambient ability permits at least the Send X commands. The
type of map works with any ambient ability, hence certainly those
which permit Send X, and it passes that ability to its computation
argument, which may thus be send.

However, the following does not typecheck, because Send X
has not been requested (or threatened, if you like) by the return
type of bad.

bad : List X -> Unit
bad xs = map send xs; unit

There is no effect inference in Frank. The typing rules’ con-
clusions do not accumulate the union of the proclivities of the pro-
grams in their premises. Rather, we are explicit about what the envi-
ronment makes possible—the ambient ability—and where and how
that changes.

While we retain Milner’s insight that value type polymorphism
can and should be specialised by means of unification, we do not
imagine that all implicit parameters must be found by unification.
Frank’s ability polymorphism is specialised simply by substituting
for the formal ambient ability of a given operation the actual ambi-
ent ability at each point of its use. We do not imagine that Frank can
deliver all the effect polymorphism a cunning programmer could
ever want, but we do aim to show that you can achieve quite a lot
of power without, e.g., solving constraints on row variables. Spring
the ‘parametric polymorphism means unification’ trap!

2.5 Direct Style for Monadic Programming
We work in a direct applicative style. Where the output of one
computation is used as the input to another, we may just write an
application, or a case analysis, directly. E.g., we can implement the
result of reading a list of lists until one is empty and concatenating
the result.

catter : [Receive (List a)]List a
catter! = on receive! { nil -> nil

| xs -> append xs catter! }

In Haskell, receive! would be a monadic computation unsuitable
for case analysis—its value would be extracted and named before
inspection, thus:

catter = do -- Haskell
xs <- receive
case xs of

[] -> return []
xs -> do ys <- catter; return (xs ++ ys)

The latter part of catter could perhaps be written without nam-
ing ys as (xs ++) <$> catter, or even, with ‘idiom brackets’,
(|pure xs ++ catter|), but always there is extra plumbing
whose only purpose is to tell the compiler where to parse a type as
effect value and where just as value . The choice to be frank about
the separation of effects from values in the syntax of types provides
a stronger cue to the status of each component and reduces the need
for plumbing.

We do not, however, escape the need to disambiguate doing
receive! from being receive. The choice to give names only
to values offers conceptual simplicity but forces us to pay a !
for nullary computations seldom passed as values. We revisit this
dilemma in section 8.

In the same mode, we can implement the C++ ‘increment c,
return original value’ operation as follows.

next : [State Nat]Nat
next! = fst get! (put (suc get!))

2.6 Handling by Application
In a call-by-value language a function application can be seen as a
particularly degenerate mode of coroutining between the function
and its argument. The function process waits while the argument
process computes to a value, transmitted once as the argument’s
terminal action; on receipt, the function post-processes that value
in some way, before transmitting its value in turn.

Contrastingly, an explicit environment [37] coroutines with the
expression it governs by repeated interaction, supplying definitions
of the packaged fields on demand, but forwarding the eventual
value with no post-processing. An exception handler is another
means for one process to contextualise the execution of another,
remaining entirely dormant and dismounting itself without fuss if
the subordinate runs without failure, but stepping into the breach if
needs be.

Frank is already distinct from Eff in its type system, but the key
departure it makes in program style is to handle effects without any
special syntax for invoking an effect handler. Rather, the ordinary
notion of ‘function’ is extended with the means to offer effects to
arguments, invoked just by application. That is, we use the blank
space application notation for more general modes of coroutining
between operator and arguments than the return-value-then-quit
default. E.g., the usual behaviour of the ‘state’ commands can be
given as follows.

state : S -> <State S>X -> X
state _ x = x
state s <get -> k> = state s (k s)

3 2016/7/16

state _ <set s -> k> = state s (k unit)

Let us give an example using state before unpacking its definition.
We might pair the elements of a list with successive numbers.

index : List X -> List (Pair Nat X)
index xs = state zero (map {x -> pair next! x} xs)

If you will allow string notation for lists of characters and decimal
numerals, we obtain:

index "abc" = cons (pair 0 ’a’)
(cons (pair 1 ’b’)

(cons (pair 2 ’c’) nil))

What is happening?
Firstly, the type of state shows us that Frank operations do not

merely have input types, but input ports, specifying not only the
types of the values expected, but also an adjustment to the ambient
ability, written in chevrons and usually omitted when empty as
heretofore. Whatever the ambient ability might be when state is
invoked, the initial state should arrive at its first port using only
that ability; the ambient ability at its second port will include
the State S interface, shadowing any other State A interfaces
which might have been present already. Correspondingly, by the
time index invokes map, the ambient ability includes State Nat,
allowing the elementwise operation to invoke next!.

Secondly, having offered the State S interface, the state
operator must detect it. Its first equation explains what to do if any
value arrives on the second port. In Frank, a traditional pattern built
from constructors and variables matches only values, so the x is not
a catch-all pattern, as things other than values can arrive at that port.
In particular, requests can arrive at the second port, in accordance
with the State S interface. Requests are matched by patterns in
chevrons which show the particular command being handled left
of ->, with a pattern variable standing for the continuation on the
right. The patterns of state thus detects all the signals advertised
as acceptable at its ports.

Thirdly, having detected the signals, the state operator should
handle them. In the first equation, the returned x is forwarded forth-
with. In the case of a command, we reinvoke state, with the new
state (the old state for get and the given state for put s) in the
first port and the continuation invoked in the second port. We em-
phasise a key difference from Eff: Frank’s continuation variables
are ‘shallow’—they capture only the rest of the subordinated com-
putation, not the result of handling it, allowing us to change how we
carry on handling, e.g., by updating the state. The ‘deep’ approach
forces a higher-order implementation, interpreting a stateful com-
putation as a function from the initial state. We can simulate shal-
low by deep, as follows, inserting the recursive calls to state’ that
Eff would bundle inside k already.

state’ : <State S>X -> {S -> X}
state’ x = {_ -> x}
state’ <get -> k> = {s -> state’ (k s) s}
state’ <put s -> k> = {_ -> state’ (k unit) s}

Deep handlers can encode shallow handlers in much the same way
that iteration (catamorphism, fold) can encode primitive recursion
(paramorphism), and with much the same increase in complexity.
By contrast, handlers which admit a deep implementation have a
more regular behaviour and admit easier reasoning, just as ‘folds’
offer specific proof techniques not available to pattern matching
programs in general.

2.7 Handling on Multiple Ports
We can write n-ary operators, so we can offer different adjustments
to the ambient ability at different ports. E.g., we can implement

a pipe operator which matches receive commands downstream
with send commands upstream.

pipe : <Send X>Unit -> <Receive X>Y -> [Abort]Y
pipe <send x -> s> <receive -> r> =
pipe (s unit) (r x)

pipe <_> y = y
pipe unit <_> = abort!

The type signature conveys several different things. The pipe op-
erator must handle all commands from Send X on its first port and
all commands from Receive X on its second port. We say that the
pipe operator is thus a multihandler. The first argument has type
Unit and the second argument has type Y. The operator itself is
allowed to perform Abort commands and returns a final value of
type Y.

The first line implements the communication between producer
and consumer, reinvoking the pipe with both continuations, giving
the sent value to the receiver. The second line makes use of the
catch-all pattern <_> which matches either a send command or an
attempt to return a value: this is the case where the consumer has
delivered a value, so we may safely kill the producer. The third line
covers the case which falls through: the catch-all pattern must be
a receive command, as the value case has been treated already,
but the producer has stopped sending, so we can only abort with
a ‘broken pipe’.

We can run this as follows:

pipe (sends (cons "do" (cons "be" (cons "" nil))))
catter!

= "dobe"

Moreover, if we write

spacer : [Send (List Char), Receive (List Char)]Unit
spacer! = send receive; send " "; spacer!

we find instead that

pipe (sends (cons "do" (cons "be" (cons "" nil))))
(pipe spacer! catter!)

= "do be "

where the spacer’s receives are handled by the outer pipe, but
its sends are handled by the inner. The other way around also works
as it should.

pipe (pipe
(sends (cons "do" (cons "be" (cons "" nil))))
spacer!) catter!

= "do be "

Again, there is nothing you can do with simultaneous handling
that you cannot also do with mutually recursive handlers for one
process at a time. The Frank approach is, however, more direct.

Let us clarify that the adjustment marked in chevrons on a port
promises exactly what will be handled at that port. The peg of pipe
requires the ambient ability to support Abort, and its ports offer to
extend that ability with Send X and Receive X, respectively, so
the producer and consumer will each also have Abort. However,
because neither port advertises Abort in its adjustment, the imple-
mentation of pipe may not intercept the aborting command. In
particular, the <_> pattern matches only the behaviours advertised
at the relevant port, with other commands forwarded transparently
to the most local port offering the relevant interface. No Frank pro-
cess may secretly intercept signals. Of course, the pipe operation
might prevent action by ignoring the continuation to a send on its
first port or a receive on its second, but it will not change the
meaning of other things which do happen.

4 2016/7/16

2.8 The Catch Question
Frank allows us to implement an ‘exception handler’ with a slightly
more nuanced type than is usually seen.

catch : <Abort>X -> {X} -> X
catch x _ = x
catch <aborting -> _> h = h!

The catch alternative is given as a suspended computation allowing
us to choose whether to run it. We do not presume that the ambient
ability in which catch executes itself offers the Abort interface,
where the typical treatment of exceptions treat catch as the pri-
oritised choice between two failure-prone computations. E.g., the
Haskell library offers

catchError :: -- Haskell
MonadError () m => m a -> (() -> m a) -> m a

unnecessarily making the ability to abort non-local. Leijen deserves
credit for making a similar observation in Koka’s treatment of
exceptions [18].

Frank’s ability polymorphism ensures that the alternative com-
putation is permitted to abort if and only if catch is, so we lose no
functionality but gain precision. Moreover, we promise that catch
will trap aborting only in its first port, so that any failure (or any-
thing else) that h! does is handled by the environment—indeed,
you can see that h! is executed as a tail call, if at all, thus outside
the scope of catch.

2.9 The Disappearance of Control
Using one of the many variations on the theme of free monads,
we could implement operators like state, pipe and catch as
abstractions over computations reified as command-response trees.
By contrast, our handlers do not abstract over computations, nor
do they have Eff-style computation-to-computation handler types
distinct from value-to-computation function types [3].

Frank computations are abstract: a thing of type {C} can be
communicated or invoked, but not inspected. Ports explain which
values are expected, and operators match on those values directly,
without apparently forcing a computation, yet they also admit other
specific modes of interaction, handled in specific ways.

Semantically, then, a Frank operator must map computation
trees to computation trees, but we write its action on values directly
and its handling minimally. We conceal the machinery by which
commands from the input not handled locally must be forwarded
with suitably wrapped continuations. Of course, that is exactly what
happens, as we shall make explicit in Sections 4 and 5.

However, let us first give the type system for these programs and
show how Frank’s careful silences deliver the power we claim.

3. Static Semantics
A value is. A computation does.

—Paul Blain Levy

In this section we give a formal presentation of Frank’s type system.

3.1 Syntax
The abstract syntax of Frank is given in Figure 1.

Notation The ? superscript denotes that its subject is optional and
an overbar denotes a list of zero or more elements. For instance, in
D Σ? A the parameterised data type D optionally takes an ability
Σ? and also takes a list of zero or more value types A.

The types are divided into value types and computation types.
Value types are pure data types (D A), effect-parametric data types
(D Σ A), suspended computation types ({C}), or type variables
(X).

Types

(value types) A,B ∶∶=D Σ? A ∣ {C} ∣X
(computation types) C ∶∶= T → G
(ports) T ∶∶= ⟨∆⟩A
(pegs) G ∶∶= [Σ]A
(type/effect variables) Z ∶∶=X ∣ ε
(polytypes) P ∶∶= ∀Z.A
(abilities) Σ ∶∶= ∅ ∣ Σ, I A ∣ ε
(adjustments) ∆ ∶∶= ι ∣ ∆ + I A
(type environments) Γ ∶∶= ⋅ ∣ Γ, x ∶ A ∣ f ∶ P

Terms
(uses) m ∶∶= x ∣ f ∣ c ∣m s
(constructions) n ∶∶=m ∣ k n ∣ {e}

∣ let f ∶ P = n in n′

∣ letrec f ∶ P = e in n
(spines) s ∶∶= n
(computations) e ∶∶= r ↦ n

(computation patterns) r ∶∶= p ∣ ⟨c p → g⟩ ∣ ⟨x⟩
(value patterns) p ∶∶= k p ∣ x

Figure 1. Frank Abstract Syntax

Computations types are build from input ports T and output
pegs G. A computation type represents a multihandler. An n han-
dler has type

⟨∆1⟩A1 →1 ⋅ ⋅ ⋅ → ⟨∆n⟩An → [Σ]B
For each i, the multihandler must handle effects in ∆i on the i-th
argument. All arguments are handled simultaneously. As a result it
returns a value of type B and may perform effects in Σ.

A port ⟨∆⟩A constrains an input. The adjustment ∆ describes
the difference between the ambient effects and the effects of the
input, in other words, those effects occurring in the input that must
be handled on that port. A peg [Σ]A constrains an output. The
effects Σ are those that result from running the computation.

Effect Polymorphism with an Invisible Effect Variable Consider
the type of map in Section 2:

{X → Y } → List X → List Y

Modulo the braces around the function type, this is the same type a
functional programmer might expect to write in a language without
support for effect typing. In fact, this type desugars into the rather
more verbose:

⟨ι⟩{⟨ι⟩X → [ε]Y } → ⟨ι⟩(List X) → [ε](List Y)
We adopt the convention that the identity adjustment ι may be
omitted from adjustments and pegs.

A ≡ ⟨ι⟩A
I1 A1, . . . , In An ≡ ι + I1 A1 + ⋅ ⋅ ⋅ + In An

Similarly, we adopt the convention that the effect variable εmay be
omitted from abilities and ports.

A ≡ [ε]A
I1 A1, . . . , In An ≡ ε, I1 A1, . . . , In An

Given this syntactic sugar we need never write the effect variable ε
anywhere in a Frank program.

We let X range over type variables and ε range over effect
variables; polytypes may be polymorphic in both. Though we need

5 2016/7/16

never write effect variables in source code, we are entirely explicit
about them in the abstract syntax and the type system.

Data Types and effect interfaces are defined globally. A defini-
tion for data type D(Z) consists of a collection of data constructor
signatures of the form k ∶ A, where the type/effect variables Z
may be bound in the data constructor arguments A. Each data con-
structor belongs to a single data type and may appear only once in
that data type. We write D(D Σ? A,k) for the signature of con-
structor k of data type D Σ? A. A definition for effect interface
I(X) consists of a collection of command declarations of the form
c ∶ A → B, denoting that command c takes arguments of types A
and returns a value of type B. The types A and B may all depend
onX . Each command belongs to a single interface and may appear
only once in that interface. We write I(I A, c) for the signature of
command c of effect interface I A

An ability is a collection of interfaces initiated either with the
empty ability ∅ (yielding a closed ability) or an effect variable ε
(yielding an open ability). Order is important, as repeats are per-
mitted, in which case the right-most interface overrides all others
with the same name.

Adjustments modify abilities. The identity adjustment ι leaves
an ability unchanged. An adjustment ∆ + I A extends an ability
with the interface I A. The action of an adjustment ∆ on an ability
Σ is given by the ⊕ operation.

Σ⊕ ι = Σ
Σ⊕ (∆ + I A) = (Σ⊕∆), I A

Type environments distinguish monomorphic and polymorphic
variables.

Frank follows a bidirectional typing discipline [29]. Thus terms
are subdivided into uses whose type may be inferred, and con-
structions which may be checked against a type. Uses comprise
monomorphic variables (x), polymorphic variables (f), commands
(c), and operator applications (m s). Constructions comprise uses
(m), data constructor instances (k n), suspended computations
({e}), polymorphic let (let f ∶ P = n in n′) and mutual recursion
(letrec f ∶ P = e in n). A spine (s) is a sequence of constructions
(n). We write ! for an empty spine.

A computation is defined by a sequence of pattern matching
clauses (r ↦ n). Each pattern matching clause takes a sequence of
computation patterns (r). A computation pattern is either a standard
value pattern (p), a command pattern (⟨c p → g⟩), which matches
command c binding its arguments to p and the continuation to g, or
a thunk pattern ⟨x⟩, which matches any handled command, binding
it to x. A value pattern is either a data constructor pattern (k p) or
a variable pattern x.

Example To illustrate how source programs may be straightfor-
wardly represented as abstract syntax, we give the abstract syn-
tax for an example involving the map, state, and index operators
from Section 2.

letrec map ∶
∀ε X Y.{⟨ι⟩{⟨ι⟩X → [ε]Y } → ⟨ι⟩(ListX) → [ε](List Y)}
= f nil ↦ nil
f (cons x xs) ↦ cons (f x) (map f xs) in

letrec state ∶ ∀ε X.{⟨ι⟩X → ⟨ι + State S⟩X → [ε]X}
= z0 x ↦ x
s ⟨get↦ g⟩ ↦ state s (g s)
z1 ⟨set↦ g⟩ ↦ state s (g unit) in

let index ∶ ∀ε X.{⟨ι⟩ListX → [ε]List (Pair NatX)} =
= {xs↦ state zero (map {x↦ pair next! x} xs)} in

index “abc”

The map function and state handler are recursive, so are defined
using letrec, whereas the index function is not recursive so is de-
fined with let. The type signatures are adorned with explicit univer-
sal quantifiers and braces to denote that they each define suspended
computations. Pattern matching by equations is translated to ex-
plicit pattern matching in the obvious way. Each wildcard pattern
is represented with a fresh variable.

3.2 Typing Rules
The typing rules for Frank are given in Figure 2. The judgement
Γ [Σ]-- m ⇒ A states that in type environment Γ with ambient
ability Σ, we can infer that use m has type A. The judgement
Γ [Σ]-- n ∶A states that in type environment Γ with ambient ability
Σ, construction n has type A. The judgement Γ ⊢ e ∶ C states that
in type environment Γ, computation e has type C. The judgement
r ∶ G --[Σ] Γ states that computation pattern r of peg type G
with ambient ability Σ binds type environment Γ. The judgement
p∶A--[Σ] Γ states that value pattern p of typeAwith ambient ability
Σ binds type environment Γ. The ambient ability is only required in
the latter case in order to instantiate effect polymorphic data types
with the ambient ability.

We infer the type of a monomorphic variable (x) by looking it
up in the environment. We do the same for a polymorphic variables
(f), but also instantiate its type variables, and in particular instan-
tiate effect variables with the ambient ability. The type of a com-
mand (c) is inferred by looking it up in the ambient ability, where
the ports have the identity adjustment and the peg has the ambient
ability.

To infer the type of an operator application m n under ambient
ability Σ we first infer the type of the multihandler m of the
form {⟨∆⟩A→ [Σ]B}. We then check that each argument ni

matches the inferred type in the ambient ability extended with
adjustment ∆i. If this succeeds, then the inferred type for the
operator application is B.

Any use (m) is also a construction (but not vice-versa). To check
a data type (k v), thunk ({e}) polymorphic let, let f ∶ P = n in n′

or mutual recursion letrec f ∶ P = e in n) we recursively check
the subterms.

Notation We write (M)i for a list of zero or more copies of M
indexed by i. Similarly, we write (M)i,j for a list of zero or more
copies of M indexed by i and j.

A computation of type T → G is built by composing pattern
matching clauses of the form r ↦ n, where r is a sequence of
computation patterns whose variables are bound in n. The side
condition on the computation introduction rule requires that the
patterns in the clauses cover all possible values inhabiting the types
of the ports. Pattern elaboration (Section 4) yields an algorithm for
checking coverage.

Value patterns can be typed as computation patterns. A com-
mand pattern ⟨c p→ g⟩ may be checked at type ⟨∆⟩B′ with am-
bient ability Σ. The command c must be in the adjustment ∆. The
continuation is a plain function so its port type has the identity ad-
justment. The continuation’s peg has the ambient ability with ∆
applied. To check a computation pattern ⟨x⟩ we apply the adjust-
ment to the ambient ability.

Sequencing Computations We write let x = n in n′ as syntactic
sugar for on n {x↦ n′}, where on is defined in Section 2. More
verbosely:

let x = n in n′ ≡
let (on ∶ ∀ε X Y.⟨ι⟩X → ⟨ι⟩{⟨ι⟩X → [ε]Y } → [ε]Y) =

{x f ↦ f x} in on n {x↦ n′}

6 2016/7/16

Γ [Σ]-- m⇒ A

x ∶ A ∈ Γ

Γ [Σ]-- x⇒ A

f ∶ ∀Z.A ∈ Γ if ε ∈ dom(θ) then θ(ε) = Σ

Γ [Σ]-- f ⇒ θ(A)
c ∶ A→ B ∈ Σ

Γ [Σ]-- c⇒ {⟨ι⟩A→ [Σ]B}

Γ [Σ]-- m⇒ {⟨∆⟩A→ [Σ]B} Γ [Σ⊕∆]-- n ∶A
Γ [Σ]-- m n⇒ B

Γ [Σ]-- n ∶A

Γ [Σ]-- m⇒ A A = B
Γ [Σ]-- m ∶B

Γ ⊢ e ∶C
Γ [Σ]-- {e} ∶ {C}

Γ [Σ]-- n ∶A Γ, f ∶ P [Σ]-- n′ ∶B
P = ∀Z.A

Γ [Σ]-- let f ∶ P = n in n′ ∶B

Γ, f ∶ P ⊢ e ∶C Γ, f ∶ P [Σ]-- n ∶B
P = ∀Z.{C}

Γ [Σ]-- letrec f ∶ P = e in n ∶B

Γ ⊢ e ∶C

(ri,j ∶ Tj --[Σ] Γ′i,j)i,j (Γ, (Γ′i,j)j [Σ]-- ni ∶B)i
(ri,j)i,j covers (Tj)j

Γ ⊢ ((ri,j)j ↦ ni)i ∶ (Tj →)j [Σ]B

r ∶ T --[Σ] Γ

p ∶A --[Σ] Γ

p ∶ ⟨∆⟩A --[Σ] Γ

c ∶ A→ B ∈ ∅ ⊕∆ (pi ∶Ai --[Σ] Γi)i
⟨c p→ g⟩ ∶ ⟨∆⟩B′ --[Σ] Γ, g ∶ ⟨ι⟩B → [Σ⊕∆]B′ ⟨x⟩ ∶ ⟨∆⟩A --[Σ] x ∶ {[Σ⊕∆]A}

p ∶A --[Σ] Γ

x ∶A --[Σ] x ∶ A
k A ∈D Σ? B p ∶A --[Σ] Γ

k p ∶D Σ? B --[Σ] Γ

Figure 2. Frank Typing Rules

Note that the syntactic sugar let x = n in n differs from the built-in
let x = (n ∶ P) in n′ construct in two ways: 1) it does not include
the type annotation P on n, and 2) x is monomorphic in n′.

4. Core Frank
We elaborate Frank into Core Frank, a language in which multi-
handlers are replaced by a combination of call-by-value functions,
case statements, and unary effect handlers. Multihandlers in Frank
are elaborated to n-ary functions over suspended computations in
Core Frank. Shallow pattern matching on a single computation is
elaborated to unary effect handling. Shallow pattern matching on a
data type value is elaborated to case analysis. Deep pattern match-
ing on multiple computations is elaborated to a tree of unary effect
handlers and case statements.

The abstract syntax of Core Frank is given in Figure 3. The only
difference between Frank and Core Frank types is that a computa-
tion type in Frank takes n ports to a peg, whereas a computation
type in Core Frank takes n value types to a peg. The difference be-
tween the term syntaxes is more significant. We allow constructions
to be treated as uses by supplying a polytype annotation. This is
helpful for defining a small step-operational semantics (Section 5)
as we sometimes need to substitute a let-bound polymorphic con-
struction for a use. In place of pattern-matching suspended compu-
tations, we have n-argument lambda abstractions, case statements,

and unary effect handlers. The first two abstractions are standard;
the third eliminates a single effectful computation. Elimination of
commands is specified by command clauses which arise from com-
mand and thunk patterns in the source language. Elimination of re-
turn values is specified by the single return clause, which arises
from value patterns in the source language. The adjustment anno-
tation is necessary for type checking. Instead of general operator
application, we have only plain n-ary call-by-value function appli-
cation.

The Core Frank typing rules are given in Figure 4. They are
mostly unsurprising given the corresponding Frank Typing rules.
In the handler introduction rule, the adjustment ∆ is needed by the
premises. In the source language this adjustment is built into pegs.
In the rule for coercing a polytype annotated construction to a use,
we must instantiate the polymorphism as the inference judgement
yields a plain value type.

Notation We extend our indexed list notation to indexing over
data constructors and commands. In typing rules, we follow the
convention that if a metavariable only appears inside such an in-
dexed list then it is implicitly indexed. For instance, the n in the
case rule depends on k, whereas Σ does not because it appears out-
side as well as inside an indexed list.

7 2016/7/16

Types

(value types) A,B ∶∶=D A ∣ {C} ∣X
(computation types) C ∶∶= A→ G
(pegs) G ∶∶= [Σ]A
(type/effect variables) Z ∶∶=X ∣ ε
(polytypes) P ∶∶= ∀Z.A
(abilities) Σ ∶∶= ∅ ∣ Σ, I A ∣ ε
(adjustments) ∆ ∶∶= ι ∣ ∆ + I A
(type environments) Γ ∶∶= ⋅ ∣ Γ, x ∶ A ∣ f ∶ P

Terms
(uses) m ∶∶= x ∣ f ∣ c ∣m s ∣ (n ∶ P)
(constructions) n ∶∶=m ∣ k n

∣ λx.n
∣ casem of k x↦ n
∣ handle∆ mwith c x→ g ↦ n

∣ x↦ n′

∣ let f ∶ P = n in n′

∣ letrec f ∶ P = λx.n in n′

(spines) s ∶∶= n

Figure 3. Core Frank Abstract Syntax

4.1 Elaboration
We now describe how to elaborate Frank into Core Frank by way
of a translation J−K. The translation on types is given simply by the
homomorphic extension of the following equation on ports

J⟨∆⟩AK = {[ε⊕ J∆K]JAK}

to value types, computation types, pegs, polytypes, interfaces, abil-
itites, adjustments, and type environments. Ports elaborate to sus-
pended computation types.

The translation on terms elaborates pattern matching, which de-
pends on the type of the term, so we specify it as a translation
on derivation trees. Without loss of generality, we only write the
judgement at the root of a derivation and only write the term when
referring to an descendent of the root. The translation on deriva-
tions is the homomorphic extension of the following equations on
multihandler definitions

JΓ [Σ]-- {e} ∶CK = JeK
JΓ ⊢ {((ri,j)j ↦ ni)i} ∶ (Tj →)j GK =

JΓK [JΣK]-- λ(xj)j .P ((xj)j , (JTjK)j , ((ri,j)j ↦ JniK))
∶ {(JTjK→)j JGK}, each xj is fresh

where P (x,A,u) is a function that takes a list of variables x to
eliminate, a list of pattern types R (pattern types R are either value
types A or port types T), and a pattern matching matrix u, and
yields a Core Frank term.

A pattern matching matrix u is a list of pattern matching clauses,
where the body n of each clause u = r ↦ n is a Core Frank
construction instead of a source Frank construction.

The pattern matching elaboration function P is defined in Fig-
ure 5. For this purpose we find it convenient to use functional pro-
gramming list notation. We write [] for the empty list, v ∶∶vs for the
list obtained by prepending element v to the beginning of the list
vs , [v] as shorthand for v ∶∶ [], and vs ++ws for the list obtained by
appending list ws to the end of list vs . There are four cases for P .
If the head pattern type is a data type, then it generates a case split.
If the head pattern is a port type then it generates a handler. If the
head pattern is some other pattern type (a suspended computation

type or a type variable) then neither eliminator is produced. If the
lists are empty then the body of the head clause is returned.

We make use of several auxiliary functions. The Patterns func-
tion returns a complete list of patterns associated with the supplied
data type or interface. The PatternTypes function takes a data
type and constructor or interface and command, and returns a list
of types of the components of the constructor or command. The op-
erator us @ r projects out a new pattern matching matrix from us
filtered by matching the pattern r against the first column of us . We
make use of the obvious generalisations of let binding for binding
multiple constructions and for rebinding patterns.

Example To illustrate how multihandlers are elaborated into Core
Frank, we give the Core Frank representation of the pipe multihan-
dler.

letrec pipe ∶
∀ε X Y.

⟨ι + SendX⟩Unit→ ⟨ι + ReceiveX⟩Y → [ε +Abort]Y
= λxy.handle xwith

⟨send x→ g⟩ ↦
handle y with
⟨receive→ r⟩ ↦ pipe (s unit) (r x)

∣ y ↦ y
∣ x↦
case x of unit↦
handle y with
⟨receive→ r⟩ ↦ abort!

∣ y ↦ y

The ports are handled left-to-right. The producer is handled first. A
different handler for the consumer is invoked depending on whether
the producer performs a send command or returns a value.

Our pattern matching elaboration procedure is quite direct, but
is not at all optimised for efficiency. We believe it should be rea-
sonably straightforward to adapt standard techniques (e.g. [24]) to
implement pattern matching more efficiently. However, some care
is needed as pattern matching compilation algorithms often reorder
columns as an optimisation. Column reordering is not in general a
valid optimisation in Frank. This is because commands in the ambi-
ent ability, but not in the argument adjustments, are implicitly for-
warded, and the order in which they are forwarded is left-to-right.
(Precise forwarding behaviour becomes apparent when we com-
bine pattern elaboration with the operational semantics for Core
Frank in Section 5.)

Pattern matching elaboration preserves typing.

THEOREM 1.
If Γ [Σ]-- m⇒ A then JΓK [JΣK]-- JmK⇒ JAK.
If Γ [Σ]-- n ∶A then JΓK [JΣK]-- JAK⇒ JnK.

4.2 Incomplete and Ambiguous Pattern Matching as Effects
The function P provides a straightforward means for checking
coverage and redundancy of pattern matching. Incomplete coverage
can occur iff P is invoked on three empty lists P ([], [], []), which
means P is undefined on its input. Redundancy occurs iff the final
clause defining P in Figure 5 is invoked in a situation in which us
is non-empty.

As an extension to Frank, we could allow incomplete and am-
biguous pattern matching. The former may be permitted if the am-
bient ability contains the Abort signature, in which case incom-
plete patterns are translated into the aborting ∶ Zero command,
which can then be handled however the programmer wishes. Sim-
ilarly, we can define a choice ∶ Bool command, in order to allow
ambiguous pattern matches to be handled by the programmer. We
discuss this possibility further in section 7.

8 2016/7/16

Γ [Σ]-- m⇒ A

x ∶ A ∈ Γ

Γ [Σ]-- x⇒ A

f ∶ ∀Z.A ∈ Γ if ε ∈ dom(θ) then θ(ε) = Σ

Γ [Σ]-- f ⇒ θ(A)
c ∶ A→ B ∈ Σ

Γ [Σ]-- c⇒ {A→} [Σ]B

Γ [Σ]-- m⇒ {A→ [Σ]B} Γ [Σ]-- n ∶A
Γ [Σ]-- m n⇒ B

Γ [Σ]-- n ∶A if ε ∈ dom(θ) then θ(ε) = Σ

Γ [Σ]-- (n ∶ ∀Z.A) ⇒ θ(A)

Γ [Σ]-- n ∶A

Γ [Σ]-- m⇒ A A = B
Γ [Σ]-- m ∶B

Γ [Σ]-- n ∶A k A ∈D Σ? B

Γ [Σ]-- k n ∶D Σ? B

Γ, x ∶ A [Σ′]-- n ∶B
Γ [Σ]-- λx.n ∶ {A→ [Σ′]B}

Γ [Σ]-- m⇒D Σ? B (Γ, x ∶ A [Σ]-- n ∶B′)kA∈DΣ? B

Γ [Σ]-- casem of (k x↦ n)k ∶B′

Γ [Σ⊕∆]-- m⇒ A′ (Γ, x ∶ A,g ∶ B → [Σ]A′ [Σ]-- n ∶B′)c∶A→B ∈ ∅⊕∆ Γ, x ∶ A′ [Σ]-- n′ ∶B′

Γ [Σ]-- handle∆ mwith (c x→ g ↦ n)c ∣ x↦ n′ ∶B′

Γ [Σ]-- n ∶A Γ, f ∶ P [Σ]-- n′ ∶B P = ∀Z.A
Γ [Σ]-- let f ∶ P = n in n′ ∶B

Γ, f ∶ P [Σ]-- λx.n ∶A Γ, f ∶ P [Σ]-- n′ ∶B P = ∀Z.A
Γ [Σ]-- letrec f ∶ P = λx.n in n′ ∶B

Figure 4. Core Frank Typing Rules

P (x ∶∶ xs,DΣ? As ∶∶Rs,us) = case x of
(ki ysi ↦ P (ysi ++ xs,PatternTypes(DΣ? As, ki) ++Rs,us @ ki ysi))i

where
(ki ysi)i = Patterns(D)

P (x ∶∶ xs, ⟨∆⟩A ∶∶Rs,us) = handle x! with
(ci ysi → zi ↦ P (zi ∶∶ ysi ++ xs,PatternTypes(∆, ci) ++Rs,us @ ci ys → ki))i
w ↦ P (z ∶∶ xs,A ∶∶Rs,us)

where
w ∶∶ (⟨ci ysi → ki⟩)i = Patterns(∆)

P (x ∶∶ xs,R ∶∶Rs,us) = P (xs,Rs,us @ x)
P ([], [], ([] ↦ n) ∶∶ us) = n

[] @ r = []
(u ∶∶ us) @ r = (u@ r) ∶∶ (us @ r)

(k ps ′ ∶∶ rs ↦ n) @ k ps = [ps ++ rs ↦ let ps ′ = ps in n]
(x ∶∶ rs ↦ n) @ k ps = [ps ++ rs ↦ let x = k ps in n]
(r ∶∶ rs ↦ n) @ k ps = []

(⟨c ps ′ → q′⟩ ∶∶ rs ↦ n) @ ⟨c ps → q⟩ = [ps ++ q ∶∶ rs ↦ let (q ∶∶ ps) = (q′ ∶∶ ps ′) in n]
(⟨x⟩ ∶∶ rs ↦ n) @ ⟨c ps → q⟩ = [ps ++ q ∶∶ rs ↦ let x = {q (c ps)} in n]

(r ∶∶ rs ↦ n) @ ⟨c ps → q⟩ = []
(y ∶∶ rs ↦ n) @ x = [rs ↦ let y = x in n]

Patterns(D) = (k xsk)k∈D, each xsk fresh
Patterns(I) = (⟨c xsc → yc⟩)c∈I , each xsc, yc fresh

Patterns(ι) = [w], w fresh
Patterns(∆ + I As) = Patterns(∆) ++Patterns(I)

PatternTypes(DΣ?As, k) = Bs, where D(DΣ?As, k) = Bs
PatternTypes(I As, c) = B′ ∶∶Bs, where I(I As, c) = Bs → B′

PatternTypes(ι) = []
PatternTypes(∆ + I As, c) =

PatternTypes(∆, c) ++PatternTypes(I As, c)

Figure 5. Pattern Matching Elaboration

9 2016/7/16

5. Dynamic Semantics
We give a small step operational semantics for Core Frank in-
spired by Kammar et al’s semantics for the effect handler calculus
λeff [15]. The main differences between their semantics and ours
arise from differences in the calculi. Whereas λeff is call-by-push-
value, Core Frank is call-by-value, which means Core Frank has
many more kinds of evaluation context. A more substantive differ-
ence is that handlers in λeff are deep (the continuation reinvokes the
handler), whereas handlers in Frank are shallow (the continuation
does not reinvoke the handler).

The semantics is given in Figure 6. All of the rules except the
ones for handlers are standard β-reductions. We write n[m/x] for
n with m substituted for x and similarly n[m/x for n with the
multiple simultaneous each mi substituted for xi. Values are han-
dled by substituting the value into the handler’s return clause. Com-
mands are handled by capturing the continuation up to the current
handler and dispatching to the appropriate clause for the command.
We write HC (E) for the set of commands handled by evaluation
context E. The side condition on the command rule ensures that
command c′ is handled by the nearest enclosing handler that has a
clause for handling c′. A more intensional way to achieve the same
behaviour would be to explicitly forward unhandled commands us-
ing an additional rule.

Reduction preserves typing.

THEOREM 2 (Subject Reduction).

• If Γ [Σ]-- m⇒ A and mÐ→m′ then Γ [Σ]-- m′ ⇒ A.
• If Γ [Σ]-- n ∶A and nÐ→ n′ then Γ [Σ]-- n′ ∶A.

There are two ways in which reduction can stop: it may yield a
value, or it may encounter an unhandled command (if the ambient
ability is non-empty). We capture both possibilities with a notion
of normal form, which we use to define type soundness.

DEFINITION 3 (Normal Forms). We say that a checkable term n
is normal if it is either a value v or of the form E[c v] where
c ∉ HC (E).

THEOREM 4 (Type Soundness).
If ⋅ [Σ]-- n ∶ A then either n is normal or there exists ⋅ [Σ]-- n′ ∶ A
such that nÐ→ n′. (In particular, if Σ = ∅ then either n is a value
or there exists ⋅ [Σ]-- n′ ∶A such that nÐ→ n′.)

6. Computations as Data
So far, our example datatypes have been entirely first order, but
our type system admits datatypes which abstract over an ability
exactly to facilitate the storage of suspended computations in a
helpfully parameterised way. When might we want to do that? Let
us develop an example, motivated by Shivers and Turon’s treatment
of modular rollback in parsing [39].

Consider a high-level interface to an input stream of characters
with one-step lookahead. A parser may peek at the next input
character without removing it, and accept that character once its
role is clear.

interface LookAhead = peek : Char | accept : Unit

We might seek to implement LookAhead on top of regular Console
input, specified thus:

interface Console = inch : Char | ouch : Char -> Unit

where an input of ’\b’ indicates that the backspace key has been
struck. The appropriate behaviour on receipt of backspace is to un-
wind the parsing process to the point where the previous character
was first used, then await an alternative character. To achieve that
unwinding, we need to keep a log, documenting what the parser (or
whatever) was doing when the console actions happened.

data Log [] X
= start {[]X}
| inched (Log [] X) {Char -> []X}
| ouched (Log [] X)

Note that the empty brackets may all be omitted. We can infer the
need for an ability parameter just from the presence of the braces,
which show that Log X stores computations whose pegs must refer
to an ability. We have included the brackets to emphasise where
that ability is used, when caching the initial computation, and when
caching the continuation corresponding to each input action.

Modular rollback can now be implemented as a handler in-
formed by a log and a one character buffer.

data Buffer = empty | hold Char

The parser process being handled should also be free to reject
its input by aborting, at which point the handler should reject the
character which caused the rejection.

input : Log [LookAhead, Abort, Console] X ->
Buffer ->
<LookAhead, Abort>X ->
[Console]X

input _ _ x = x
input l (hold c) <peek -> k> =
input l (hold c) (k c)

input l (hold c) <accept -> k> =
ouch c; input (ouched l) empty (k unit)

input l empty <accept -> k> =
input l empty (k unit)

input l empty <peek -> k> = on inch! {
’\b’ -> rollback l |
c -> input (inched l k) (hold c) (k c) }

input l _ <aborting -> k> = rollback l

Note that the Log type’s ability has been instantiated with exactly
the same ambient ability as is offered at the port in which the parser
plugs. Correspondingly, it is clear that the parser’s continuations
may be stored, and under which conditions those stored continua-
tions can be invoked, when we rollback.

rollback : Log [LookAhead, Abort, Console] X ->
[Console]X

rollback (start p) = parse p
rollback (ouched l) = map ouch "\b \b"; rollback l
rollback (inched l k) = input l empty (k peek!)

parse : {[LookAhead, Abort, Console]X} -> [Console]X
parse p = input (start p) empty p!

To undo an ouch, we send a backspace, a blank and another
backspace, erasing the character. To undo the inch caused by a
‘first peek’, we empty the buffer and reinvoke the old continuation
after a new peek.

While the Log type does what is required of it, this example
does expose a shortcoming of Frank as currently specified: we have
no means to prevent the parser process from accessing Console
commands, because our adjustments can add and shadow interfaces
but not remove them. If we permitted ‘negative’ adjustments, we
could give the preferable types

input : Log [LookAhead, Abort] X -> Buffer ->
<LookAhead, Abort, -Console>X ->
[Console]X

rollback : Log [LookAhead, Abort] X -> [Console]X

parse : {[LookAhead, Abort]X} -> [Console]X

10 2016/7/16

(values) v ∶∶= x ∣ f ∣ c ∣ k c ∣ λx.n ∣ (v ∶ P)
(evaluation contexts) E ∶∶= [] ∣ E n ∣ v (w,E,n) ∣ (E ∶ P) ∣ k (v,E,n) ∣ case E of (k xk ↦ nk)k

∣ let (f ∶ P) = E in n
∣ handle∆ E with (c xc → gc ↦ nc)c ∣ x↦ n′

(λx.n ∶ P) v Ð→ n[v/x]
case k′ v of (k xk ↦ nk)k Ð→ nk′[v/xk′]

let f ∶ P = v in nÐ→ n[(v ∶ P)/f]
letrec f ∶ P = λx.n in n′ Ð→ n′[(λx.letrec f ∶ P = λx.n in n ∶ P)/f]

handle∆ v with (c xc → gc ↦ nc)c ∣ x↦ n′ Ð→ n′[v/x]
handle∆ E[c′ v] with (c xc → gc ↦ nc)c ∣ x↦ n′ Ð→ nc′[v/xc′ , λz.E[z]/gc′], if c′ ∉ HC (E)

mÐ→m′

E[m] Ð→ E[m′]
nÐ→ n′

E[n] Ð→ E[n′]

Figure 6. Small-Step Operational Semantics for Core Frank

At time of writing, it is clear how to make negative adjustments act
on a concrete ability, but less clear what their impact is on ability
polymorphism—a topic of active investigation.

7. Related Work
We have discussed much of the related work throughout the paper.
Here we briefly mention some other related work.

Effect Handler Implementations A natural implementation for
handlers is to use free monads [15]. Swierstra [41] illustrates how
to write effectful programs with free monads in Haskell, taking ad-
vantage of type-classes to provide a certain amount of modularity.

Wu and Schrijvers [47] show how to obtain a particularly effi-
cient implementation of deep handlers taking advantage of fusion.
Their work explains how Kammar et al. [15] obtain strong perfor-
mance.

Kiselyov and Ishii [16] optimise their shallow effect handlers
implementation, which is based on free monads, by taking advan-
tage of an efficient representation of sequences of monadic opera-
tions [44].

The experimental multicore extension to OCaml [7] extends
OCaml with effect handlers motivated by a desire to abstract over
scheduling strategies. It does not include an effect system. It does
provide an efficient implementation by optimising for the common
case in which continuations are invoked at most once (the typical
case for a scheduler). The implementation uses the stack to rep-
resent continuations and as the continuation is used at most once
there is no need to copy the stack.

Languages other than Frank that attempt to elide some effect
variables from source code include Links [21] and Koka [18].
Neither eliminates effect variables altogether. Recently, Hillerström
and Lindley [11, 12] have implemented an extension of Links to
support effect handlers.

Layered Monads and Monadic Reflection Inspired by Bauer and
Pretnar’s Eff, Visscher has implemented the effects library [45].
The key idea is to layer continuation monads in the style of Fil-
inski [8], using Haskell type classes to automatically infer lifting
between layers.

Filinski’s work on monadic reflection [9] and layered mon-
ads [8] is closely related to effect handlers. Monadic reflection sup-
ports a similar style of composing effects. The key difference is
that monadic reflection interprets monadic computations in terms
of other monadic computations, rather than abstracting over and
interpreting operations

Swamy et al [40] add support for monads in ML, providing
direct-style effectful programming for a strict language. Unlike
Frank, their system is based on monad transformers rather than
effect handlers.

Variations and Applications Lindley [20] investigates an adap-
tation of effect handlers to more restrictive forms of computation
based on idioms [27] and arrows [14]. Wu et al. [48] study scoped
effect handlers. They attempt to tackle the problem of how to mod-
ularly weave an effect handler through a computation whose com-
mands may themselves be parameterised by other computations.
Kiselyov and Ishii [16] provide solutions to particular instances of
this problem. Schrijvers et al. [38] apply effect handlers to logic
programming.

8. Future Work
We have further progress to make on many fronts, theoretical and
practical.

Verbs versus Nouns Our rigid choice that names stand for values
means that nullary operators need ! to be invoked. They tend to
be much more frequently found in the doing than the being, so it
might be prettier to let a name like jump stand for the ‘intransitive
verb’, and write {jump} for the ‘noun’. Similarly, there is consid-
erable scope for supporting conveniences such as giving functional
computations by partial application whenever it is unambiguous.

Failure and Choice in Pattern Matching Patterns do not always
match, and if we were to allow operators such as append (or, more
generally, the plugging together of n-hole contexts), they can match
in multiple ways, delivering a searchable solution space. Opera-
tionally, pattern matching can be seen as the means to compute a
value environment (interpreting an interface of pattern variables),
whilst potentially aborting or making choices to navigate search. It
seems feasible to mediate failure and choice effects as effects, sep-
arating what it is to be a solution from the strategy used to find one.
Wu, Schrijvers and Hinze [48] have shown the modularity and flex-
ibility of effect handlers in managing backtracking computations:
the design challenge is to deploy that power in the pattern language
as well as in the expression language.

Scaling by Naming What if we want to have multiple State
components? One approach, adopted by Brady [5], is to rename
them apart: when we declare the State interface, we acquire also
the Foo.State interface with operations Foo.get and Foo.set,
for any Foo. We would then need to specialise Stateful operators
to a given Foo, and perhaps to generate fresh Foos dynamically.

11 2016/7/16

Dynamic Effects An important effect that we cannot imple-
ment directly in Frank as it stands is dynamic allocation of
ML-style references. One difficulty is that the new command
which allocates a new reference cell has a polymorphic type
forall X.new : Ref X. But even if we restrict ourselves to a
single type, it is still unclear how to safely represent the Ref data
type. Eff works around the problem using a special notion of re-
source [4]. We would like to explore adding resources or a similar
abstraction to Frank.

Explicit Effect Polymorphism In this paper, we have shown the
high power-to-weight ratio of working relative to an ambient ability
which operators silently abstract. However, we expect to reach the
expressive limits of our system soon. E.g., while we can easily
define composition of functional operators, we cannot yet give a
general type for the composition of operators which make arbitrary
adjustments to the ambient ability. We do not imagine that a simple,
predictable type discipline can account for such definitions with the
same degree of silence.

Our focus has been on making common use cases convenient,
but in the longer term, we should support programmers who are
willing to be explicit about more sophisticated management of ef-
fectful abilities. Internally, we do manifest the ambient ability as an
abstracted variable, so we have a basis for more general abstraction
over abilities. The design question then becomes how best to de-
liver that power in the surface language and manage the constraints
which thus arise with the minimum of fuss. We similarly need to
account for negative adjustments (removing specific interfaces) and
nugatory adjustments (reverting to purity). We should also consider
allowing handlers to trap some or even all commands generically,
just as long as their ports make this possibility clear. Secret inter-
ception of signals remains anathema.

Indexed Interfaces Often, an interaction with the environment
has some sort of state, affecting which commands are appropriate,
e.g., reading from files only if they open. Indeed, it is important
to model the extent to which the environment determines the state
after a command. McBride [25] observes that indexing input and
output types over the state effectively lets us specify interfaces
in a proof-relevant Hoare logic. Hancock and Hyvernat [10] have
explored the compositionality of indexed ‘interaction structures’,
showing that it is possible to model both sharing and independence
of state between interfaces.

Session Types as Interface Indices Our pipe is a simple imple-
mentation of processes communicating according to a rather un-
subtle protocol, with an inevitable but realistic ‘broken pipe’ fail-
ure mode. We should surely aim for more sophisticated protocols
and tighter compliance. The interface for interaction on a channel
should be indexed over session state, ensuring that the requests ar-
riving at a coordinating multihandler match exactly.

Substructural Typing for Honesty with Efficiency Using Abort,
we know that the failed computation will not resume under any cir-
cumstances, so it is operationally wasteful to construct the contin-
uation. Meanwhile, for State, it is usual for the handler to invoke
the continuation exactly once, meaning that there is no need to al-
locate space for the continuation in the heap. Moreover, if we want
to make promises about the eventual execution of operations, we
may need to insist that handlers do invoke continuations sooner or
later, and if we want communicating systems to follow a protocol,
then they should not be free to drop or resend messages. Linear,
affine, and relevant type systems offer tools to manage usage more
tightly: we might profitably apply them to continuations and the
data structures in which they are stored.

Modules and Type Classes Frank’s effect interfaces provide a
form of modularity and abstraction, tailored to effectful program-

ming in direct style. It seems highly desirable to establish the for-
mal status of interfaces with respect to other ways to deliver mod-
ularity, such as ML modules [23] and Haskell type classes [46].

Totality, Productivity and Continuity At heart, Frank is a lan-
guage for incremental transformation of computation (command-
response) trees whose node shapes are specified by interfaces, but
in the ‘background’, whilst keeping the values communicated in
the foreground. Disciplines for total programming over treelike
data, as foreground values, are the staple of modern dependently
typed programming languages, with the state of the art continuing
to advance [1]. The separation of client-like inductive structures
and server-like coinductive structures is essential to avoid deadlock
(e.g., a server hanging) and livelock (e.g., a client constantly in-
teracting but failing to return a value). Moreover, local continuity
conditions quantifying the relationship between consumption and
production (e.g., spacer consuming one input to produce two out-
puts) play a key role in ensuring global termination or productivity.
Guarded recursion seems a promising way to capture these more
subtle requirements [2].

Given that we have the means to negotiate purity locally whilst
still programming in direct style, it would seem a missed oppor-
tunity to start from anything other than a not just pure but total
base. To do so, we need to refine our notion of ‘ability’ with a
continuity discipline and check that programs obey it, deploying
the same techniques total languages use on foreground data for the
background computation trees. McBride has shown that general re-
cursion programming fits neatly in a Frank-like setting by treating
recursive calls as abstract commands, leaving the semantics of re-
cursion for a handler to determine [26].

Implementation Our progress on direct-style programming with
locally managed effects has created a rapidly moving target for our
implementation efforts, but we must catch up and deliver a proto-
type which fits with the account in this paper and acts not only as a
springboard for further study, but also as tool for tackling the pro-
gramming problems we face in real life. Whether we are writing
elaborators for advanced programming languages, or websites me-
diating exercises for students, or multi-actor communicating sys-
tems, our programming needs increasingly involve the kinds of
interaction and control structures which have previously been the
preserve of heavyweight operating systems development. It should
rather be a joy.

References
[1] A. Abel and B. Pientka. Wellfounded recursion with copatterns: a

unified approach to termination and productivity. In Morrisett and
Uustalu [28], pages 185–196. URL http://doi.acm.org/10.
1145/2500365.2500591.

[2] R. Atkey and C. McBride. Productive coprogramming with guarded
recursion. In Morrisett and Uustalu [28], pages 197–208. URL
http://doi.acm.org/10.1145/2500365.2500597.

[3] A. Bauer and M. Pretnar. An effect system for algebraic effects and
handlers. Logical Methods in Computer Science, 10(4), 2014. URL
http://dx.doi.org/10.2168/LMCS-10(4:9)2014.

[4] A. Bauer and M. Pretnar. Programming with algebraic effects and
handlers. J. Log. Algebr. Meth. Program., 84(1):108–123, 2015. URL
http://dx.doi.org/10.1016/j.jlamp.2014.02.001.

[5] E. Brady. Programming and reasoning with algebraic effects and
dependent types. In Morrisett and Uustalu [28], pages 133–144. URL
http://doi.acm.org/10.1145/2500365.2500581.

[6] M. M. T. Chakravarty, Z. Hu, and O. Danvy, editors. Proceedings
of the 16th ACM SIGPLAN international conference on Functional
Programming, ICFP 2011, Tokyo, Japan, September 19-21, 2011,
2011. ACM.

12 2016/7/16

http://doi.acm.org/10.1145/2500365.2500591
http://doi.acm.org/10.1145/2500365.2500591
http://doi.acm.org/10.1145/2500365.2500597
http://dx.doi.org/10.2168/LMCS-10(4:9)2014
http://dx.doi.org/10.1016/j.jlamp.2014.02.001
http://doi.acm.org/10.1145/2500365.2500581

[7] S. Dolan, L. White, K. Sivaramakrishnan, J. Yallop, and A. Mad-
havapeddy. Effective concurrency through algebraic effects, 9 2015.
OCaml Workshop.

[8] A. Filinski. Representing layered monads. In A. W. Appel and
A. Aiken, editors, POPL ’99, Proceedings of the 26th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, San
Antonio, TX, USA, January 20-22, 1999, pages 175–188. ACM, 1999.
URL http://doi.acm.org/10.1145/292540.292557.

[9] A. Filinski. Monads in action. In M. V. Hermenegildo and J. Palsberg,
editors, Proceedings of the 37th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2010, Madrid,
Spain, January 17-23, 2010, pages 483–494. ACM, 2010. URL
http://doi.acm.org/10.1145/1706299.1706354.

[10] P. Hancock and P. Hyvernat. Programming interfaces and basic topol-
ogy. Ann. Pure Appl. Logic, 137(1-3):189–239, 2006. URL http:
//dx.doi.org/10.1016/j.apal.2005.05.022.

[11] D. Hillerström. Handlers for algebraic effects in Links. Master’s
thesis, School of Informatics, The University of Edinburgh, 2015.

[12] D. Hillerström and S. Lindley. Liberating effects with rows and
handlers, June 2016. Draft http://homepages.inf.ed.ac.uk/
slindley/papers/links-effect-draft-june2016.pdf.

[13] R. Hinze and J. Voigtländer, editors. Mathematics of Program Con-
struction - 12th International Conference, MPC 2015, Königswinter,
Germany, June 29 - July 1, 2015. Proceedings, volume 9129 of Lec-
ture Notes in Computer Science, 2015. Springer. URL http://dx.
doi.org/10.1007/978-3-319-19797-5.

[14] J. Hughes. Programming with arrows. In Advanced Functional
Programming, volume 3622 of Lecture Notes in Computer Science,
pages 73–129. Springer, 2004.

[15] O. Kammar, S. Lindley, and N. Oury. Handlers in action. In Morrisett
and Uustalu [28], pages 145–158. URL http://doi.acm.org/10.
1145/2500365.2500590.

[16] O. Kiselyov and H. Ishii. Freer monads, more extensible effects. In
B. Lippmeier, editor, Proceedings of the 8th ACM SIGPLAN Sympo-
sium on Haskell, Haskell 2015, Vancouver, BC, Canada, September
3-4, 2015, pages 94–105. ACM, 2015. URL http://doi.acm.org/
10.1145/2804302.2804319.

[17] O. Kiselyov, A. Sabry, and C. Swords. Extensible effects: an alter-
native to monad transformers. In C. Shan, editor, Proceedings of
the 2013 ACM SIGPLAN Symposium on Haskell, Boston, MA, USA,
September 23-24, 2013, pages 59–70. ACM, 2013. URL http:
//doi.acm.org/10.1145/2503778.2503791.

[18] D. Leijen. Koka: Programming with row polymorphic effect types. In
P. Levy and N. Krishnaswami, editors, Proceedings 5th Workshop on
Mathematically Structured Functional Programming, MSFP@ETAPS
2014, Grenoble, France, 12 April 2014., volume 153 of EPTCS, pages
100–126, 2014. URL http://dx.doi.org/10.4204/EPTCS.153.
8.

[19] P. B. Levy. Call-By-Push-Value: A Functional/Imperative Synthesis,
volume 2 of Semantics Structures in Computation. Springer, 2004.

[20] S. Lindley. Algebraic effects and effect handlers for idioms and
arrows. In J. P. Magalhães and T. Rompf, editors, Proceedings of
the 10th ACM SIGPLAN workshop on Generic programming, WGP
2014, Gothenburg, Sweden, August 31, 2014, pages 47–58. ACM,
2014. URL http://doi.acm.org/10.1145/2633628.2633636.

[21] S. Lindley and J. Cheney. Row-based effect types for database in-
tegration. In B. C. Pierce, editor, Proceedings of TLDI 2012: The
Seventh ACM SIGPLAN Workshop on Types in Languages Design and
Implementation, Philadelphia, PA, USA, Saturday, January 28, 2012,
pages 91–102. ACM, 2012. URL http://doi.acm.org/10.1145/
2103786.2103798.

[22] J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In
J. Ferrante and P. Mager, editors, Conference Record of the Fifteenth
Annual ACM Symposium on Principles of Programming Languages,
San Diego, California, USA, January 10-13, 1988, pages 47–57. ACM
Press, 1988. URL http://doi.acm.org/10.1145/73560.73564.

[23] D. B. MacQueen. Modules for standard ML. In LISP and Functional
Programming, pages 198–207, 1984.

[24] L. Maranget. Compiling pattern matching to good decision trees. In
ML, pages 35–46. ACM, 2008.

[25] C. McBride. Kleisli arrows of outrageous fortune, 2011. Draft.
https://personal.cis.strath.ac.uk/conor.mcbride/
Kleisli.pdf.

[26] C. McBride. Turing-completeness totally free. In Hinze and
Voigtländer [13], pages 257–275. URL http://dx.doi.org/10.
1007/978-3-319-19797-5_13.

[27] C. McBride and R. Paterson. Applicative programming with effects.
J. Funct. Program., 18(1):1–13, 2008.

[28] G. Morrisett and T. Uustalu, editors. ACM SIGPLAN International
Conference on Functional Programming, ICFP’13, Boston, MA, USA
- September 25 - 27, 2013, 2013. ACM. URL http://dl.acm.org/
citation.cfm?id=2500365.

[29] B. C. Pierce and D. N. Turner. Local type inference. ACM Trans.
Program. Lang. Syst., 22(1):1–44, 2000.

[30] G. D. Plotkin and J. Power. Semantics for algebraic operations.
Electr. Notes Theor. Comput. Sci., 45:332–345, 2001. URL http:
//dx.doi.org/10.1016/S1571-0661(04)80970-8.

[31] G. D. Plotkin and J. Power. Adequacy for algebraic effects. In
F. Honsell and M. Miculan, editors, Foundations of Software Science
and Computation Structures, 4th International Conference, FOSSACS
2001 Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2001 Genova, Italy, April 2-6, 2001,
Proceedings, volume 2030 of Lecture Notes in Computer Science,
pages 1–24. Springer, 2001. URL http://dx.doi.org/10.1007/
3-540-45315-6_1.

[32] G. D. Plotkin and J. Power. Notions of computation determine mon-
ads. In M. Nielsen and U. Engberg, editors, Foundations of Soft-
ware Science and Computation Structures, 5th International Con-
ference, FOSSACS 2002. Held as Part of the Joint European Con-
ferences on Theory and Practice of Software, ETAPS 2002 Greno-
ble, France, April 8-12, 2002, Proceedings, volume 2303 of Lecture
Notes in Computer Science, pages 342–356. Springer, 2002. URL
http://dx.doi.org/10.1007/3-540-45931-6_24.

[33] G. D. Plotkin and J. Power. Algebraic operations and generic effects.
Appl. Categ. Structures, 11(1):69–94, 2003.

[34] G. D. Plotkin and M. Pretnar. Handlers of algebraic effects. In
G. Castagna, editor, Programming Languages and Systems, 18th
European Symposium on Programming, ESOP 2009, Held as Part
of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceed-
ings, volume 5502 of Lecture Notes in Computer Science, pages
80–94. Springer, 2009. URL http://dx.doi.org/10.1007/
978-3-642-00590-9_7.

[35] G. D. Plotkin and M. Pretnar. Handling algebraic effects. Logical
Methods in Computer Science, 9(4), 2013.

[36] M. Pretnar. Inferring algebraic effects. Logical Methods in Com-
puter Science, 10(3), 2014. URL http://dx.doi.org/10.2168/
LMCS-10(3:21)2014.

[37] M. Sato, T. Sakurai, and R. M. Burstall. Explicit environments. Fun-
dam. Inform., 45(1-2):79–115, 2001. URL http://content.
iospress.com/articles/fundamenta-informaticae/
fi45-1-2-05.

[38] T. Schrijvers, N. Wu, B. Desouter, and B. Demoen. Heuristics en-
twined with handlers combined: From functional specification to logic
programming implementation. In O. Chitil, A. King, and O. Danvy,
editors, Proceedings of the 16th International Symposium on Prin-
ciples and Practice of Declarative Programming, Kent, Canterbury,
United Kingdom, September 8-10, 2014, pages 259–270. ACM, 2014.
URL http://doi.acm.org/10.1145/2643135.2643145.

[39] O. Shivers and A. J. Turon. Modular rollback through control logging:
a pair of twin functional pearls. In Chakravarty et al. [6], pages 58–68.
URL http://doi.acm.org/10.1145/2034773.2034783.

13 2016/7/16

http://doi.acm.org/10.1145/292540.292557
http://doi.acm.org/10.1145/1706299.1706354
http://dx.doi.org/10.1016/j.apal.2005.05.022
http://dx.doi.org/10.1016/j.apal.2005.05.022
http://homepages.inf.ed.ac.uk/slindley/papers/links-effect-draft-june2016.pdf
http://homepages.inf.ed.ac.uk/slindley/papers/links-effect-draft-june2016.pdf
http://dx.doi.org/10.1007/978-3-319-19797-5
http://dx.doi.org/10.1007/978-3-319-19797-5
http://doi.acm.org/10.1145/2500365.2500590
http://doi.acm.org/10.1145/2500365.2500590
http://doi.acm.org/10.1145/2804302.2804319
http://doi.acm.org/10.1145/2804302.2804319
http://doi.acm.org/10.1145/2503778.2503791
http://doi.acm.org/10.1145/2503778.2503791
http://dx.doi.org/10.4204/EPTCS.153.8
http://dx.doi.org/10.4204/EPTCS.153.8
http://doi.acm.org/10.1145/2633628.2633636
http://doi.acm.org/10.1145/2103786.2103798
http://doi.acm.org/10.1145/2103786.2103798
http://doi.acm.org/10.1145/73560.73564
https://personal.cis.strath.ac.uk/conor.mcbride/Kleisli.pdf
https://personal.cis.strath.ac.uk/conor.mcbride/Kleisli.pdf
http://dx.doi.org/10.1007/978-3-319-19797-5_13
http://dx.doi.org/10.1007/978-3-319-19797-5_13
http://dl.acm.org/citation.cfm?id=2500365
http://dl.acm.org/citation.cfm?id=2500365
http://dx.doi.org/10.1016/S1571-0661(04)80970-8
http://dx.doi.org/10.1016/S1571-0661(04)80970-8
http://dx.doi.org/10.1007/3-540-45315-6_1
http://dx.doi.org/10.1007/3-540-45315-6_1
http://dx.doi.org/10.1007/3-540-45931-6_24
http://dx.doi.org/10.1007/978-3-642-00590-9_7
http://dx.doi.org/10.1007/978-3-642-00590-9_7
http://dx.doi.org/10.2168/LMCS-10(3:21)2014
http://dx.doi.org/10.2168/LMCS-10(3:21)2014
http://content.iospress.com/articles/fundamenta-informaticae/fi45-1-2-05
http://content.iospress.com/articles/fundamenta-informaticae/fi45-1-2-05
http://content.iospress.com/articles/fundamenta-informaticae/fi45-1-2-05
http://doi.acm.org/10.1145/2643135.2643145
http://doi.acm.org/10.1145/2034773.2034783

[40] N. Swamy, N. Guts, D. Leijen, and M. Hicks. Lightweight monadic
programming in ML. In Chakravarty et al. [6], pages 15–27. URL
http://doi.acm.org/10.1145/2034773.2034778.

[41] W. Swierstra. Data types à la carte. J. Funct. Program., 18(4):423–
436, 2008.

[42] W. Swierstra, editor. Proceedings of the 2014 ACM SIGPLAN sym-
posium on Haskell, Gothenburg, Sweden, September 4-5, 2014, 2014.
ACM. URL http://dl.acm.org/citation.cfm?id=2633357.

[43] J. Talpin and P. Jouvelot. The type and effect discipline. Inf. Comput.,
111(2):245–296, 1994. . URL http://dx.doi.org/10.1006/
inco.1994.1046.

[44] A. van der Ploeg and O. Kiselyov. Reflection without remorse: re-
vealing a hidden sequence to speed up monadic reflection. In Swier-
stra [42], pages 133–144. URL http://doi.acm.org/10.1145/
2633357.2633360.

[45] S. Visscher. The effects package (0.2.2), 2012.
http://hackage.haskell.org/package/effects.

[46] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad-
hoc. In Conference Record of the Sixteenth Annual ACM Sympo-
sium on Principles of Programming Languages, Austin, Texas, USA,
January 11-13, 1989, pages 60–76. ACM Press, 1989. URL http:
//doi.acm.org/10.1145/75277.75283.

[47] N. Wu and T. Schrijvers. Fusion for free - efficient algebraic effect
handlers. In Hinze and Voigtländer [13], pages 302–322. URL
http://dx.doi.org/10.1007/978-3-319-19797-5_15.

[48] N. Wu, T. Schrijvers, and R. Hinze. Effect handlers in scope. In
Swierstra [42], pages 1–12. URL http://doi.acm.org/10.1145/
2633357.2633358.

14 2016/7/16

http://doi.acm.org/10.1145/2034773.2034778
http://dl.acm.org/citation.cfm?id=2633357
http://dx.doi.org/10.1006/inco.1994.1046
http://dx.doi.org/10.1006/inco.1994.1046
http://doi.acm.org/10.1145/2633357.2633360
http://doi.acm.org/10.1145/2633357.2633360
http://hackage.haskell.org/package/effects
http://doi.acm.org/10.1145/75277.75283
http://doi.acm.org/10.1145/75277.75283
http://dx.doi.org/10.1007/978-3-319-19797-5_15
http://doi.acm.org/10.1145/2633357.2633358
http://doi.acm.org/10.1145/2633357.2633358

	Introduction
	A Frank Tutorial
	Datatypes and First-Order Functions
	Computations in Ambient Silence
	Controlling Evaluation
	Abilities Collect Interfaces; Interfaces Offer Commands
	Direct Style for Monadic Programming
	Handling by Application
	Handling on Multiple Ports
	The Catch Question
	The Disappearance of Control

	Static Semantics
	Syntax
	Typing Rules

	Core Frank
	Elaboration
	Incomplete and Ambiguous Pattern Matching as Effects

	Dynamic Semantics
	Computations as Data
	Related Work
	Future Work

