
Do Be Do Be Do

Sam Lindley
The University of Edinburgh

Conor McBride
University of Strathclyde

Abstract
We explore the design of Frank, a strict functional programming
language designed from the ground up around a novel variant of
Plotkin and Pretnar’s effect handler abstraction. Inspired by Levy’s
call-by-push-value calculus, Frank makes an explicit distinction be-
tween computation and value types. Frank combines the advantages
of call-by-push-value, call-by-value, and effect typing.

1. Introduction
Plotkin and Power’s algebraic effects [19–22], in conjunction with
Plotkin and Pretnar’s handlers for algebraic effects [23, 24], provide
a compelling foundation for effectful programming. By separating
effect signatures from their implementation, algebraic effects pro-
vide a high degree of modularity, allowing programmers to express
effectful programs independently of the concrete interpretation of
their effects. A handler is an interpretation of the effects of an alge-
braic computation.

Effect handlers in Frank generalise functions. An effect handler
acts as an interpreter for a specified set of commands whose sig-
natures are statically tracked by the type system. A function is the
special case of an effect handler whose command set is empty.

The contributions of this paper are:

• Frank, a strict functional programming language featuring a
bidirectional effect type system, effect polymorphism, and ef-
fect handlers.

• A novel approach to effect polymorphism which avoids all
mention of effect variables, crucially relying on the observation
that one must always instantiate the effects of a function being
applied with the current ambient effects.

• The combination of pattern matching and effect handlers in
such a way that incomplete or ambiguous pattern matching can
be realised as concrete effects that can be handled however the
programmer chooses using further effect handlers.

• Multi-handlers as both an abstraction for handling multiple
computations over different effect sets simultaneously and a
characterisation of effect-handlers as generalised functions.

• A description of pattern matching compilation from Frank into
a core language, Core Frank.

[Copyright notice will appear here once ’preprint’ option is removed.]

• A translation from Core Frank into Feff, a polymorphic variant
of the λeff calculus of Kammar et al [8], which in turn extends
Levy’s call-by-push-value calculus [11].

• A straightforward small-step operational semantics for Feff,
yielding, in combination with the translation to Feff, a type
soundness result for Frank.

A number of other languages and libraries are built around
effect handlers and algebraic effects.

Bauer and Pretnar’s Eff [2]. A significant difference between
Frank and the original version of Eff [2] is that the latter provides
no support for effect typing. Recently Bauer and Pretnar have de-
signed an effect type system for Eff [3]. Their implementation [25]
supports Hindley-Milner type inference, and the type system incor-
porates effect sub-typing. In contrast, Frank uses bidirectional type
inference, and avoids sub-typing altogether.

Handlers in action [8]. In previous work with Kammar and
Oury [8], the first author designed and experimented with a num-
ber of effect handler libraries for languages ranging from Racket,
to SML, to Haskell. Apart from the Haskell library, these other li-
braries have no effect typing support. The Haskell library takes ad-
vantage of type classes to simulate an effect type system not en-
tirely dissimilar to that of Frank. As Haskell is lazy, the Haskell
library cannot be used to write direct-style effectful programs - one
must instead adopt a monadic style. Furthermore, although there
are a number of ways of almost simulating effect type systems in
Haskell, none is without its flaws. Kiselyov et al [9] have designed
another Haskell library for effect handlers, making a different col-
lection of design choices.

Brady [4] has designed a library and DSL for programming with
effects in his dependently typed Idris language. Like the Haskell
libraries, Brady’s library currently requires the programmer to write
effectful code in a monadic style.

In Plotkin and Powers setting, one defines algebraic effects with
respect to an equational theory. In all of the above implementations,
and in Frank, the equational theory is taken to be the free theory, in
which there are no equations.

The second author has been plotting Frank since 2007 [14]. He
has implemented a prototype of a previous version of Frank [16].
The design described in the current paper has much in common
with that implementation, but there are some syntactic and semantic
differences. The most important change in the current design is the
introduction of multi-handlers as a generalisation of both functions
and handlers.

The rest of the paper is structured as follows. Section 2 in-
troduces Frank by example. Section 3 presents a type system for
Frank. Section 4 describes how to elaborate multi-handlers and pat-
tern matching into Core Frank, a language of plain call-by-value
functions, explicit case analysis and unary handler constructs. Sec-
tion 5 gives a call-by-value embedding of Core Frank into Feff, a
variant of Kammar et al’s λeff calculus with shallow handlers, ex-
plicit polymorphism and general recursion. Section 6 gives a se-

1 2014/3/26

mantics for Feff, which when composed with pattern matching and
the call-by-value embedding, yields a semantics for Frank. Sec-
tion 7 outlines related work and Section 8 discusses future work.

2. Introducing Frank
Frank is a functional programming language with effects and han-
dlers in the style of Eff controlled by a type system inspired by
Levy’s call-by-push-value [11]. Doing and Being are clearly sep-
arated, and managed by distinguished notions of computation and
value types.

Concrete values live in inductive datatypes.

data List X
= nil
| cons X (List X)

data Zero =

data Unit = unit

We can write perfectly ordinary functional programs, with
(compulsory) type signatures.

append : List X -> List X -> List X
append nil ys = ys
append (x :: xs) ys = cons x (append xs ys)

Higher-order functions are passed suspended computations.
Braces are ”suspenders”.

map : {X -> Y} -> List X -> List Y
map f nil = nil
map f (cons x xs) = cons (f x) (map f xs)

A value type V is a datatype D V1 ... Vn, a suspended com-
putation type {C}, or a type variable X. A computation type can
be a function type V -> C or an effect-annotated value type
[S1 ... Sn]V, where an empty bracket may be omitted.

Effects are collections of signatures, which describe a choice of
commands. Here are some simple signatures.

sig Send X
= send : Unit(X)

sig Receive X
= receive : X

sig Abort
= aborting : Zero

The send command takes an argument of type X and returns a value
of type Unit. The receive command returns a value of type X. The
abort command returns an element of the empty type, Zero.

Frank is a call-by-value language, but it naturally distinguishes
[]V, the type of suspended pure computations which deliver a V,
from V itself. We can thus define a kind of ”semicolon” just as the
function which ignores its first argument.

semi : X Y -> Y
semi x y = y

Frank has effect polymorphism, enough to allow higher-order
functions to pass effect permissions to their parameters. The fol-
lowing uses map to send a list of things, one at a time.

sends : List X -> [Send X]Unit
sends xs = semi (map send xs) unit

The reason this type checks at all is because map is implicitly
polymorphic in its effects.

The following does not typecheck, because the Send effect is
not permitted in the return type of bad.

bad : List X -> Unit
bad xs = semi (map send xs) unit

Writing control operators is not too tricky.

bind : X -> {X -> Y} -> Y
bind x f = f x

We can use bind to define a polymorphic abort function.

abort : [Abort]X
abort = bind aborting! {}

The term {} denotes a suspended computation containing an empty
collection of pattern matching clauses covering the Zero return
type of aborting.

Here is a computation which receives and concatenates lists
until one is empty.

catter : [Receive (List X)]List X
catter = bind receive!

{ nil -> nil
| xs -> append xs catter!
}

The command receive is a suspended computation of type
{[Receive (List X)]List X} that delivers a list when forced.
The notation receive! forces a thunk.

If f is a suspended computation of function type, then f x
is syntactic sugar for f! x. Thus we need only explicitly force
computations that take no arguments.

Effects are handled by special functions called effect handlers.
Effect handlers in Frank can take multiple computations as argu-
ments, hence they are multi-handlers. In fact standard functions
like the ones we have seen so far are just special cases of multi-
handlers in which the all the arguments are pure.

A multi-handler has type R1 -> ... -> Rm -> R where each
Ri and R is an effect-annotated value type. For instance, we
can write a pipe multi-handler which handles send commands
from one computation by matching them against corresponding
receive commands from another.

pipe : [Send X]Unit -> [Receive X]Y -> [Abort]Y
pipe _ y = y
pipe unit _ = abort!
pipe (send x ? s) (receive ? r) =
pipe (s unit) (r x)

The type signature conveys several different things. The pipe han-
dler must handle all Send X commands in its first argument and
all Receive X commands in its second argument. The first argu-
ment returns values of type Unit and the second argument returns
values of type Y. The handler itself is allowed to perform Abort
commands and returns a final value of type Y.

Here are some things to send.

hello : List Char
hello =
cons ’h’ (cons ’e’ (cons ’l’

(cons ’l’ (cons ’o’ nil))))

space : List Char
space = cons ’ ’ nil

world : List Char
world =
cons ’w’ (cons ’o’ (cons ’r’

(cons ’l’ (cons ’d’ nil))))

2 2014/3/26

Types

(values) U,V ∶∶=D U ∣ {C} ∣X
(computations) C ∶∶= R ∣ R → C
(returners) R ∶∶= [Σ]V

(quantifiers) Z ∶∶=X ∣ ε
(polytypes) P ∶∶= ∀Z.Q
(thunks) Q ∶∶= {C}

(signatures) S X ∶∶= ⋅ ∣ c ∶ U(V), S X
(effects) Σ ∶∶= ∅ ∣ Σ, S V ∣ ε

(type environments) Γ ∶∶= ⋅ ∣ Γ, x ∶ V ∣ f ∶ P

Terms
(inferable values) u ∶∶= x ∣ f ∣ c ∣ d
(checkable values) v ∶∶= u ∣ k v ∣ {e}

(inferable computations) d ∶∶= u! ∣ d e

∣ letrec f ∶ P = e in d
(checkable computations) e ∶∶= v ∣ r ↦ e ∣ () ∣ e ∣ e

(value patterns) p ∶∶= x ∣ k p
(computation patterns) r ∶∶= p ∣ c p ? g ∣ x!

Figure 1. Frank Syntax

Here is a computation which sends them.

sender : [Send (List Char)]Unit
sender =

sends (cons (hello
(cons space (cons world nil))))

Here is a main function, which plugs sender and catter
together and sends their output to the console.

main : [Abort, Console](List Unit)
main = map ouch (pipe sender catter)

where the Console operations are handled specially at the top-level
according to the following signature.

sig Console
= inch : Char(Unit)
| ouch : Unit(Char)

The type system does two separate things:

• It ensures that value types coincide.
• It ensures that effects required are included in effects enabled.

The fun of Frank is that one can say what it is to be a com-
putation without saying what it is to do it. Doing and being are
separately negotiable, and readily interleaved in different ways. Or
as Frank Sinatra put it,

do be do be do

3. Type System
In this section we give a formal presentation of Frank’s type system.
The syntax of Frank types and terms is given in Figure 1. The types
are divided into value types and computation types in a similar
fashion to Levy’s call-by-push-value calculus [11]. Value types
are datatypes (D U), suspended C computations ({C}), otherwise
known as thunks, or type variables (X).

Computation types are constructed from returners. A returner
([Σ]V) represents the type of a computation that returns values
of type V while performing effects in Σ. In general, computa-
tion types represent multi-handlers. The type [Σ1]V1 → ⋅ ⋅ ⋅ →

[Σn]Vn → [Σ]V , is the type of an n-handler. For each argument
type [Σi]Vi the multi-handler must handle effects in Σi on that
argument. Such an n-handler handles all of its arguments simulta-
neously. As a result of handling its arguments it returns a value of
type V and may perform effects in Σ. We often write [Σ]V → C
as an abbreviation for [Σ1]V1 → ⋅ ⋅ ⋅→ [Σn]Vn → C.

Polytypes are restricted to thunks. Effect polymorphism is re-
stricted to a single effect variable ε, which in practice Frank pro-
grammers need never write.

Datatypes and effect signatures are declared at the top-level.
An effect signature S X consists of a collection of command
declarations of the form c ∶ U(V), denoting that command c takes
arguments of types V and returns a value of type U . The types V
and U may all depend on X . Each command many appear only
once in a signature, and each command may appear in only one
signature.

An effect set is a sequence of signatures initiated either with the
empty effect ∅ (yielding a closed effect set) or the only effect vari-
able ε (yielding an open effect set). Order is important, as repeats
are permitted, in which case the right-most signature overrides all
others with the same name.

Shadowing arises naturally in two ways. First, given an open
effect set Σ we may substitute an arbitrary effect set for ε. Second,
we define a notion of effect extension: Σ ⊕ Σ′ is the extension of
effect set Σ with closed effect set Σ′, formally:

Σ ⊕ ∅ = Σ
Σ ⊕ (Σ′, S V) = (Σ⊕Σ′

), S V

Type environments distinguish monomorphic and polymorphic
variables.

Just as with the types, Frank terms are separated into value terms
and computation terms. With future extensions, such as dependent
types, in mind, Frank adopts a bidirectional typing discipline [18].
Thus terms are further sub-divided into those whose type is infer-
able, and those that may be checked against a type.

Frank is less strict about the separation between value and com-
putation terms than call-by-push-value is. For instance, inferable
computations can sometimes be treated as inferable values. This is
a deliberate design decision, with the aim of making Frank conve-
nient to program with.

The typing rules for Frank are given in Figure 2. The judgement
Γ [Σ]-- u infers V says that given type environment Γ, ambient
effects Σ, and inferable value term u, then we can infer that the type
of u is V . The judgement Γ [Σ]-- V checks v says that given type
environment Γ, ambient effects Σ, value type V , and checkable
value term v, then we can check that V is the type of v. The
judgement Γ [Σ]-- d infers C says that given type environment Γ,
ambient effects Σ, and inferable computation term d, then we can
infer that the type of d is C. The judgement Γ ⊢ C checks e says
that given type environment Γ, computation type C, and checkable
computation term e, then we can check that C is the type of e.

The types of monomorphic variables (x) are simply looked up
in the type environment. The types of polymorphic variables (f)
are looked up and instantiated. In practice this means applying a
simple unification-based algorithm. The type of a command (c) is
looked up from the ambient effects. An inferable computation (d)
is also an inferable value, providing it is a returner whose effects
agree with the ambient effects.

Any inferable value (u) is also checkable against its inferred
type. Datatype (k v) and thunk ({e}) terms are checkable by check-
ing their components. The side condition on the thunk introduction
rule requires that the pattern matching clauses of e ∶ C cover C.

A thunk u can by forced (u!) if its inferred type agrees with the
ambient effects. To infer the type of a handler application d e, we
first infer the type of d, and then check that the argument matches

3 2014/3/26

Γ [Σ]-- u infers V

x ∶ V ∈ Γ

Γ [Σ]-- x infers V

f ∶ ∀Z.Q ∈ Γ dom(θ) = {Z} ε ∈ dom(θ) Ô⇒ θ(ε) = Σ

Γ [Σ]-- f infers θ(Q)

c ∶ U(V) ∈ Σ

Γ [Σ]-- c infers {[]V → [Σ]U}

Γ [Σ]-- d infers [Σ]V

Γ [Σ]-- d infers V

Γ [Σ]-- V checks v

Γ [Σ]-- u infers U U = V

Γ [Σ]-- V checks u

(Γ [Σ]-- Vi checks vi)i k V ∈D U

Γ [Σ]-- D U checks k v

Γ ⊢ C checks e e covers C
Γ [Σ]-- {C} checks {e}

Γ [Σ]-- d infers C

Γ [Σ]-- u infers {C} C does Σ

Γ [Σ]-- u! infers C

Γ [Σ]-- d infers [Σ′
]V → C Γ ⊢ [Σ⊕Σ′

]V checks e

Γ [Σ]-- d e infers C

(Γ, f ∶ ∀Z.Q ⊢ ei checks Qi)i Γ, f ∶ ∀Z.Q [Σ]-- d infers C

Γ [Σ]-- letrec f ∶ ∀Z.Q = e in d infers C

Γ ⊢ C checks e

Γ [Σ]-- V checks v

Γ ⊢ [Σ]V checks v

Σ′ closed ([Σ′
i]Vi matches ri ⊣∆i)i Γ,∆ ⊢ C checks e

Γ ⊢ [Σ′]V → C checks r ↦ e

V uninhabited

Γ ⊢ [Σ′
]V → C checks ()

Γ ⊢ R → C checks e Γ ⊢ R → C checks e′

Γ ⊢ R → C checks e ∣ e′

C does Σ

[Σ]V does Σ

C does Σ

R → C does Σ

V matches p ⊣∆

V matches x ⊣ x ∶ V

k V ∈D U (Vi matches pi ⊣∆i)i

D U matches k p ⊣∆

Rmatches r ⊣∆

V matches p ⊣∆

[Σ]V matches p ⊣∆

c ∶ U(V) ∈ Σ (Vi matches pi ⊣∆i)i

[Σ]V matches c p ? g ⊣∆, g ∶ {[∅]U → [Σ]V } [Σ]V matches x! ⊣ x ∶ {[Σ]V }

Figure 2. Frank Typing Rules

the inferred argument type. Note that the effect set on an argument
must be closed, and thus we may extend the ambient effect set
with the argument effect set when checking the argument. The
term letrec f ∶ P = e in d binds the mutually recursive polymorphic
functions f ∶ P in d.

Any term v that type checks with ambient effects Σ at value type
V also type checks at computation type [Σ]V . A multi-handler of
type [Σ′]V → C is built by composing clauses of the form r ↦ e,
where r is a sequence of computation patterns whose variables are
bound in e. The e ∣ e′ construct composes the clauses of e with
those of e′. A multi-handler is defined by a collection of clauses that

provides complete coverage of the input types. The () construct
allows empty sets of clauses to be constructed in the event that the
value type of a function argument is uninhabited.

We preclude composition of non-clauses (i.e. returners) by con-
straining e ∣ e′ to have function type. It is perfectly legitimate to
compose clauses with different numbers of arguments, though as
a preliminary part of pattern matching compilation, we first trans-
form the program to ensure that all composed clauses do have the
same number of arguments.

Value patterns are standard, consisting of variable patterns (x)
and datatype constructor patterns (k p).

4 2014/3/26

Computation patterns are more interesting. Any value pattern
p is also a computation pattern (used to match against the value
returned by the returner computation). A request pattern c p ? g
matches against a computation of the form c! v if the values vmatch
against p. Furthermore, it also binds g to the continuation of the
computation delimited by the nearest enclosing multi-handler. This
is where the real power of multi-handlers arises. A thunk pattern x!
matches any computation reifying it as a thunk bound to x.

Sequencing Computations We write let x = e in e′ as syntactic
sugar for bind e {x↦ e′}, where bind is defined in Section 2.
More verbosely:

let x = e in e′ ≡
letrec (bind ∶ ∀ε X Y.X → {X → [ε]Y }→ [ε]Y) =

x f ↦ f x in bind ! e {x↦ e}

3.1 Effect Polymorphism with an Invisible Effect Variable
We now give a brief description of how syntactic sugar allows
Frank programmers to omit effect variables completely. Consider
the type of map in Section 2:

{X → Y }→ List X → List Y

Apart from perhaps the curly braces, this looks pretty much the
same as the type a functional programmer might expect to write in
a language without support for effect typing.

In fact, this type desugars into the rather more verbose:

{[∅]X → [ε]Y }→ [∅](List X)→ [ε](List Y)

Let us distinguish between returners [Σ]V in argument posi-
tion, whose effects Σ must be closed, and those in tail position,
whose effects need not be closed. We call the former ports, and the
latter pegs.

Observe that ports are closed, so it is never necessary to write
the ∅ in their effects. Pegs, on the other hand, may be open or
closed. We adopt the convention that ε may be omitted from the
start of a peg’s effects. Thus, if we know it is a peg, then V means
[]V , which means [ε]V , and [Abort]V means [ε,Abort]V .

We now summarise the syntactic sugar. For ports and pegs:

V ≡ []V

For ports:

[S V]U ≡ [∅, S V]U

For pegs:

[S V]U ≡ [ε, S V]U

With this syntactic sugar in place, we can now avoid writing the
effect variable ε in Frank programs, ever. In addition, we need never
write ∅ in port effect sets. It is sometimes necessary to explicitly
write ∅ in peg effect sets. In particular, a pure top-level program
returning values of type V has type [∅]V .

4. Pattern Matching Compilation
We take a fairly standard approach to compiling away pattern
matching. As we may match simultaneously against multiple side-
effecting computations, we must be somewhat careful about order.
Optionally, we can expose incomplete or ambiguous pattern match-
ing as concrete effects.

The target language of pattern matching compilation, Core
Frank, replaces multi-handlers with a combination of call-by-value
functions, case statements, and unary effect handlers.

The syntax of Core Frank is given in Figure 3. The Core Frank
typing rules are given in Figure 4.

Multi-handlers in Frank become curried functions over sus-
pended computations in Core Frank. Shallow pattern matching on

Types

(values) U,V ∶∶=D U ∣ {C} ∣X
(computations) C ∶∶= R ∣ V → C
(returners) R ∶∶= [Σ]V

(quantifiers) Z ∶∶=X ∣ ε
(polytypes) P ∶∶= ∀Z.Q
(thunks) Q ∶∶= {C}

(signatures) S X ∶∶= ⋅ ∣ c ∶ U(V), S X
(effects) Σ ∶∶= ∅ ∣ Σ, S V ∣ ε

(type environments) Γ ∶∶= ⋅ ∣ Γ, x ∶ V ∣ f ∶ P

Terms
(inferable values) u ∶∶= x ∣ f ∣ c ∣ d
(checkable values) v ∶∶= u ∣ k v ∣ {e}

(inferable computations) d ∶∶= u! ∣ d v

∣ letrec f ∶ P = e in d
(checkable computations) e ∶∶= v ∣ λx.e

∣ case u of (k xk ↦ ek)k
∣ handle d with (c xc ? gc ↦ ec)c

∣ x↦ e

Figure 3. Core Frank Syntax

a single request becomes unary effect handling. Shallow pattern
matching on a datatype value becomes case analysis. Nested pattern
matching on multiple computations is realised as a pattern match-
ing tree constructed from handlers and case statements.

We may adapt standard algorithms for pattern matching compi-
lation apply (e.g. [1] or [13]). Rather than comitting to a particular
one, we outline how a pattern matching compiler fits into our set-
ting, what input it takes, and what kind of output it must produce.

Given a Frank expression {e} such that Γ ⊢

R1 . . .Rn → R checks e we compile it to an equivalent
Core Frank expression {LeM}. First we expand all of the clauses
in e to yield an n column pattern matrix. For instance, sup-
pose the arguments have types [Send Char ,Abort]Unit and
[Receive Char], and we have the following clauses:

(send x ? s) (receive ? r)↦ e1

(send x ? s) z ↦ e2

(abort ? s) e3

unit e4

then this becomes:

(send x ? s) (receive ? r) ↦ e1

(send x ? s) z ↦ e2

(abort ? s) y! ↦ bind y! e3

unit y! ↦ bind y! e4

where bind is defined in Section 2. The missing patterns have been
inserted as thunk patterns, which match any computation. Invoking
bind allows us to forward the computation bound by the thunk
pattern to the existing continuation. Next we generate a vector of
fresh variables, one for each argument.

x0 x1

The goal of pattern matching compilation is to generate a pattern
matching tree that matches the variable vector against all of the
patterns in the pattern matrix in the correct order.

5 2014/3/26

C does Σ

[Σ]V does Σ

C does Σ

V → C does Σ

Γ [Σ]-- u infers V

x ∶ V ∈ Γ

Γ [Σ]-- x infers V

f ∶ ∀Z.Q ∈ Γ dom(θ) = {Z} ε ∈ dom(θ) Ô⇒ θ(ε) = Σ

Γ [Σ]-- f infers θ(Q)

c ∶ U(V) ∈ Σ

Γ [Σ]-- c infers {V → [Σ]U}

Γ [Σ]-- d infers [Σ]V

Γ [Σ]-- d infers V

Γ [Σ]-- V checks v

Γ [Σ]-- u infers U U = V

Γ [Σ]-- V checks u

(Γ [Σ]-- Vi checks vi)i k V ∈D U

Γ [Σ]-- D U checks k v

Γ ⊢ C checks e

Γ [Σ]-- {C} checks {e}

Γ [Σ]-- d infers C

Γ [Σ]-- u infers {C} C does Σ

Γ [Σ]-- u! infers C

Γ [Σ]-- d infers [Σ′
]V → C Γ [Σ⊕Σ

′]-- V checks v

Γ [Σ]-- d v infers C

(Γ, f ∶ ∀Z.Q ⊢ ei checks Qi)i Γ, f ∶ ∀Z.Q [Σ]-- d infers C

Γ [Σ]-- letrec f ∶ ∀Z.Q = e in d infers C

Γ ⊢ C checks e

Γ [Σ]-- V checks v

Γ ⊢ [Σ]V checks v

Γ, x ∶ V ⊢ C checks e

Γ ⊢ V → C checks λx.e

Γ [Σ]-- u infersD U C does Σ (Γ, xk ∶ V ⊢ C checks ek)k V ∈D U

Γ ⊢ C checks case u of (k xk ↦ ek)k

Σ′ closed C does Σ
Γ [Σ⊕Σ

′]-- d infers [Σ⊕Σ′
]V (Γ, xc ∶ V , gc ∶ {U → [Σ⊕Σ′

]V } ⊢ C checks ec)c∶U(V)∈Σ′ Γ, x ∶ V ⊢ C checks e

Γ ⊢ C checks handle d with (c xc ? gc ↦ ec)c ∣ x↦ e

Figure 4. Core Frank Typing Rules

In Frank, pattern matching trees M are built up from leaves,
case analysis, and handlers.

M ∶∶= e
∣ case x of (k xk ↦Mk)k∈D
∣ handle x! with (c xc ? gc ↦Mc)c∈Σ ∣ x↦M

The leaves consist of a sequence of checkable computation expres-
sions. Each element corresponds to one way of matching all of the
patterns. If there exists a leaf with no elements, then the pattern
matching is incomplete; if there exists a leaf with multiple ele-
ments, then the pattern matching is ambiguous. Our default strategy
(as indicated by the thunk introduction rule) is to class incomplete
pattern matching as a type error, and to keep only the first element
in the case of ambiguous pattern matching. Our example generates

the following pattern matching tree:

M = handle x0! with
send x ? s↦

handle x1! with
receive ? r ↦ e1

z ↦ e2

abort ? s↦
handle x1! with
receive ? r ↦ bind (r! receive!) e3

z ↦ bind z e3

y ↦
case y of

unit ↦ handle x1! with
receive ? r ↦ bind (r! receive!) e4

z ↦ bind z e4

Each thunk pattern has been expanded out to explicitly list all of
the cases according to its type. We obtain the corresponding Core

6 2014/3/26

Frank code by abstracting over the fresh variables.

λx0 x1.M

Some pattern matching operations reorder columns as an optimi-
sation. Column reordering is not in general a valid optimisation
in Frank. This is because commands in the ambient effects, but
not in the argument effects, are implicitly forwarded, and the or-
der in which they are forwarded is left-to-right. (The forwarding
behaviour is made precise in the Section 6.)

Of course, because Core Frank takes values as arguments
whereas Frank takes computations, each argument must be wrapped
in a thunk constructor. The type translation is given simply by
the homomorphic extension of the following equation on function
types:

L[Σ]V M→ LCM = {[LΣM]LV M}→ LCM

A correct pattern matching translation L−M from Frank to Core
Frank should be type preserving.

• If Γ [Σ]-- u infers V then LΓM [LΣM]-- LuM infers LV M.
• If Γ [Σ]-- V checks v then LΓM [LΣM]-- LV M checks LvM.
• If Γ [Σ]-- d infers C then LΓM [LΣM]-- LdM infers LCM.

4.1 Incomplete and Ambiguous Pattern Matching as Effects
As an extension to Frank, we might allow incomplete and ambigu-
ous pattern matching. The former may be permitted if the ambient
effects contain the Abort signature, in which case incomplete pat-
terns are translated into the abort ∶ Zero command, which can then
be handled however the programmer wishes. Similarly, we can de-
fine a choice ∶ X(X,X) command, in order to allow ambiguous
pattern matches to be handled by the programmer.

5. Explicit Control Flow and Polymorphism
In order to make control flow explicit, and to ease the definition of
an operational semantics, we translate Core Frank into a call-by-
push-value calculus Feff based on Kammar et al’s λeff [8].

At the same time, we make polymorphism explicit. The syntax
of Feff is given in Figure 5. Broadly, Feff types are similar to Frank
types, with an explicit division between value type and computation
types. A superficial difference is that rather than annotating value
returning computations with effects, we shift such labels to the
thunk containing the computation. The former design seems more
convenient to program with, which is why we adopt it in the source
language. The latter design leads to a more uniform presentation
of the typing rules, and matches the design of λeff . Another minor
difference is that in Feff commands must always be fully applied,
which leads to a cleaner operational semantics. Note that let is
actually redundant in Feff, just as it is in Frank and Core Frank.
We include let as a special construct because doing so makes the
semantics cleaner.

The typing rules for Feff are given in Figure 6. Typing in Feff is
unidirectional.

Call-by-push-value calculi such as λeff and Feff make a strict
separation between values and computations, not dissimilar from
CPS or A-normal form representations, in which all reduction takes
place at the level of computations. In such a setting it would seem
most natural to add type abstractions to computations rather than
values. However, this does not give us what we need in the presence
of effects, as we need to be able to quantify over effects. Our
solution is to build the universal quantifier into the thunk type (the
introduction rule for thunks is the place where ambient effects are
reified in a type) and build type application into forcing.

Types

(values) U,V ∶∶=D U ∣ ∀Z.[Σ]{C} ∣X
(computations) C ∶∶= ⟨V ⟩ ∣ V → C

(quantifiers) Z ∶∶=X ∣ ε
(arguments) T ∶∶= V ∣ Σ

(polytypes) P ∶∶= ∀Z.Q
(monothunks) Q ∶∶= [Σ]{C}

(signatures) S ∶∶= ⋅ ∣ c ∶ U(V), S
(effects) Σ ∶∶= ∅ ∣ Σ, S V ∣ ε

(type environments) Γ ∶∶= ⋅ ∣ Γ, x ∶ V

Terms

(values) u, v ∶∶= x ∣ k v ∣ ΛZ.{d}
(computations) d, e ∶∶= case u of (k xk ↦ ek)k ∣ (u T)!

∣ λx.e ∣ d v ∣ ret v ∣ let x = e in e′ ∣ c v
∣ handle d with (c xc ? g ↦ ec)c ∣ x↦ e

∣ letrec f ∶ P = e in e′

Figure 5. Feff Syntax

The type translation from Core Frank to Feff is given by the
homomorphic extension of the following equations:

J{C}K = [JΣK]{JCK}, where C does Σ
J[Σ]V → CK = [JΣK]JV K→ JCK

J[Σ]V K = ⟨JV K⟩

In order to simplify the definition of the term translation, as a pre-
processing step we annotate instances of polymorphic variables f
with the type arguments they are instantiated with and commands
with their arities. The term translation is a call by value embedding
of Core Frank into Feff:

JxK = ret x

JfT K = ret {f JT K}
JcnK = ret {λx1 . . . xn.c x1 . . . xn}

Jk vK = let x = JvK in ret (k x)
J{e}K = ret {JeK}

Jd vK = let x = JvK in JdK x
Ju!K = let x = JuK in x!

Jletrec f ∶ ∀Z.Q = e in dK = letrec f ∶ J∀Z.QK = JeK in JdK

Jλx.eK = λx.JeK
Jcase u of (k xk ↦ ek)kK =

let x = JuK in case x of (k xk ↦ JekK)k
Jhandle d with (c xc ? gc ↦ ec)c ∣ x↦ eK =

handle JdK with (c xc ? gc ↦ JecK)c ∣ x↦ JeK

PROPOSITION 1. The translation J−K from Core Frank to Feff is
type preserving.

• If Γ [Σ]-- u infers V then JΓK [JΣK]-- JuK ∶ ⟨JV K⟩.
• If Γ [Σ]-- V checks v then JΓK [JΣK]-- JvK ∶ ⟨JV K⟩.
• If Γ [Σ]-- d infers C then JΓK [JΣK]-- JdK ∶ JCK.
• If Γ ⊢ C checks e and C does Σ then JΓK [JΣK]-- JeK ∶ JCK.

Kammar et al [8] classify a number of different varieties of han-
dler. The handlers in Feff (and indeed Frank) are shallow in that, un-
like Plotkin and Pretnar’s original deep handlers, the handler is not
automatically rewrapped around the continuation when handling a
command. Roughly, deep handlers perform a fold over computa-

7 2014/3/26

Γ ⊢ v ∶ V

x ∶ V ∈ Γ

Γ ⊢ x ∶ V

Γ ⊢ Vi ∶ vi k V ∈D U

Γ ⊢D U ∶ k v

Γ [Σ]-- e ∶ C

Γ ⊢ ΛZ.{e} ∶ ∀Z.[Σ]{C}

Γ [Σ]-- e ∶ C

Γ ⊢ u ∶D U (Γ, xk ∶ V [Σ]-- ek ∶ C)k V ∈D U

Γ [Σ]-- case u of (k xk ↦ ek)k ∶ C

Γ ⊢ u ∶ ∀Z.[Σ]{C}

Γ [Σ]-- (u T)! ∶ C[T /Z]

Γ, x ∶ V [Σ]-- e ∶ C
Γ [Σ]-- λx.e ∶ V → C

Γ [Σ]-- d ∶ V → C Γ ⊢ v ∶ V

Γ [Σ]-- d v ∶ C
Γ ⊢ v ∶ V

Γ [Σ]-- ret v ∶ ⟨V ⟩

Γ [Σ]-- d ∶ ⟨V ⟩ Γ, x ∶ V [Σ]-- e ∶ C
Γ [Σ]-- let x = d in e ∶ C

c ∶ U(V) ∈ Σ Γ ⊢ vi ∶ Vi

Γ [Σ]-- c v ∶ ⟨U⟩

Γ [Σ⊕Σ
′]-- d ∶ ⟨V ⟩ (Γ, xc ∶ V , g ∶ [Σ⊕Σ′

]{U → ⟨V ⟩} [Σ]-- ec ∶ C)c∶U(V)∈Σ′ Γ, x ∶ V [Σ]-- e ∶ C

Γ [Σ]-- handle d with (c xc ? g ↦ ec)c ∣ x↦ e ∶ C

(Γ, f ∶ ∀Z.Q [Σ]-- ei ∶ Qi)i Γ, f ∶ ∀Z.Q [Σ]-- d ∶ C

Γ [Σ]-- letrec f ∶ ∀Z.Q = e in d ∶ C

Figure 6. Feff Typing rules

tions, whereas shallow handles perform a case split. Deep handlers
are denotationally better behaved than shallow handlers, but shal-
low handlers sometimes appear more convenient to program with.
The handlers in Feff (and indeed Frank) are polymorphic forward-
ing handlers. The form of polymorphism amounts to a kind of row
polymorphism with shadowing, unlike the more conventional kind
of row polymorphism suggested by Kammar et al.

6. Small-step semantics
We give a small step operation semantics for Feff inspired by Kam-
mar et al’s semantics for λeff [8]. All of the rules except the ones
for handlers are pretty standard β-reductions. The rules for forcing
are slightly unusual due to the hard-wiring of polymorphism into
thunks.

Returns ret v are handled by substituting the value into the han-
dler’s return clause. Commands are handled by capturing the con-
tinuation up to the current handler and dispatching to the appropri-
ate clause for the command. If a clause is defined in the handler,
then that clause is selected. If not, then the command is forwarded
to be handled by an outer handler, but its continuation is handled
by the current handler.

Delimited computation contexts D are used to characterise the
continuation up to the current handler. Computation contexts E
amount to evaluation contexts for a call-by-push-value setting.

PROPOSITION 2 (Type Soundness).

• If Γ [Σ]-- d ∶ C and dÐ→ e then Γ [Σ]-- e ∶ C.
• If ⋅ [∅]-- d ∶ ⟨V ⟩ then either there exists v such that d = ret v or

there exists e such that dÐ→ e.

7. Related Work
We have discussed much of the related work throughout the paper.
Here we briefly mention some other related work.

A natural implementation for handlers is to use free monads [8].
Swierstra [27] illustrates how to write effectful programs with free

monads in Haskell, taking advantage of type-classes to provide a
certain amount of modularity.

Inspired by Bauer and Pretnar’s Eff, Visscher has implemented
the effects library [28]. The key idea is to layer continuation
monads in the style of Filinski [5], using Haskell type classes to
automatically infer lifting between layers.

Filinski’s work on monadic reflection and layered monads is
closely related to effect handlers [6]. Monadic reflection supports
a similar style of composing effects. The key difference is that
monadic reflection interprets monadic computations in terms of
other monadic computations, rather than abstracting over and in-
terpreting operations

Languages other than Frank that attempt to elide some effect
variables from source code include Links [12] and Daan Leijen’s
Koka [10]. Neither eliminates effect variables altogether.

Swamy et al [26] add support for monads in ML, support-
ing direct-style effectful programming in a strict language. Unlike
Frank, their system is based on monad transformers rather than ef-
fect handlers.

8. Future Work
Our first priority is to implement a prototype for the current Frank
design. Having done that, there is much scope for exploring dif-
ferent implementations of handlers, both for performance and for
exploring new abstractions. We would like to combine effect han-
dlers with richer type systems, following the work of McBride [15]
and Brady [4]. Handlers provide some of the same functionality as
modules and type classes. We would like to formally relate all three
abstractions. We are exploring algebraic effects and effect handlers
for idiom [17] and arrow [7] computations.

References
[1] L. Augustsson. Compiling pattern matching. In FPCA, pages 368–

381, 1985.
[2] A. Bauer and M. Pretnar. Programming with algebraic effects and

handlers. CoRR, abs/1203.1539, 2012.

8 2014/3/26

(Delimited computation contexts)D ∶∶= [] ∣D v ∣ let x =D in e
(Computation contexts)E ∶∶= [] ∣ E v ∣ let x = E in e ∣ handle E withH

case kj v of (ki xi ↦ ei)i Ð→ ej[v/xj]
((ΛZ.{e}) T)!Ð→ e[T /Z]

(λx.e) v Ð→ e[v/x]
let x = ret v in eÐ→ e[v/x]

letrec f ∶ ∀Z.Q = e in dÐ→ d[ΛZ.{e}[ΛZ.{letrec f ∶ ∀Z.Q = e in (f Z)!}/f]/f]

handle (ret v) withH Ð→H(ret, v)
handleD[c v] withH Ð→H(c, v,{λz.D[ret z]})

where the action of H = (ci xi ? g ↦ ei)i ∣ x↦ e is given by:

H(ret, v) = e[v/x]
H(cj, v, u) = ej[v/x,u/g]
H(c, v, u) = let z = c v in handle u! z withH, c ≠ ci for any i

dÐ→ e

E[d]Ð→ E[e]

Figure 7. Small-step operational semantics for Feff

[3] A. Bauer and M. Pretnar. An effect system for algebraic effects and
handlers. In CALCO, volume 8089 of Lecture Notes in Computer
Science, pages 1–16. Springer, 2013.

[4] E. Brady. Programming and reasoning with algebraic effects and
dependent types. In ICFP. ACM, 2013.

[5] A. Filinski. Representing layered monads. In POPL. ACM, 1999.

[6] A. Filinski. Monads in action. In POPL. ACM, 2010.

[7] J. Hughes. Programming with arrows. In Advanced Functional
Programming, volume 3622 of Lecture Notes in Computer Science,
pages 73–129. Springer, 2004.

[8] O. Kammar, S. Lindley, and N. Oury. Handlers in action. In ICFP,
pages 145–158. ACM, 2013.

[9] O. Kiselyov, A. Sabry, and C. Swords. Extensible effects: an alterna-
tive to monad transformers. In Haskell, pages 59–70. ACM, 2013.

[10] D. Leijen. Koka: Programming with row-polymorphic effect types.
Technical Report MSR-TR-2013-79, Microsoft Research, 2013.

[11] P. B. Levy. Call-By-Push-Value: A Functional/Imperative Synthesis,
volume 2 of Semantics Structures in Computation. Springer, 2004.

[12] S. Lindley and J. Cheney. Row-based effect types for database inte-
gration. In TLDI. ACM, 2012.

[13] L. Maranget. Compiling pattern matching to good decision trees. In
ML, pages 35–46. ACM, 2008.

[14] C. McBride. How might effectful programs look? In Workshop on
Effects and Type Theory, 2007.
http://cs.ioc.ee/efftt/mcbride-slides.pdf.

[15] C. McBride. Kleisli arrows of outrageous fortune, 2011. Accepted
for publication.
https://personal.cis.strath.ac.uk/conor.mcbride/
Kleisli.pdf.

[16] C. McBride. Frank (0.3), 2012.
http://hackage.haskell.org/package/Frank.

[17] C. McBride and R. Paterson. Applicative programming with effects.
J. Funct. Program., 18(1):1–13, 2008.

[18] B. C. Pierce and D. N. Turner. Local type inference. ACM Trans.
Program. Lang. Syst., 22(1):1–44, 2000.

[19] G. D. Plotkin and J. Power. Semantics for algebraic operations. Electr.
Notes Theor. Comput. Sci., 45, 2001.

[20] G. D. Plotkin and J. Power. Adequacy for algebraic effects. In
FoSSaCS. Springer-Verlag, 2001.

[21] G. D. Plotkin and J. Power. Notions of computation determine mon-
ads. In FoSSaCS. Springer-Verlag, 2002.

[22] G. D. Plotkin and J. Power. Algebraic operations and generic effects.
Appl. Categ. Structures, 11(1):69–94, 2003.

[23] G. D. Plotkin and M. Pretnar. Handlers of algebraic effects. In ESOP.
Springer-Verlag, 2009.

[24] G. D. Plotkin and M. Pretnar. Handling algebraic effects. Logical
Methods in Computer Science, 9(4), 2013.

[25] M. Pretnar. Inferring algebraic effects. CoRR, abs/1312.2334, 2013.
[26] N. Swamy, N. Guts, D. Leijen, and M. Hicks. Lightweight monadic

programming in ML. In ICFP. ACM, 2011.
[27] W. Swierstra. Data types à la carte. J. Funct. Program., 18(4):423–

436, 2008.
[28] S. Visscher. The effects package (0.2.2), 2012.

http://hackage.haskell.org/package/effects.

9 2014/3/26

http://cs.ioc.ee/efftt/mcbride-slides.pdf
https://personal.cis.strath.ac.uk/conor.mcbride/Kleisli.pdf
https://personal.cis.strath.ac.uk/conor.mcbride/Kleisli.pdf
http://hackage.haskell.org/package/Frank
http://hackage.haskell.org/package/effects

	Introduction
	Introducing Frank
	Type System
	Effect Polymorphism with an Invisible Effect Variable

	Pattern Matching Compilation
	Incomplete and Ambiguous Pattern Matching as Effects

	Explicit Control Flow and Polymorphism
	Small-step semantics
	Related Work
	Future Work

