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Abstract
ML is remarkable in providing statically typed polymorphism

without the programmer ever having to write any type anno-

tations. The cost of this parsimony is that the programmer is

limited to a form of polymorphism in which quantifiers can

occur only at the outermost level of a type and type variables

can be instantiated only with monomorphic types.

Type inference for unrestricted System F-style polymor-

phism is undecidable in general. Nevertheless, the literature

abounds with a range of proposals to bridge the gap between

ML and System F.

We put forth a new proposal, FreezeML, a conservative

extension ofMLwith two new features. First, let- and lambda-

binders may be annotated with arbitrary System F types. Sec-

ond, variable occurrences may be frozen, explicitly disabling

instantiation. FreezeML is equipped with type-preserving

translations back and forth between System F and admits a

type inference algorithm, an extension of algorithm W, that

is sound and complete and which yields principal types.

Keywords first-class polymorphism, type inference, im-

predicative types

1 Introduction
The design of ML [18] hits a sweet spot in providing statically

typed polymorphism without the programmer ever having

to write any type annotations. The Hindley-Milner type

inference algorithm on which ML relies is sound (it only

yields correct types) and complete (if a program has a type

then it will be inferred). Moreover, inferred types are always

principal, that is, most general. Alas, this sweet spot is rather

narrow, depending on a delicate balance of features; it still

appears to be an open question how best to extend ML type

inference to support first-class polymorphism as found in

System F.

Nevertheless, ML has unquestionable strengths as the ba-

sis for high-level programming languages. Its implicit poly-

morphism is extremely convenient for writing concise pro-

grams. Functional programming languages such Haskell and

OCaml employ algorithms based on Hindley-Milner type

inference and go to great efforts to reduce the need to write

type annotations on programs. Whereas the plain Hindley-

Milner algorithm supports a limited form of polymorphism

in which quantifiers must be top-level and may only be in-

stantiated with monomorphic types, advanced programming

techniques often rely on first-class polymorphism, where

quantifiers may appear anywhere and may be instantiated

with arbitrary polymorphic types, as in System F. However,

working directly in System F is painful due to the need for

explicit type abstractions and applications. Alas, type infer-

ence, and indeed type checking, is undecidable for System

F [29] without type annotations. Moreover, even in System

F with type annotations but no explicit instantiation, type

inference remains undecidable [21].

The primary difficulty in extending ML to support first-

class polymorphism is with the implicit instantiation of

polymorphic type schemes: whenever a variable occurrence

is typechecked, any quantified type variables are immedi-

ately instantiated with (monomorphic) types. Whereas in

plain ML there is nothing to be lost by greedily instantiat-

ing type variables, with first-class polymorphism there is

sometimes a non-trivial choice to be made over whether to

instantiate or not. The basic Hindley-Milner algorithm [3]

restricts the use of polymorphism in types to type schemes
of the form ∀®a.A where A does not contain any further poly-

morphism. This means that, for example, given a function

single : ∀a.a → List a, that constructs a list of one ele-

ment, and a polymorphic function choosing its first argu-

ment choose : ∀a.a → a → a, the expression single choose
is assigned the type ∀a.List (a → a → a), which is a poly-

morphic list of functions of type a → a → a. The type

∀a.List (a → a → a) arises from instantiating the quantifier

of single with a → a → a. But what if instead of construct-

ing a polymorphic list of choice functions a programmer

wishes to construct a list of polymorphic choice functions,

i.e. a list of type List (∀a.a → a → a)? This requires in-

stantiating the quantifier of single with a polymorphic type

∀a.a → a → a. In ML, it is forbidden to instantiate type
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variables with polymorphic types, thus it is impossible to

construct a term of type List (∀a.a → a → a). (Indeed,
this System F type is not even an ML type scheme.) How-

ever, in a richer language such as System F, the expression

single choose could be annotated as appropriate in order

to obtain either the type ∀a.List (a → a → a) or the type
List (∀a.a → a → a).
All is not lost. By adding a sprinkling of explicit type

annotations, in combination with other extensions, it is pos-

sible to retain much of the convenience of ML alongside

the expressiveness of System F. Indeed, there is a plethora

of techniques bridging the expressiveness gap between ML

and System F without sacrificing desirable type inference

properties of ML [6, 10–13, 23, 24, 26, 27].

However, there is still not a wide consensus on what con-

stitutes a good design for a language combining ML-style

type inference with System F-style first-class polymorphism,

beyond the typical criteria of decidability, soundness, com-

pleteness, and principal typing. As Serrano et al. [24] put it in

their PLDI 2018 paper, type inference in the presence of first-

class polymorphism is still “a deep, deep swamp” and “no

solution (...) with a good benefit-to-weight ratio has been pre-

sented to date”. While previous proposals offer considerable

expressive power, we nevertheless consider the following

combination of design goals to be both compelling and not

yet achieved by any prior work:

• Familiar SystemF typesOur ideal solution would use
exactly the type language of System F. Several approaches,

such as HML [12], MLF [10], Poly-ML
1
[6], and QML [23],

capture (or exceed) the power of System F, but employ a

strict superset of System F’s type language. While in some

cases this difference is superficial, we consider that it does

increase the burden on the programmer to understand and

use these features effectively, and may also contribute to

increasing the syntactic overhead and decreasing the clarity

of programs.

• Close to ML type inference Our ideal solution would

conservatively extend ML and standard Hindley-Milner type

inference, including the (now-standard) value restriction [30].
Approaches such as MLF and Boxy Types have relied on

much more sophisticated type inference techniques than

needed in classical Hindley-Milner type inference, and proven

difficult to implement or extend further because of their com-

plexity. Other approaches, such as GI, are relatively straight-

forward to implement atop an OutsideIn(X)-style constraint-

based type inference algorithm, but would be much more

work to add to a standard Hindley-Milner implementation.

• Low syntactic overheadOur ideal solutionwould pro-

vide first-class polymorphism without significant departures

from ordinary ML-style programming. Early approaches [8,

1
The name Poly-ML does not appear in the original [6] paper, but was

introduced retrospectively [10].

9, 19, 22] showed how to accommodate System F-style poly-

morphism by associating it with nominal datatype construc-

tors, but this imposes a significant syntactic overhead to

make use of these capabilities, which can also affect the

readability and maintainability of programs. All previous

approaches necessarily involve some type annotations as

well, which we also desire to minimise as much as possible.

• Predictable behaviourOur ideal solutionwould avoid
guessing polymorphism and be specified so that program-

mers can anticipate where type annotations will be needed.

More recent approaches, such as HMF [11] and GI [24], use

System F types, and are relatively easy to implement, but em-

ploy heuristics to guess one of several different polymorphic

types, and require programmer annotations if the default

heuristic behaviour is not what is needed.

In short, we consider that the problem of extending ML-

style type inference with the power of System F is solved as

a technical problem by several existing approaches, but there

remains a significant design challenge to develop an approach
that uses familiar System F types, is close to ML type inference,
has low syntactic overhead, and has predictable behaviour.
Of course, these desiderata represent our (considered, but

subjective) views as language designers, and others may (and

likely will) disagree. We welcome such debate.

Our contribution: FreezeML In this paper, we introduce

FreezeML, a core language extending ML with two System

F-like features:

• “frozen” variable occurrences for which polymorphic

instantiation is inhibited (written ⌈x⌉ to distinguish

them from ordinary variables x whose polymorphic

types are implicitly instantiated); and

• type-annotated lambda abstractions λ(x : A).M .

FreezeML also refines the typing rule for let by:

• restricting let-bindings to have principal types; and

• allowing type annotations on let-bindings.

Aswe shall see in Section 2, the introduction of type-annotated

let-bindings and frozen variables allows us to macro-express

explicit versions of generalisation and instantiation (the two

features that are implicit in plain ML). Thus, unlike ML, al-

though FreezeML still has ML-like variables and let-binding

it also enjoys explicit encodings of all of the underlying

System F features. Correspondingly, frozen variables and

type-annotated let-bindings are also central to encoding type

abstraction and type application of System F (Section 4.1).

Although, as we explain later, our approach is similar in

expressiveness to existing proposals such as Poly-ML, we

believe its close alignment with System F types and ML type

inference are important benefits, and we argue via exam-

ples that its syntactic overhead and predictability compare

favourably with the state of the art. Nevertheless, further

work would need to be done to systematically compare the

syntactic overhead and predictability of our approach with
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existing approaches — this criticism, however, also applies

to most previous work on new language design ideas.

Contributions This paper is a programming language de-

sign paper. Though we have an implementation on top of

the Links programming language [2]
2
implementation is

not the primary focus. The paper makes the following main

contributions:

• A high-level introduction to FreezeML (Section 2).

• A type system for FreezeML as a conservative exten-

sion of ML with the expressive power of System F

(Section 3).

• Local type-preserving translations back and forth be-

tween System F and FreezeML, and a discussion of the

equational theory of FreezeML (Section 4).

• A type inference algorithm for FreezeML as an exten-

sion of algorithmW [3], which is sound, complete, and

yields principal types (Section 5).

Section 6 discusses implementation, Section 7 presents

related work and Section 8 concludes.

2 An Overview of FreezeML
We begin with an informal overview of FreezeML. Recall

that the types of FreezeML are exactly those of System F. Ap-

pendix A contains an additional collection of code examples

that showcase how our system works in practice.

Implicit Instantiation In FreezeML (as in standardHindley-

Milner type inference), when variable occurrences are type-

checked, the outer universally quantified type variables in

the variable’s type are instantiated implicitly. Suppose a pro-

grammer writes choose id, where variable choose has poly-
morphic type ∀a.a → a → a. The identity function id has

type ∀a.a → a, and (as in ML) the quantifier in the type of

id is implicitly instantiated with an as yet unknown type a,
yielding the type a → a. This type is then used to instantiate

the quantifier in the type of choose, resulting in the final

type of the expression (a → a) → (a → a).

Explicit Freezing (⌈x⌉) The programmer may explicitly

prevent a variable from having its quantifiers instantiated by

using the freeze operator ⌈−⌉. Whereas each ordinary occur-

rence of choose has type a → a → a for an unknown type

a, a frozen occurrence ⌈choose⌉ has type ∀a.a → a → a.
More interestingly, whereas the term single choose has type
List (a → a → a), the term single ⌈choose⌉ has type

List (∀a.a → a → a). This makes it possible to pass poly-

morphic arguments to functions that expect them. Consider

the term auto id, where auto : (∀a.a → a) → (∀a.a → a).
This will not typecheck because id will be implicitly instan-

tiated to type a → a which does not match the argument

type ∀a.a → a of auto. We can however apply auto to id by

2https://github.com/links-lang/links

freezing the identity function: auto ⌈id⌉, which does type-

check.

Explicit Generalisation ($V ) We can generalise an ex-

pression to its principal polymorphic type by binding it

to a variable and then freezing it, for instance: let id =
λx .x in poly ⌈id⌉, where poly : (∀a.a → a) → Int × Bool.
The explicit generalisation operator $ generalises the type of

any value. Whereas the term λx .x has type a → a, the term
$(λx .x) has type ∀a.a → a, allowing us to write poly $(λx .x).
Explicit generalisation is macro-expressible [5] in FreezeML.

$V ≡ let x = V in ⌈x⌉

We can also define a type-annotated variant:

$
AV ≡ let (x : A) = V in ⌈x⌉

Note that FreezeML adopts the ML value restriction [30];

hence let generalisation only applies to syntactic values.

Explicit Instantiation (@M) As in ML, the polymorphic

types of variables are implicitly instantiated when typecheck-

ing each variable occurrence. Unlike in ML, other terms can

have polymorphic types, which are not implicitly instan-

tiated. Nevertheless, we can instantiate a term by binding

it to a variable: let x = head ids in x 42, where head :

∀a.List (a) → a returns the first element in a list and

ids : List (∀a.a → a) is a list of polymorphic identity

functions. The explicit instantiation operator @ supports

instantiation of a term without having to explicitly bind it

to a variable. For instance, whereas the term head ids has
type ∀a.a → a the term (head ids)@ has type Int → Int,
so (head ids)@42 is well-formed. Explicit instantiation is

macro-expressible in FreezeML:

M@ ≡ let x = M in x

Ordered Quantifiers Like in System F, but unlike in ML,

the order of quantifiers matters. Generalised quantifiers are

ordered according to the order in which they first appear in

a type. Note that when we generalise a variable it will first

be implicitly instantiated and only then generalised. In some

cases instantiating a variable and then generalising it leads to

reordering of quantifiers, while in other cases it does not. For

example, if we have functions f : (∀a b .a → b → a × b) →
Int, pair : ∀a b .a → b → a × b, and pair′ : ∀b a.a → b →

a × b, then f ⌈pair⌉, f $pair, and f $pair′ have type Int and
behave identically. Notice how $pair′ gets instantiated first

and then generalised to have the quantifiers ordered in a way

the f function expects. Note also how expression f ⌈pair′⌉
is ill-typed as the order of quantifiers on ⌈pair′⌉ does not
match the requirements of the f function.

Monomorphic parameter inference As in ML, function

arguments need not have annotations, but their inferred

types must be monomorphic, i.e. we cannot typecheck bad:

bad = λ f .(f 42, f True)
3
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Unlike in ML we can annotate arguments with polymorphic

types and use them at different types:

poly = λ(f : ∀a.a → a).(f 42, f True)

One might hope that it is safe to infer polymorphism by local,

compositional reasoning, but that is not the case. Consider

the following two functions.

bad1 = λ f .(poly ⌈f ⌉, (f 42) + 1)
bad2 = λ f .((f 42) + 1, poly ⌈f ⌉)

Wemight reasonably expect both to be typeable with a declar-

ative type system that assigns the type ∀a.a → a to f . Now,
assume type inference proceeds from left to right. In bad1we
first infer that f has type ∀a.a → a (as ⌈f ⌉ is the argument

to poly); then we may instantiate a to Intwhen applying f to

42. In bad2 we eagerly infer that f has type Int → Int; now
when we pass ⌈f ⌉ to poly, type inference fails. To rule out
this kind of sensitivity to the order of type inference, and the

resulting incompleteness of our type inference algorithm, we

insist that unannotated λ-bound variables be monomorphic.

This in turn entails checking monomorphism constraints on

type variables and maintaining other invariants (Section 3.2).

(One can build more sophisticated systems that defer deter-

mining whether a term is polymorphic or not until more

information becomes available — both Poly-ML and MLF do,

for instance — but we prefer to keep things simple.)

3 FreezeML via System F and ML
In this section we give a syntax-directed presentation of

FreezeML and discuss various design choices that we have

made. We wish for FreezeML to be an ML-like call-by-value

language with the expressive power of System F. To this

end we rely on a standard call-by-value definition of Sys-

tem F, which additionally obeys the value restriction (i.e.

only values are allowed under type abstractions). We take

mini-ML [1] as a core representation of a call-by-value ML

language. Unlike System F, ML separates monotypes from

(polymorphic) type schemes and has no explicit type abstrac-

tion and application. Polymorphism in ML is introduced by

generalising the body of a let-binding, and eliminated im-

plicitly when using a variable. Another crucial difference

between System F and ML is that in the former the order

of quantifiers in a polymorphic type matters, whereas in

the latter it does not. Full definitions of System F and ML,

including the syntax, kinding and typing rules, as well as

translation from ML to System F, are given in Appendix C.

Notations. We write ftv(A) for the sequence of distinct free
type variables of a type in the order in which they first appear

in A. For example, ftv((a → b) → (a → c)) = a,b, c . We

write ∆ − ∆′
for the restriction of ∆ to those type variables

that do not appear in ∆′
. We write ∆ # ∆′

to mean that the

type variables in ∆ and ∆′
are disjoint. Disjointedness is also

implicitly required when concatenating ∆ and ∆′
to ∆,∆′

.

Type Variables TVar ∋ a,b, c
Type Constructors Con ∋ D ::= Int | List | → | × | . . .

Types Type ∋ A,B ::= a | DA | ∀a.A
Monotypes MType ∋ S,T ::= a | D S

Guarded Types GType ∋ H ::= a | DA
Type Instantiation Subst ∋ δ ::= ∅ | δ [a 7→ S]
Term Variables Var ∋ x ,y, z
Terms Term ∋ M,N ::= x | ⌈x⌉ | λx .M

| λ(x : A).M | M N
| let x = M in N
| let (x : A) = M in N

Values Val ∋ V ,W ::= x | ⌈x⌉ | λx .M
| λ(x : A).M
| let x = V inW
| let (x : A) = V inW

Guarded Values GVal ∋ U ::= x | λx .M | λ(x :A).M
| let x = V in U
| let (x : A) = V in U

Kinds Kind ∋ K ::= • | ⋆
Kind Environments PEnv ∋ ∆ ::= · | ∆,a
Type Environments TEnv ∋ Γ ::= · | Γ,x : A

Figure 1. FreezeML Syntax

3.1 FreezeML
FreezeML is an extension of ML with two new features. First,

let-bindings and lambda-bindings may be annotated with

arbitrary System F types. Second, FreezeML adds a new form

⌈x⌉, called frozen variables, for preventing variables from

being instantiated.

The syntax of FreezeML is given in Figure 1. (We name

the syntactic categories for later use in Section 5.) The types

are the same as in System F. We explicitly distinguish two

kinds of type: a monotype (S), is as in ML a type entirely

free of polymorphism, and a guarded type (H ) is a type

with no top-level quantifier (in which any polymorphism

is guarded by a type constructor). The terms include all

ML terms plus frozen variables (⌈x⌉) and lambda- and let-

bindings with type ascriptions. Values are those terms that

may be generalised. They are slightly more general than the

value forms of Standard ML in that they are closed under let

binding (as in OCaml). Guarded values are those values that

can only have guarded types (that is, all values except those

that have a frozen variable in tail position).

The FreezeML kinding judgement ∆ ⊢ A : K states that

type A has kind K in kind environment ∆. The kinding rules
are given in Figure 2. As in ML we distinguish monomor-

phic types (•) from polymorphic types (⋆). Unlike in ML

polymorphic types can appear inside data type constructors.

Type instantiation is adjusted to account for polymor-

phism by either restricting it to instantiate type variables

with monomorphic kinds only (⇒•) or permit polymorphic

4
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∆ ⊢ A : K

a ∈ ∆

∆ ⊢ a : •

arity(D) = n
∆ ⊢ A1 : K

· · ·

∆ ⊢ An : K

∆ ⊢ DA : K

∆,a ⊢ A : ⋆

∆ ⊢ ∀a.A : ⋆

∆ ⊢ A : •

∆ ⊢ A : ⋆

∆ ⊢ δ : ∆′ ⇒K ∆′′

∆ ⊢ ∅ : · ⇒K ∆′

∆ ⊢ δ : ∆′ ⇒K ∆′′ ∆,∆′′ ⊢ A : K

∆ ⊢ δ [a 7→ A] : (∆′,a) ⇒K ∆′′

Figure 2. FreezeML Kinding and Instantiation Rules

∅(A) = A δ [a 7→ A](a) = A

δ (D A) = D (δ (A)) δ [a 7→ A](b) = δ (b)

δ (∀a.A) = ∀c .δ [a 7→ c](A),where c < ftv(δ (b)) for all b , c

Figure 3. Application of a Type Instantiation in FreezeML

∆; Γ ⊢ M : A

Freeze

x : A ∈ Γ

∆; Γ ⊢ ⌈x⌉ : A

Var

x : ∀∆′.H ∈ Γ
∆ ⊢ δ : ∆′ ⇒⋆ ·

∆; Γ ⊢ x : δ (H )

App

∆; Γ ⊢ M : A → B
∆; Γ ⊢ N : A

∆; Γ ⊢ M N : B

Lam

∆; Γ,x : S ⊢ M : B

∆; Γ ⊢ λx .M : S → B

Lam-Ascribe

∆; Γ,x : A ⊢ M : B

∆; Γ ⊢ λ(x : A).M : A → B

Let

(∆′,∆′′) = gen(∆,A′,M) (∆,∆′′,M,A′) ⇕ A
∆,∆′′

; Γ ⊢ M : A′ ∆; Γ,x : A ⊢ N : B
principal(∆, Γ,M,∆′′,A′)

∆; Γ ⊢ let x = M in N : B

Let-Ascribe

(∆′,A′) = split(A,M)

∆,∆′
; Γ ⊢ M : A′ ∆; Γ,x : A ⊢ N : B

∆; Γ ⊢ let (x : A) = M in N : B

Figure 4. FreezeML typing rules

instantiations (⇒⋆). The following rule is admissible

∆,∆′ ⊢ A : K ∆ ⊢ δ : ∆′ ⇒K ′ ∆′′

∆,∆′′ ⊢ δ (A) : K ⊔ K ′

where • ⊔ • = • and • ⊔ ⋆ = ⋆ ⊔ • = ⋆ ⊔ ⋆ = ⋆. When

applying a type instantiation we take care to account for

shadowing of type variables (Figure 3).

The FreezeML judgement ∆; Γ ⊢ M : A states that termM
has type A in kind environment ∆ and type environment Γ;
its rules are shown in Figure 4. These rules are adjusted with

respect to ML to allow full System F types everywhere except

(∆,∆′,M,A′) ⇕ A

M ∈ GVal

(∆,∆′,M,A′) ⇕ ∀∆′.A′

∆ ⊢ δ : ∆′ ⇒• · M < GVal

(∆,∆′,M,A′) ⇕ δ (A′)

gen(∆,A,M) =

{
(∆′, ∆′) ifM ∈ GVal
(·, ∆′) otherwise

where ∆′ = ftv(A) − ∆

split(∀∆.H ,M) =

{
(∆,H ) ifM ∈ GVal
(·,∀∆.H ) otherwise

principal(∆, Γ,M,∆′,A′) =

∆′ = ftv(A′) − ∆ and ∆,∆′
; Γ ⊢ M : A′

and

(for all ∆′′,A′′ | if ∆′′ = ftv(A′′) − ∆ and

∆,∆′′
; Γ ⊢ M : A′′

then there exists δ such that

∆ ⊢ δ : ∆′ ⇒⋆ ∆′′
and δ (A′) = A′′)

Figure 5. FreezeML auxiliary definitions

in the types of variables bound by unannotated lambdas,

where only monotypes are permitted.

As in ML, the Var rule implicitly instantiates variables.

The ⋆ in the judgement ∆ ⊢ δ : ∆′ ⇒⋆ · indicates that the

type variables in ∆′
may be instantiated with polymorphic

types. The Freeze rule differs from the Var rule only in that

it suppresses instantiation. In the Lam rule, the restriction to

a syntactically monomorphic argument type ensures that an

argument cannot be used at different types inside the body of

a lambda abstraction. However, the type of an unannotated

lambda abstraction may subsequently be generalised. For

example, consider the expression poly $(λx .x). The parame-

ter x cannot be typed with a polymorphic type; giving the

syntactic monotype a to x yields type a → a for the lambda-

abstraction. The $ operator then generalises this to ∀a.a → a
as the type of argument passed to poly. The Lam-Ascribe
rule allows an argument to be used polymorphically inside

the body of a lambda abstraction. The App rule is standard.

Let Bindings Because we adopt the value restriction, the

Let rule behaves differently depending on whether or notM
is a guarded value (cf. GVal syntactic category in Figure 1).

The choice ofwhether to generalise the type ofM is delegated

to the judgement (∆,∆′′,M,A′) ⇕ A, where A′
is the type

of M and ∆′′
are the generalisable type variables of M , i.e.

∆′′ = ftv(A′) − ∆. The ⇕ judgement determines A, the type
given to x while type-checking N . If M is a guarded value,

we generalise and have A = ∀∆′′.A′
. If M is not a guarded

value, we have A = δ (A′), where δ is an instantiation with

∆ ⊢ δ : ∆′′ ⇒• ·. This means that instead of abstracting

over the unbound type variables ∆′′
of A′

, we instantiate

them monomorphically. We further discuss the need for this

behaviour in Section 3.2.

5
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The gen judgement used in the Let rule may seem sur-

prising — its first component is unused whilst the second

component is identical in both cases and corresponds to the

generalisable type variables of A′
. Indeed, the first compo-

nent of gen is irrelevant for typing but it is convenient for

writing the translation from FreezeML to System F (Figure 8

in Section 4.2), where it is used to form a type abstraction,

and in the type inference algorithm (Figure 13 in Section 5.4),

where it allows us to collapse two cases into one.

The Let rule requires that A′
is the principal type forM .

This constraint is necessary to ensure completeness of our

type inference algorithm; we discuss it further in Section 3.2.

The relation principal is defined in Figure 5.

The Let-Ascribe rule is similar to the Let rule, but instead

of generalising the type ofM , it uses the type A supplied via

an annotation. As in Let,A′
denotes the type ofM . However,

the annotated case admits non-principal types for M . The

split operator enforces the value restriction. IfM is a guarded

value, A′
must be a guarded type, i.e. we have A′ = H for

some H . We then have A = ∀∆′.H . If M is not a guarded

value split requires A′ = A and ∆′ = ·. This means that all
toplevel quantifiers in Amust originate fromM itself, rather

than from generalising it.

Every valid typing judgement in ML is also a valid typing

judgement in FreezeML.

Theorem 1. If ∆; Γ ⊢ M : S in ML then ∆; Γ ⊢ M : S in
FreezeML.

(The exact derivation can differ due to differences in the

kinding rules and the principality constraint on the Let rule.)

3.2 Design Considerations
Monomorphic instantiation in the Let rule Recall that

the Let rule enforces the value restriction by instantiating

those type variables that would otherwise be quantified over.

Requiring these type variables to be instantiated with mono-

types allows us to avoid problems similar to the ones outlined

in Section 2. Consider the following two functions.

bad3 = λ(bot : ∀a.a).let f = bot bot in (poly ⌈f ⌉, (f 42) + 1)
bad4 = λ(bot : ∀a.a).let f = bot bot in ((f 42) + 1, poly ⌈f ⌉)

Since we do not generalise non-values in let-bindings due to

the value restriction, in both of these examples f is initially

assigned the type a rather than the most general type ∀a.a
(because bot bot is a non-value). Assuming type inference

proceeds from left to right then type inference will succeed

on bad3 and fail on bad4 for the same reasons as in Section 2.

In order to rule out this class of examples, we insist that

non-values are first generalised and then instantiated with

monomorphic types. Thus we constrain a to only unify with

monomorphic types, which leads to type inference failing

on both bad3 and bad4.
Our guiding principle is “never guess polymorphism”. The

high-level invariant that FreezeML uses to ensure that this

principle is not violated is that any (as yet) unknown types

appearing in the type environment (which maps term vari-

ables to their currently inferred types) during type inference

must be explicitly marked as monomorphic. The only means

by which inference can introduce unknown types into the

type environment are through unannotated lambda-binders

or through not-generalising let-bound variables. By restrict-

ing these cases to be monomorphic we ensure in turn that

any unknown type appearing in the type environment must

be explicitly marked as monomorphic.

Principal Type Restriction The Let rule requires that

when typing let x = M in N , the type A′
given to M must

be principal. Consider the program

bad5 = let f = λx .x in ⌈f ⌉ 42

On the one hand, if we infer the type ∀a.a → a for f , then
bad5 will fail to type check as we cannot apply a term of

polymorphic type (instantiation is only automatic for vari-

ables). However, given a traditional declarative type system

one might reasonably propose Int → Int as a type for f , in
which case bad5 would be typeable — albeit a conventional

type inference algorithm would have difficulty inferring a

type for it. In order to ensure completeness of our type infer-

ence algorithm in the presence of generalisation and freeze,

we bake principality into the typing rule for let, similarly to

[6, 12, 14, 26]. This means that the only legitimate type that

f may be assigned is the most general one, that is ∀a.a → a.
One may think of side-stepping the problem with bad5 by

always instantiating terms that appear in application posi-

tion (after all, it is always a type error for an uninstantiated

term of polymorphic type to appear in application position).

But then we can exhibit the same problem with a slightly

more intricate example.

bad6 = let f = λx .x in id ⌈f ⌉ 42

The principality condition is also applied in the non-gener-

alising case of the Let rule, meaning that we must instantiate

the principal type forM rather than an arbitrary one. Oth-

erwise, we could still type bad4 by assigning bot bot type
∀a.a → a. In the Let rule ∆′

would be empty, making in-

stantiation a no-op.

Type Variable Scoping A type annotation in FreezeML

may contain type variables that is not bound by the annota-

tion. In contrast to many other systems, we do not interpret

such variables existentially, but allow binding type variables

across different annotations. In an expression let (x : A) =
M in N , we therefore consider the toplevel quantifiers of A
bound inM , meaning that they can be used freely in annota-

tions insideM , rather like GHC’s scoped type variables [20],

However, this is only true for the generalising case, when

M is a guarded value. In the absence of generalisation, any

polymorphism in the type A originates fromM directly (e.g.,
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becauseM is a frozen variable). Hence, ifM is not a guarded

value no bound variables of A are bound inM .

Note that given the let binding above, where A has the

shape ∀∆.H , there is no ambiguity regarding which of the

type variables in ∆ result from generalisation and which

originate from M itself. If M is a guarded value, its type

is guarded, too, and hence all variables in ∆ result from

generalisation. Conversely, if M < GVal, then there is no

generalisation at all.

Due to the unambiguity of the binding behaviour in our

system with the value restriction, we can define a purely

syntax-directed well-formedness judgement for verifying

that types in annotations are well-kinded and respect the

intended scoping of type-variables. We call this property

well-scopedness, and it is a prerequisite for type inference.

The corresponding judgement is ∆ ⊩ M , checking that in

M , the type annotations are well-formed with respect to

kind environment ∆ (Figure 6). The main subtlety in this

judgement is in how ∆ grows when we encounter annotated
let-bindings. For annotated lambdas, we just check that the

type annotation is well-formed in ∆ but do not add any type

variables in ∆. For plain let, we just check well-scopedness

recursively. However, for annotated let-bindings, we check

that the type annotationA is well-formed, and we check that

M is well-scoped after extending ∆ with the top-level type
variables of A. This is sensible because in the Let-Ascribe

rule, these type variables (present in the type annotation) are

introduced into the kind environment when type checking

M . In an unannotated let, in contrast, the generalisable type

variables are not mentioned inM , so it does not make sense

to allow them to be used in other type annotations insideM .

As a concrete example of how this works, consider an

explicitly annotated let-binding of the identity function:

let (f : ∀a.a → a) = λ(x : a).x in N , where the a type

annotation on x is bound by ∀a in the type annotation on

f . However, if we left off the ∀a.a → a annotation on f ,
then the a annotation on x would be unbound. This also

means that in expressions, we cannot let type annotations

α-vary freely; that is, the previous expression is α-equivalent
to let (f : ∀b .b → b) = λ(x : b).x in N but not to

let (f : ∀b .b → b) = λ(x : a).x in N . This behaviour is

similar to other proposals for scoped type variables [20].

“Pure” FreezeML In a hypothetical pure version of FreezeML

without the value restriction, a purely syntactic check on

let (x : A) = M in N is not sufficient to determine which

top-level quantifiers of A are bound inM . In the expression

let (f : ∀a b .a → b → b) =
let (д : ∀b .a → b → b) = λy z.z in id ⌈д⌉

in N

the outer let generalises a, unlike the subsequent variable b,
which arises from the inner let binding. The well-scopedness
judgement would require typing information. Moreover, the

∆ ⊩ ⌈x⌉ ∆ ⊩ x

∆ ⊩ M

∆ ⊩ λx .M

∆ ⊢ A : ⋆
∆ ⊩ M

∆ ⊩ λ(x : A).M

∆ ⊩ M
∆ ⊩ N

∆ ⊩ M N

∆ ⊩ M ∆ ⊩ N

∆ ⊩ let x = M in N

∆ ⊢ A : ⋆
(∆′,A′) = split(A,M) ∆,∆′ ⊩ M ∆ ⊩ N

∆ ⊩ let (x : A) = M in N

Figure 6. Well-Scopedness of FreezeML Terms

Let-Asc rule would have to nondeterministically split the

type annotation A into ∀∆′,∆′′.H , such that ∆′
contains

those variables to generalise (a in the example), and ∆′′

contains those type variables originating fromM directly (b
in the example). Similarly, type inference would have to take

this splitting into account.

Instantiation strategies In FreezeML (and indeed ML)

the only terms that are implicitly instantiated are variables.

Thus (head ids) 42 is ill-typed and we must insert the in-

stantiation operator @ to yield a type-correct expression:

(head ids)@ 42. It is possible to extend our approach to per-

form eliminator instantiation, whereby we implicitly instan-

tiate terms appearing in monomorphic elimination position

(in particular application position), and thus, for instance,

infer a type for bad5 without compromising completeness.

Another possibility is to instantiate all terms, except those

that are explicitly frozen or generalised. Here, it also makes

sense to extend the ⌈−⌉ operator to act on arbitrary terms,

rather than just variables. We call this strategy pervasive
instantiation. Like eliminator instantiation, pervasive instan-

tiation infers a type for (head ids) 42. However, pervasive
instantiation requires inserting explicit generalisation where

it was previously unnecessary. Moreover, pervasive instanti-

ation complicates the meta-theory, requiring two mutually

recursive typing judgements instead of just one.

The formalism developed in this paper uses variable in-

stantiation alone, but our implementation also supports elim-

inator instantiation. We defer further theoretical investiga-

tion of alternative strategies to future work.

4 Relating System F and FreezeML
In this section we present type-preserving translations map-

ping System F terms to FreezeML terms and vice versa.

We also briefly discuss the equational theory induced on

FreezeML by these translations.
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E⟦x⟧ = ⌈x⌉
E⟦λxA.M⟧ = λ(x : A).E⟦M⟧
E⟦M N⟧ = E⟦M⟧ E⟦N⟧

E⟦Λa.V B⟧ = let (x : ∀a.B) = (E⟦V ⟧)@ in ⌈x⌉
E⟦M∀a .B A⟧ = let (x : B[A/a]) = (E⟦M⟧)@ in ⌈x⌉

Figure 7. Translation from System F to FreezeML

4.1 From System F to FreezeML
Figure 7 defines a translation E⟦−⟧ of System F terms into

FreezeML. The translation depends on types of subterms

and is thus formally defined on derivations, but we use a

shorthand notation in which subterms are annotated with

their type (e.g., in Λa.V B
, B indicates the type of V ).

Variables are frozen to suppress instantiation. Term ab-

straction and application are translated homomorphically.

Type abstraction Λa.V is translated using an annotated

let-binding to perform the necessary generalisation. How-

ever, we cannot bind x to the translation of V directly as

only guarded values may be generalised but E⟦V ⟧ may be

an unguarded value (concretely, a frozen variable). Hence,

we bind x to (E⟦V ⟧)@, which is syntactic sugar for let y =
E⟦V ⟧ in y. This expression is indeed a guarded value. We

then freeze x to prevent immediate instantiation. Type appli-

cationM A, whereM has type ∀a.B, is translated similarly

to type abstraction. We bind x to the result of translatingM ,

but only after instantiating it. The variable x is annotated

with the intended return type B[A/a] and returned frozen.

Explicit instantiation is strictly necessary and the follow-

ing, seemingly easier translation is incorrect.

E⟦M∀a .B A⟧ , let (x : B[A/a]) = E⟦M⟧ in ⌈x⌉

The term E⟦M⟧ may be a frozen variable or an application,

whose type cannot be implicitly instantiated to type B[A/a].
For any System F value V (i.e., any term other than an

application), E⟦V ⟧ yields a FreezeML value (Figure 1).

Each translated term has the same type as the original.

Theorem 2 (Type preservation). If ∆; Γ ⊢ M : A in System F
then ∆; Γ ⊢ E⟦M⟧ : A in FreezeML.

4.2 From FreezeML to System F
Figure 8 gives the translation of FreezeML to System F. Frozen

variables in FreezeML are simply variables in System F. A

plain (i.e., not frozen) variable x is translated to a type appli-

cation x δ (∆′), where δ (∆′) stands for the pointwise appli-

cation of δ to ∆′
. Here, δ and ∆′

are obtained from x ’s type
derivation in FreezeML; ∆′

contains all top-level quantifiers

of x ′s type. This makes FreezeML’s implicit instantiation

of non-frozen variables explicit. Lambda abstractions and

applications translate directly. Let-bindings in FreezeML are

translated as generalised let-bindings in System F where

letxA = M inN is syntactic sugar for (λxA.N )M . Here, gen-

eralisation is repeated type abstraction.

Each translated term has the same type as the original.

Theorem 3 (Type preservation). If ∆; Γ ⊢ M : A holds in
FreezeML then ∆; Γ ⊢ C⟦M⟧ : A holds in System F.

4.3 Equational reasoning
We can derive and verify equational reasoning principles for

FreezeML by lifting from System F via the translations. We

write M ≃ N to mean M is observationally equivalent to

N whenever ∆; Γ ⊢ M : A and ∆; Γ ⊢ N : A. At a minimum

we expect β-rules to hold, and indeed they do; the twist is

that they involve substituting a different value depending on

whether the variable being substituted for is frozen or not.

let x = V in N ≃ N [$V / ⌈x⌉, ($V )@ / x]
let (x : A) = V in N ≃ N [$AV / ⌈x⌉, ($AV )@ / x]
(λx .M)V ≃ M[V / ⌈x⌉, V@ / x]
(λ(x : A).M)V ≃ M[V / ⌈x⌉, V@ / x]

If we perform type-erasure then these rules degenerate to

the standard ones. We can also verify that η-rules hold.

let x = U in x ≃ U
let (x : A) = U in x ≃ U
λx .M x ≃ M

let x = ⌈y⌉ in x ≃ y
let (x : A) = ⌈y⌉ in x ≃ y
λ(x : A).M ⌈x⌉ ≃ M

5 Type Inference
In this section we present a sound and complete type infer-

ence algorithm for FreezeML. The style of presentation is

modelled on that of Leijen [12].

5.1 Type Variables and Kinds
When expressing type inference algorithms involving first-

class polymorphism, it is crucial to distinguish between ob-

ject language type variables, and meta language type vari-

ables that stand for unknown types required to solve the

type inference problem. This distinction is the same as that

between eigenvariables and logic variables in higher-order

logic programming [17]. We refer to the former as rigid type

variables and the latter as flexible type variables. For the

purposes of the algorithm we will explicitly separate the two

by placing them in different kind environments.

As in the rest of the paper, we let ∆ range over fixed kind

environments in which every type variable is monomorphic

(kind •). In order to support, for instance, applying a function

to a polymorphic argument, we require flexible variables that

may be unified with polymorphic types. For this purpose we

introduce refined kind environments ranged over byΘ. Type
variables in a refined kind environment may be polymorphic

(kind⋆) or monomorphic (kind •). In our algorithmswe place

rigid type variables in a fixed environment ∆ and flexible

type variables in a refined environment Θ. Refined kind

environments (Θ) are given by the following grammar.

KEnv ∋ Θ ::= · | Θ,a : K
8
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C

�
x : A ∈ Γ

∆; Γ ⊢ ⌈x⌉ : A

�
= x C

�
∆; Γ,x : S ⊢ M : B

∆; Γ ⊢ λx .M : S → B

�
= λxS .C⟦M⟧ C

�
∆; Γ,x : A ⊢ M : B

∆; Γ ⊢ λ(x : A).M : A → B

�
= λxA.C⟦M⟧

C

�
x : ∀∆′.H ∈ Γ ∆ ⊢ δ : ∆′ ⇒⋆ ·

∆; Γ ⊢ x : δ (H )

�
= x δ (∆′) C

�
∆; Γ ⊢ M : A → B ∆; Γ ⊢ N : A

∆; Γ ⊢ M N : B

�
= C⟦M⟧ C⟦N⟧

C

�����
(∆′,∆′′) = gen(∆,A′,M) (∆,∆′′,M,A′) ⇕ A

∆,∆′′
; Γ ⊢ M : A′ ∆; Γ,x : A ⊢ N : B
principal(∆, Γ,M,∆′′,A′)

∆; Γ ⊢ let x = M in N : B

����� = let xA = Λ∆′.C⟦M⟧
in C⟦N⟧ = C

�����
(∆′,A′) = split(A,M)

∆,∆′
; Γ ⊢ M : A′

∆; Γ,x : A ⊢ N : B

∆; Γ ⊢ let (x : A) = M in N : B

�����
Figure 8. Translation from FreezeML to System F

Θ ⊢ A : K

TyVar

a : K ∈ Θ

Θ ⊢ a : K

Cons

arity(D) = n
Θ ⊢ A1 : K

· · ·

Θ ⊢ An : K

Θ ⊢ DA : K

ForAll

Θ,a : • ⊢ A : ⋆

Θ ⊢ ∀a.A : ⋆

Upcast

Θ ⊢ A : •

Θ ⊢ A : ⋆

Θ ⊢ Γ

Empty

Θ ⊢ ·

Extend

Θ ⊢ Γ Θ ⊢ A : ⋆
(for all a ∈ ftv(A) | a : • ∈ Θ)

Θ ⊢ Γ,x : A

Figure 9. Refined Kinding Rules

We often implicitly treat fixed kind environments a as refined
kind environments a : •. The refined kinding rules are given

in Figure 9.

The key difference with respect to the object language

kinding rules is that type variables can now be polymorphic.

Rather than simply defining kinding of type environments

point-wise the Extend rule additionally ensures that all type

variables appearing in a type environment are monomorphic.

This restriction is crucial for avoiding guessing of polymor-

phism. More importantly, it is also key to ensuring that typ-

ing judgements are stable under substitution. Without it it

would be possible to substitute monomorphic type variables

with types containing nested polymorphic variables, thus

introducing polymorphism into a monomorphic type.

We generalise typing judgements ∆; Γ ⊢ M : A to Θ; Γ ⊢

M : A, adopting the convention that Θ ⊢ Γ and Θ ⊢ Amust

hold as preconditions.

5.2 Type Substitutions
In order to define the type inference algorithm we will find it

useful to define a judgement for type substitutions θ , which
operate on flexible type variables, unlike type instantiations

δ , which operate on rigid type variables. The type substitu-

tion rules are given in Figure 10. The rules are as in Figure 4,

∆ ⊢ θ : Θ ⇒ Θ′

∆ ⊢ ∅ : · ⇒ Θ

∆ ⊢ θ : Θ′ ⇒ Θ ∆,Θ ⊢ A : K

∆ ⊢ θ [a 7→ A] : (Θ′,a : K) ⇒ Θ

Figure 10. Type Substitutions

S-Identity

∆ ⊢ ιΘ : Θ ⇒ Θ

S-Weaken

∆ ⊢ θ : Θ ⇒ Θ′

∆,∆′ ⊢ θ : Θ ⇒ Θ′,Θ′′

S-Compose

∆ ⊢ θ : Θ′ ⇒ Θ′′

∆ ⊢ θ ′ : Θ ⇒ Θ′

∆ ⊢ θ ◦ θ ′ : Θ ⇒ Θ′′

S-Strengthen

∆ ⊢ θ : Θ ⇒ Θ′

ftv(θ ) # ∆′,Θ′′

∆ − ∆′ ⊢ θ : Θ ⇒ Θ′ − Θ′′

Figure 11. Properties of Substitution

except that the kind environments on the right of the turn-

stile are refined kind environments and rather than the sub-

stitution having a fixed kind, the kind of each type variable

must match up with the kind of the type it binds.

We write ιΘ for the identity type substitution on Θ, omit-

ting the subscript when clear from context.

ι · = ∅ ιΘ,a:K = ιΘ[a 7→ a]

Composition of type substitutions is standard.

θ ◦ ∅ = ∅ θ ◦ θ ′[a 7→ A] = (θ ◦ θ ′)[a 7→ θ (A)]

The rules shown in Figure 11 are admissible and we make

use of them freely in our algorithms and proofs.

5.3 Unification
A crucial ingredient for type inference is unification. The

unification algorithm is defined in Figure 12. It is partial

in that it either returns a result or fails. Following Leijen

[12] we explicitly indicate the successful return of a result

X by writing return X . Failure may be either explicit or

implicit (in the case that an auxiliary function is undefined).

9
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unify : (PEnv × KEnv × Type × Type)⇀ (KEnv × Subst)

unify(∆,Θ,a,a) =
return (Θ, ι)

unify(∆, (Θ,a : K),a,A) =
let Θ1 = demote(K ,Θ,ftv(A) − ∆)
assert ∆,Θ1 ⊢ A : K
return (Θ1, ι[a 7→ A])

unify(∆, (Θ,a : K),A,a) =
let Θ1 = demote(K ,Θ,ftv(A) − ∆)
assert ∆,Θ1 ⊢ A : K
return (Θ1, ι[a 7→ A])

unify(∆,Θ,DA,D B) =
let (Θ1,θ1) = (Θ, ι)
let n = arity(D)
for i ∈ 1...n
let (Θi+1,θi+1) =

let (Θ′,θ ′) = unify(∆,Θi ,θi (Ai ),θi (Bi ))
return (Θ′,θ ′ ◦ θi )

return (Θn+1,θn+1)

unify(∆,Θ,∀a.A,∀b .B) =
assume fresh c
let (Θ1,θ

′) = unify((∆, c),Θ,A[c/a],B[c/b])
assert c < ftv(θ ′)
return (Θ1,θ

′)

demote(⋆,Θ,∆) = Θ
demote(•, ·,∆) = ·

demote(•, (Θ,a : K),∆) = demote(•,Θ,∆),a : • (a ∈ ∆)
demote(•, (Θ,a : K),∆) = demote(•,Θ,∆),a : K (a < ∆)

Figure 12. Unification Algorithm

The algorithm takes a quadruple (∆,Θ,A,B) of a fixed kind

environment ∆, a refined kind environment Θ, and types A
and B, such that ∆,Θ ⊢ A,B. It returns a unifier, that is, a
pair (Θ′,θ ) of a new refined kind environment Θ′

and a type

substitution θ , such that ∆ ⊢ θ : Θ ⇒ Θ′
.

A type variable unifies with itself, yielding the identity

substitution. Due to the use of explicit kind environments,

there is no need for an explicit occurs check to avoid unifi-

cation of a type variable a with a type A including recursive

occurrences of a. Unification of a flexible variable a with

a type A implicitly performs an occurs check by checking

that the type substituted for a is well-formed in an envi-

ronment (∆,Θ1) that does not contain a. A polymorphic

flexible variable unifies with any other type, as is standard.

A monomorphic flexible variable only unifies with a type A
if Amay be demoted to a monomorphic type. The auxiliary

demote function converts any polymorphic flexible variables

in A to monomorphic flexible variables in the refined kind

environment. This demotion is sufficient to ensure that fur-

ther unification cannot subsequently make A polymorphic.

Unification of data types is standard, checking that the data

type constructors match, and recursing on the substructures.

Following Leijen [12], unification of quantified types ensures

that forall-bound type variables do not escape their scope by

introducing a fresh rigid (skolem) variable and ensuring it

does not appear in the free type variables of the substitution.

Theorem 4 (Unification is sound). If ∆,Θ ⊢ A,B : K and
unify(∆,Θ,A,B) = (Θ′,θ ) then θ (A) = θ (B) and ∆ ⊢ θ : Θ ⇒

Θ′.

Theorem 5 (Unification is complete and most general). If
∆ ⊢ θ : Θ ⇒ Θ′ and ∆,Θ ⊢ A : K and ∆,Θ ⊢ B : K and
θ (A) = θ (B), then unify(∆,Θ,A,B) = (Θ′′,θ ′) where there
exists θ ′′ satisfying ∆ ⊢ θ ′′ : Θ′′ ⇒ Θ′ such that θ = θ ′′ ◦ θ ′.

5.4 The Inference Algorithm
The type inference algorithm is defined in Figure 13. It is

partial in that it either returns a result or fails. The algorithm

takes a quadruple (∆,Θ, Γ,M) of a fixed kind environment

∆, a refined kind environment Θ, a type environment Γ,
and a term M , such that ∆;Θ ⊢ Γ. If successful, it returns a
triple (Θ′,θ ,A) of a new refined kind environment Θ′

, a type

substitution θ , such that ∆ ⊢ θ : Θ ⇒ Θ′
, and a type A such

that ∆,Θ′ ⊢ A : ⋆.
The algorithm is an extension of algorithm W [3] adapted

to use explicit kind environments ∆,Θ. Inferring the type

of a frozen variable is just a matter of looking up its type

in the type environment. As usual, the type of a plain (un-

frozen) variable is inferred by instantiating any polymor-

phism with fresh type variables. The returned identity type

substitution is weakened accordingly. Crucially, the argu-

ment type inferred for an unannotated lambda abstraction

is monomorphic. If on the other hand the argument type is

annotated with a type, then we just use that type directly.

For applications we use the unification algorithm to check

that the function and argument match up. Generalisation

is performed for unannotated let-bindings in which the let-

binding is a guarded value. For unannotated let-bindings in

which the let-binding is not a guarded value, generalisation

is suppressed and any ungeneralised flexible type variables

are demoted to be monomorphic. When a let-binding is anno-

tated with a type then rather than performing generalisation

we use the annotation, taking care to account for any poly-

morphism that is already present in the inferred type forM
using split, and checking that none of the quantifiers escape

by inspecting the codomain of θ2.

Theorem 6 (Type inference is sound). If ∆,Θ ⊢ Γ and ∆ ⊩
M and infer(∆,Θ, Γ,M) = (Θ′,θ ,A) then ∆,Θ′

;θ (Γ) ⊢ M : A
and ∆ ⊢ θ : Θ ⇒ Θ′.

10
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infer : (PEnv × KEnv × TEnv × Term)⇀ (KEnv × Subst × Type)
infer(∆,Θ, Γ, ⌈x⌉) =
return (Θ, ι, Γ(x))

infer(∆,Θ, Γ,x) =
let ∀a.H = Γ(x)

assume fresh b

return ((Θ,b : ⋆), ι,H [b/a]))

infer(∆,Θ, Γ, λx .M) =

assume fresh a
let (Θ1,θ [a 7→ S],B) = infer(∆, (Θ,a : •), (Γ,x : a),M)

return (Θ1,θ , S → B)

infer(∆,Θ, Γ, λ(x : A).M) =

let (Θ1,θ ,B) = infer(∆,Θ, (Γ,x : A),M)

return (Θ1,θ ,A → B)

infer(∆,Θ, Γ,M N ) =

let (Θ1,θ1,A
′) = infer(∆,Θ, Γ,M)

let (Θ2,θ2,A) = infer(∆,Θ1,θ1(Γ),N )

assume fresh b
let (Θ3,θ3[b 7→ B]) = unify(∆, (Θ2,b : ⋆),θ2(A

′),A → b)
return (Θ3,θ3 ◦ θ2 ◦ θ1,B)

infer(∆,Θ, Γ, let x = M in N ) =

let (Θ1,θ1,A) = infer(∆,Θ, Γ,M)

let ∆′ = ftv(θ1) − ∆
let (∆′′,∆′′′) = gen((∆,∆′),A,M)

let Θ′
1
= demote(•,Θ1,∆

′′′)

let (Θ2,θ2,B) = infer(∆,Θ′
1
− ∆′′,θ1(Γ),x : ∀∆′′.A,N )

return (Θ2,θ2 ◦ θ1,B)

infer(∆,Θ, Γ, let (x : A) = M in N ) =

let (∆′,A′) = split(A,M)

let (Θ1,θ1,A1) = infer((∆,∆′),Θ, Γ,M)

let (Θ2,θ
′
2
) = unify((∆,∆′),Θ1,A

′,A1)

let θ2 = (θ ′
2
◦ θ1)

assert ftv(θ2) # ∆′

let (Θ3,θ3,B) = infer(∆,Θ2, (θ2(Γ),x : A),N )

return (Θ3,θ3 ◦ θ2,B)

Figure 13. Type Inference Algorithm

Theorem 7 (Type inference is complete and principal). Let
∆ ⊩ M and ∆,Θ ⊢ Γ. If ∆ ⊢ θ : Θ ⇒ Θ′ and ∆,Θ′

;θ (Γ) ⊢
M : A, then infer(∆,Θ, Γ,M) = (Θ′′,θ ′,A′) where there exists
θ ′′ satisfying ∆ ⊢ θ ′′ : Θ′′ ⇒ Θ′ such that θ = θ ′′ ◦ θ ′ and
θ ′′(A′) = A.

6 Implementation
We have implemented FreezeML as an extension of Links.

This exercise wasmostly routine. In the process we addressed

several practical concerns and encountered some non-trivial

interactions with other features of Links. In order to keep

this paper self-contained we avoid concrete Links syntax, but

instead illustrate the ideas of the implementation in terms

of extensions to the core syntax used in the paper.

In ASCII we render ⌈x⌉ as ~x . For convenience, Links
builds in the generalisation $ and instantiation operators @.

In practice (in Links and other functional languages), it is

often convenient to include a type signature for a function

definition rather than annotations on arguments. Thus

f : ∀a.A → B → C
f x y = M
N

is treated as:

let (f : ∀a.A → B → C) = λ(x : A).λ(y : B).M in N

Though x and y are not themselves annotated, A and B may

be polymorphic, and may mention a.
Given that FreezeML is explicit about the order of quan-

tifiers, adding support for explicit type application [4] is

straightforward. We have implemented this feature in Links.

Links has an implicit subkinding system used for various

purposes including classifying base types in order to support

language-integrated query [15] and distinguishing between

linear and non-linear types in order to support session typ-

ing [16]. In plain FreezeML, if we have poly : (∀a.a → a) →
Int × Bool and id : ∀a.a → a, then we may write poly ⌈id⌉.
The equivalent in Links also works. However, the type in-

ferred for the identity function in Links is not ∀a.a → a,
but rather ∀(a : ◦).a → a, where the subkinding constraint
◦ captures the property that the argument is used linearly.

Given this more refined type for id the term poly ⌈id⌉ no
longer type-checks. In this particular case one might imagine

generating an implicit coercion (a function that promises

to uses its argument linearly may be soundly treated as a

function that may or may not use its argument linearly). In

general one has to be careful to be explicit about the kinds of

type variables when working with first-class polymorphism.

Similar issues arise from the interaction between first-class

polymorphism and Links’s effect type system [15].

Existing infrastructure for subkinding in the implementa-

tion of Links was helpful for adding support for FreezeML

as we exploit it for tracking the monomorphism / polymor-

phism distinction. However, there is a further subtlety: in

FreezeML type variables of monomorphic kind may be in-

stantiated with (though not unified with) polymorphic types;

this behaviour differs from that of other kinds in Links.

The Links source language allows the programmer to ex-

plicitly distinguish between rigid and flexible type variables.

Flexible type variables can be convenient to use as wild-

cards during type inference. As a result, type annotations

in Links are slightly richer than those admitted by the well-

scopedness judgement of Figure 6. It remains to verify the

formal properties of the richer system.
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7 Related Work
There are many previous attempts to bridge the gap between

ML and System F. Some systems employ more expressive

types than those of System F; others implement heuristics

in the type system to achieve a balance between increased

complexity of the system and reducing the number of nec-

essary type annotations; finally, there are systems like ours

that eschew such heuristics for the sake of simplifying the

type system further. Users then have to state their intentions

explicitly, potentially resulting in more verbose programs.

Expressive Types MLF [10] (sometimes stylised as ML
F
)

is considered to be the most expressive of the conservative

ML extensions so far. MLF achieves its expressiveness by

going beyond regular System F types and introducing poly-

morphically bounded types, though translation from MLF

to System F and vice versa remains possible [10, 11]. MLF

also extends ML with type annotations on lambda binders.

Annotations on binders that are used polymorphically are

mandatory, since type inference will not guess second-order

types. This is required to maintain principal types.

HML [13] is a simplification of MLF. In HML all polymor-

phic function arguments require annotations. It significantly

simplifies the type inference algorithm compared to MLF,

though polymorphically bounded types are still used.

Heuristics HMF [12] contrasts with the above systems in

that it only uses regular System F types (disregarding order of

quantifiers). Like FreezeML, it only allows principal types for

let-bound variables, and type annotations are needed on all

polymorphic function parameters. HMF allows both instanti-

ation and generalisation in argument positions, taking n-ary

applications into account. The system uses weights to select

between less and more polymorphic types. Whole lambda

abstractions require an annotation to have a polymorphic

return type. Such term annotations are rigid, meaning they

suppress instantiation and generalisation. As instantiation

is implicit in HMF, rigid annotations can be seen as a means

to freeze arbitrary expressions.

Several systems for first-class polymorphism were pro-

posed in the context of the Haskell programming language.

These systems include boxy types [26], FPH [27], and GI [24].

The Boxy Types system, used to implement GHC’s Impred-
icativeTypes extension, was very fragile and thus difficult

to use in practice. Similarly, the FPH system – based on MLF

– was simpler but still difficult to implement in practice. GI is

the latest development in this line of research. Its key ingre-

dient is a heuristic that restricts polymorphic instantiation,

based on whether a variable occurs under a type construc-

tor and argument types in an application. Like HMF, it uses

System F types, considers n-ary applications for typing, and

requires annotations both for polymorphic parameter and

return types. However, only top-level type variables may be

re-ordered. The authors show how to combine their system

with the OutsideIn(X) [25] constraint-solving type inference

algorithm used by the Glasgow Haskell Compiler. They also

report a prototype implementation of GI as an extension to

GHC with encouraging experience porting existing Hackage

packages that use rank-n polymorphism.

Explicitness Some early work on first-class polymorphism

was based on the observation that polymorphism can be

encapsulated inside nominal types [8, 9, 19, 22].

The QML [23] system explicitly distinguishes between

polymorphic schemes and quantified types and hence does

not use plain System F types. Type schemes are used for ML

let-polymorphism and introduced and eliminated implicitly.

Quantified types are used for first-class polymorphism, in

particular for polymorphic function arguments. Such types

must always be introduced and eliminated explicitly, which

requires stating the full type and not just instantiating the

type variables. All polymorphic instantiations must therefore

be made explicitly by annotating terms at call sites. Neither

let- nor λ-bound variables can be annotated with a type.

Poly-ML [6] is similar to QML in that it distinguishes

two incompatible sorts of polymorphic types. Type schemes

arise from standard ML generalisation; (boxed) polymorphic

types are introduced using a dedicated syntactic form which

requires a type annotation. Boxed polymorphic types are

considered to be simple types, meaning that a type variable

can be instantiated with a boxed polymorphic type, but not

with a type scheme. Terms of a boxed type are not instan-

tiated implicitly, but must be opened explicitly, resulting in

instantiation. Unlike QML, the instantiated type is deduced

from the context, rather than requiring an annotation.

Unlike FreezeML, Poly-ML supports inferring polymor-

phic parameter types for unannotated lambdas, but this is

limited to situations where the type is unambiguously de-

termined by the context. This is achieved by using labels,
which track whether polymorphism was guessed or con-

firmed by a type annotation. Whereas FreezeML has type

annotations on binders, Poly-ML has type annotations on

terms and propagates them using the label system.

In Poly-ML, the example λx .auto x typechecks, guessing a

polymorphic type for x ; FreezeML requires a type annotation

on x . In FreezeML the program let id = λx .x in let c =
id 3 in auto ⌈id⌉ typechecks, whereas in Poly-ML a type

annotation is required (in order to convert between ∀a.a →

a and [∀a.a → a]). However, Poly-ML could be extended

with a new construct for introducing boxed polymorphism

without a type annotation, using the principal type instead.

With such a change it is possible to translate from FreezeML

into this modified version of Poly-ML without inserting any

new type annotations (see Appendix D).

Appendix B contains an example-based comparison of

FreezeML, GI, MLF, HMF, FPH, and HML.
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8 Conclusions
In this paper, we have introduced FreezeML as an exercise

in language design for reconciling ML type inference with

System F-style first-class polymorphism. We have also im-

plemented FreezeML as part of the Links programming lan-

guage [2], which uses a variant of Hindley-Milner type in-

ference extended with row types, and has a kind system

readily adapted to check that inferred function arguments

are monotypes.

Directions for future work include extending FreezeML

to accommodate features such as higher-kinds, GADTs, and

dependent types, as well as exploring different implicit in-

stantiation strategies. It would also be instructive to rework

our formal account using the methodology of Gundry et al.

[7] and use that as the basis for mechanised soundness and

completeness proofs.
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A FreezeML by Example

A POLYMORPHIC INSTANTIATION

A1 λx y.y : a → b → b
A1• $(λx y.y) : ∀a b .a → b → b
A2 choose id : (a → a) → (a → a)
A2• choose ⌈id⌉ : (∀a.a → a) → (∀a.a → a)
A3 choose [] ids : List (∀a.a → a)
A4 λ(x : ∀a.a → a).x x : (∀a.a → a) → (b → b)
A4• λ(x : ∀a.a → a).x ⌈x⌉ : (∀a.a → a) → (∀a.a → a)
A5 id auto : (∀a.a → a) → (∀a.a → a)
A6 id auto′ : (∀a.a → a) → (b → b)
A6• id ⌈auto′⌉ : ∀b .(∀a.a → a) → (b → b)
A7 choose id auto : (∀a.a → a) → (∀a.a → a)
A8 choose id auto′ : ✕

A9⋆ f (choose ⌈id⌉) ids : ∀a.a → a
where f : ∀a.(a → a) → List a → a

A10⋆ poly ⌈id⌉ : Int × Bool
A11⋆ poly $(λx .x) : Int × Bool
A12⋆ id poly $(λx .x) : Int × Bool
C FUNCTIONS ON POLYMORPHIC LISTS

C1 length ids : Int
C2 tail ids : List (∀a.a → a)
C3 head ids : ∀a.a → a
C4 single id : List (a → a)
C4• single ⌈id⌉ : List (∀a.a → a)
C5⋆ ⌈id⌉ :: ids : List (∀a.a → a)
C6⋆ $(λx .x) :: ids : List (∀a.a → a)
C7 (single inc) ++ (single id) : List (Int → Int)
C8⋆ g (single ⌈id⌉) ids : ∀a.a → a

where g : ∀a.List a → List a → a
C9⋆ map poly (single ⌈id⌉) : List (Int × Bool)
C10 map head (single ids) : List (∀a.a → a)

B INFERENCE WITH POLYMORPHIC ARGUMENTS

B1⋆ λ(f : ∀a.a → a).
(f 1, f True) : (∀a.a → a) → Int × Bool

B2⋆ λ(xs : List (∀a.a → a)).
poly (head xs) : List (∀a.a → a) → Int × Bool

D APPLICATION FUNCTIONS

D1⋆ app poly ⌈id⌉ : Int × Bool
D2⋆ revapp ⌈id⌉ poly : Int × Bool
D3⋆ runST ⌈argST⌉ : Int
D4⋆ app runST ⌈argST⌉ : Int
D5⋆ revapp ⌈argST⌉ runST : Int
E η-EXPANSION

E1 k h l : ✕

E2⋆ k $(λx .(h x)@) l : ∀a.Int → a → a
where k : ∀a.a → List a → a

h : Int → ∀a.a → a
l : List (∀a.Int → a → a)

E3 r (λx y.y) : ✕

E3• r $(λx .$(λy.y)) : Int
where r : (∀a.a → ∀b .b → b) → Int

F FreezeML PROGRAMS

F1 id x = x : ∀a.a → a
F2 ids = [⌈id⌉] : List (∀a.a → a)
F3 auto x = x ⌈x⌉ : (∀a.a → a) → (∀a.a → a)
F4 auto′ x = x x : ∀b .(∀a.a → a) → b → b
F5⋆ auto ⌈id⌉ : ∀a.a → a
F6 (head ids) :: ids : List (∀a.a → a)
F7⋆ (head ids)@ 3 : Int
F8 choose (head ids) : (∀a.a → a) → (∀a.a → a)
F8• choose (head ids)@ : (a → a) → (a → a)
F9 let f = revapp ⌈id⌉ in f poly

: Int × Bool
F10 choose id (λ(x : ∀a.a → a).$(auto′ x))

: (∀a.a → a) → (∀a.a → a)

Figure 14. Example FreezeML Terms and Types

head : ∀a.List a → a id : ∀a.a → a map : ∀a b .(a → b) → List a → List b

tail : ∀a.List a → List a ids : [∀a.a → a] app : ∀a b .(a → b) → a → b

[ ] : ∀a.List a inc : Int → Int revapp : ∀a b .a → (a → b) → b

(::) : ∀a.a → List a → List a choose : ∀a.a → a → a runST : ∀a.(∀s .ST s a) → a

single : ∀a.a → List a poly : (∀a.a → a) → Int × Bool argST : ∀s .ST s Int

(++) : ∀a.List a → List a → List a auto : (∀a.a → a) → (∀a.a → a) pair : ∀a b .a → b → a × b

length : ∀a.List a → Int auto′ : ∀b .(∀a.a → a) → (b → b) pair′ : ∀b a.a → b → a × b

Figure 15. Type signatures for functions used in the text; adapted from [24].

Figure 14 presents a collection of FreezeML examples that showcase how our system works in practice. We use functions

with type signatures shown in Figure 15 (adapted from Serrano et al. [24]). In Figure 14 well-typed expressions are annotated

with a type inferred in FreezeML, whilst ill-typed expressions are annotated with ✕. Sections A-E of the table are taken

from [24]. Section F of the table contains additional examples which further highlight the behaviour of our system. In FreezeML
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it is sometimes possible to infer a different type depending on the presence of freeze, generalisation, and instantiation operators.

In such cases we provide two copies of an example in Figure 14, the one with extra FreezeML annotations being marked with

•. Sometimes annotations are mandatory to make an expression well-typed in FreezeML. In such cases there is only one,

well-typed copy of an example marked with a ⋆, e.g. A9⋆.

B FreezeML vs. Other Systems
In this appendix we present an example-based comparison of FreezeML with other systems for first-class polymorphism:

GI [24], MLF [10], HMF [12], FPH [27], and HML [13]. Sections A-E of Figure 14 have been presented in [24], together with

analysis of how the five systems behave for these examples. We now use these examples to compare FreezeML with other

systems.

Firstly, we focus on which examples can be typechecked without explicit type annotations. (We do not count FreezeML

freezes, generalisations, and instantiations as annotations, since these are mandatory in our system by design and they do not

require spelling out a type explicitly, allowing the programmer to rely on type inference.) Out of 32 examples presented in

Sections A-E of the Figure 14, MLF typechecks all but B1 and E1, placing it first in terms of expressiveness. HML ranks second,

being unable to typecheck B1, B2 and E1
3
. FreezeML handles all examples except for A8, B1, B2, and E1, ranking third. FPH,

GI, and HMF fail to typecheck 6 examples, 8 examples, and 11 examples respectively. If we permit annotations on binders

only, the number of failures for most systems decreases by 2, because the systems can now typecheck Examples B1 and B2.

MLF was already able to typecheck B2 without an annotation, so now it handles all but E1. If we permit type annotations on

arbitrary terms the number of examples that cannot be typechecked becomes: MLF – 1 (E1), FreezeML– 2 (A8, E1) – GI and

HML – 2 (E1, E3), FPH – 4, and HMF – 6. These observations are summarised in Table 1 below.

Table 1. Summary of the number of examples not handled by each system

Annotate? MLF HML FreezeML FPH GI HMF

Nothing 2 3 4 6 8 11

Binders 1 2 2 4 6 6

Terms 1 2 2 4 2 6

Due to FreezeML’s approach of explicitly annotating polymorphic instantiations, we might require ⌈−⌉, $, and@ annotations

where other systems need no annotations whatsoever. This is especially the case for Examples A10-12, which all other five

systems can handle without annotations. We are being more verbose here, but the additional ink required is minimal and we

see this as a fair price for the benefits our system provides. Also, being explicit about generalisations allows us to be precise

about the location of quantifiers in a type. This allows us to typecheck Example E3, which no other system except MLF can do.

FreezeML is incapable of typechecking A8, under the assumption that the only allowed modifications are insertions of

freeze, generalisation, and instantiation. We can however η-expand and rewrite A8 to F10.

When dealing withn-ary function applications, FreezeML is insensitive to the order of arguments. Therefore, if an application

M N is well-typed then so are appM N and revapp N M , as shown in section D of the table. Many systems in the literature

also enjoy this property, but there are exceptions such as Boxy Types [26].

C Specifications of Core Calculi
In this appendix we provide full specification of two core calculi on which we base FreezeML— call-by-value System F and ML

— as well as translation from ML to System F.

C.1 Call-by-value System F
We begin with a standard call-by-value variant of System F. The syntax of System F types, environments, and terms is given in

Figure 16.

We let a,b, c range over type variables. We assume a collection of type constructors D each of which has a fixed arity

arity(D). Types formed by type constructor application include base types (Int and Bool), lists of elements of type A (ListA),
and functions from A to B (A → B). Data types may be Church-encoded using polymorphic functions [28], but for the

purposes of our examples we treat them specially. Types comprise type variables (a), fully-applied type constructors (DA), and
polymorphic types (∀a.A). Type environments track the types of term variables in a term. Kind environments track the type

3
Table presented in [24] claims that HML cannot typecheck E3 but Didier Rémy pointed out to us in private correspondence that this is not the case and HML

can indeed typecheck E3.
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Type Variables a,b, c
Type Constructors D ::= Int | Bool | List | → | × | . . .

Types A,B ::= a | DA | ∀a.A
Term Variables x ,y, z
Terms M,N ::= x | λxA.M | M N | Λa.V | MA

Values V ,W ::= I | λxA.M | Λa.V
Instantiations I ::= x | I A
Kind Environments ∆ ::= · | ∆,a
Type Environments Γ ::= · | Γ,x : A

Figure 16. System F Syntax

∆ ⊢ A : ⋆

a ∈ ∆

∆ ⊢ a : ⋆

arity(D) = n
∆ ⊢ A1 : ⋆ · · · ∆ ⊢ An : ⋆

∆ ⊢ DA : ⋆

∆,a ⊢ A : ⋆

∆ ⊢ ∀a.A : ⋆

∆; Γ ⊢ M : A

F-Var

x : A ∈ Γ

∆; Γ ⊢ x : A

F-App

∆; Γ ⊢ M : A → B
∆; Γ ⊢ N : A

∆; Γ ⊢ M N : B

F-PolyLam

∆,a; Γ ⊢ V : A

∆; Γ ⊢ Λa.V : ∀a.A

F-Lam

∆; Γ,x : A ⊢ M : B

∆; Γ ⊢ λxA.M : A → B

F-PolyApp

∆; Γ ⊢ M : ∀a.B ∆ ⊢ A : ⋆

∆; Γ ⊢ MA : B[A/a]

Figure 17. System F Kinding and Typing Rules

β-rules
(λxA.V )W ≃ V [W /x]
(Λa.V )A ≃ V [A/a]

η-rules
λxA.M x ≃ M
Λa.V a ≃ V

Figure 18. System F Equational Rules

variables in a term. For the calculi we present in this section, we only have a single kind, ⋆, the kind of all types, which we

omit. Nevertheless, kind environments are still useful for explicitly tracking which type variables are in scope, and when we

consider type inference (Section 5) we will need a refined kind system in order to distinguish between monomorphic and

polymorphic types.

We let x ,y, z range over term variables. Terms comprise variables (x ), term abstractions (λxA.M), term applications (M N ),

type abstractions (Λa.V ), and type applications (MA). We write let xA = M in N as syntactic sugar for (λxA.N )M , we write

MA as syntactic sugar for repeated type applicationMA1 · · · An , and Λa.V as syntactic sugar for repeated type abstraction

Λa1. · · ·Λan .V . We also may write Λ∆.A when ∆ = a. We restrict the body of type abstractions to be syntactic values in

accordance with the ML value restriction [30].

Well-formedness of types and the typing rules for System F are given in Figure 17. Standard equational rules (β) and (η) for
System F are given in Figure 18.

C.2 ML
We now outline a core fragment of ML. The syntax is given in Figure 19, well-formedness of types and the typing rules in

Figure 20. Unlike in System F we here separate monomorphic types (S,T ) from type schemes (P ,Q) and there is no explicit

provision for type abstraction or type application. Instead, only variables may be polymorphic and polymorphism is introduced

by generalising the body of a let-binding (ML-Let), and eliminated implicitly when using a variable (ML-Var).

Instantiation applies a type instantiation to the monomorphic body of a polymorphic type. The rules for type instantiations

are given in Figure 20. The judgement ∆ ⊢ δ : ∆′ ⇒ ∆′′
defines a well-formed finite map from type variables in ∆,∆′

into type

variables in ∆,∆′′
, such that δ (a) = a for every a ∈ ∆. As such, it is only well-defined if ∆ and ∆′

are disjoint and ∆ and ∆′′
are

disjoint. We may apply type instantiations to types and type schemes in the standard way:
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Type Variables a,b, c
Type Constructors D ::= Int | Bool | List | → | × | . . .

Monotypes S,T ::= a | D S
Type Schemes P ,Q ::= ∀a.S
Type Instantiations δ ::= ∅ | δ [a 7→ S]
Term Variables x ,y, z
Terms M,N ::= x | λx .M | M N | let x = M in N

Values V ,W ::= x | λx .M | let x = V inW

Kinds K ::= • | ⋆
Kind Environments ∆ ::= · | ∆,a
Type Environments Γ ::= · | Γ,x : P

Figure 19.ML Syntax

∆ ⊢ S : • ∆ ⊢ P : ⋆

a ∈ ∆

∆ ⊢ a : •

∆,∆′ ⊢ S : •

∆ ⊢ ∀∆′.S : ⋆

arity(D) = n
∆ ⊢ S1 : • · · · ∆ ⊢ Sn : •

∆ ⊢ D S : •

∆; Γ ⊢ M : S

ML-Var

x : ∀∆′.S ∈ Γ ∆ ⊢ δ : ∆′ ⇒ ·

∆; Γ ⊢ x : δ (S)

ML-Lam

∆; Γ,x : S ⊢ M : T

∆; Γ ⊢ λx .M : S → T

ML-App

∆; Γ ⊢ M : S → T
∆; Γ ⊢ N : S

∆; Γ ⊢ M N : T

ML-Let

∆′ = gen(∆, S,M) ∆,∆′
; Γ ⊢ M : S

P = ∀∆′.S ∆; Γ,x : P ⊢ N : T

∆; Γ ⊢ let x = M in N : T

∆ ⊢ δ : ∆′ ⇒ ∆′′

∆ ⊢ ∅ : · ⇒ ∆′

∆ ⊢ δ : ∆′ ⇒ ∆′′ ∆,∆′′ ⊢ S : •

∆ ⊢ δ [a 7→ S] : (∆′,a) ⇒ ∆′′

gen(∆, S,M) =

{
ftv(S) − ∆ ifM is a value

· otherwise

Figure 20. ML Kinding and Typing Rules

∅(S) = S δ [a 7→ S](a) = S

δ (D S) = D (δ (S)) δ [a 7→ S](b) = δ (b)

Generalisation is defined at the bottom of Figure 20. IfM is a value, the generalisation operation gen(∆, S,M) returns the

list of type variables in S that do not occur in the kind environment ∆, in the order in which they occur, with no duplicates. To

satisfy the value restriction, gen(∆, S,M) is empty ifM is not a value.

A crucial difference between System F and ML is that in System F the order in which quantifiers appear is important (∀a b .A
and ∀b a.A are different types), whereas in ML, because instantiation is implicit, the order does not matter. As we are concerned

with bridging the gap between the two we will develop an extension of ML in which the order of quantifiers is important.

However, this change will not affect the behaviour of type inference for ML terms since the order of quantifiers is lost when

polymorphic variable types are instantiated, as in rule ML-Var.
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C

��� x : ∀∆′.S ∈ Γ
∆ ⊢ δ : ∆′ ⇒ ·

∆; Γ ⊢ x : δ (S)

��� = x δ (∆′)

C

�������
∆′ = gen(∆, S,M)

∆,∆′
; Γ ⊢ M : S

P = ∀∆′.S
∆; Γ,x : P ⊢ N : T

∆; Γ ⊢ let x = M in N : T

������� = let x∀∆′ .S = Λ∆′.C⟦M⟧
in C⟦N⟧

C

�
∆; Γ,x : S ⊢ M : T

∆; Γ ⊢ λx .M : S → T

�
= λxS .C⟦M⟧

C

���∆; Γ ⊢ M : S → T
∆; Γ ⊢ N : S

∆; Γ ⊢ M N : T

��� = C⟦M⟧ C⟦N⟧

Figure 21. Translation from ML to System F

C.3 ML as System F
ML is remarkable in providing statically typed polymorphism without the programmer having to write any type annotations.

In order to achieve this coincidence of features the type system is carefully constructed, and crucial operations (instantiation

and generalisation) are left implicit (i.e., not written as explicit constructs in the program). This is convenient for programmers,

but less so for metatheoretical study.

In order to explicate ML’s polymorphic type system, let us consider a translation of ML into System F. Such a translation is

given in Figure 21. As the translation depends on type information not available in terms, formally it is defined as a translation

from derivations to terms (rather than terms to terms). But we abuse notation in the standard way to avoid explicitly writing

derivation trees everywhere. Each recursive invocation on a subterm is syntactic sugar for invoking the translation on the

corresponding part of the derivation.

The translation of variables introduces repeated type applications. Recall that we use let xA = M in N as syntactic sugar

for (λxA.N )M in System F. Translating the let binding of a value then yields repeated type abstractions. For non-valuesM , ∆′

is empty.

Theorem 8. If ∆; Γ ⊢ M : S then ∆; Γ ⊢ C⟦M⟧ : S .

The fragment of System F in the image of the translation is quite restricted in that type abstractions are always immediately

bound to variables and type applications are only performed on variables. Furthermore, all quantification must be top-level.

Next we will extend ML in such a way that the translation can also be extended to cover the whole of System F.

D Example Translation from FreezeML to System F
Below is an example translation from FreezeML to System F, where app, auto, and id have the types given in Figure 15.

C⟦let app = λ f .λz. f z in app ⌈auto⌉ ⌈id⌉⟧
= let app∀a b .(a→b)→a→b =

Λa b .C⟦λ f .λz. f z⟧ in C⟦app ⌈auto⌉ ⌈id⌉⟧
= (λapp∀a b .(a→b)→a→b .

C⟦app ⌈auto⌉ ⌈id⌉⟧) (Λa b .C⟦λ f .λz. f z⟧)
= (λapp∀a b .(a→b)→a→b .

C⟦app ⌈auto⌉ ⌈id⌉⟧) (Λa b .λ f a→b .λza . f z)
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where subterm C⟦app ⌈auto⌉ ⌈id⌉⟧ further translates as:
C⟦app ⌈auto⌉ ⌈id⌉⟧ = app ((∀a.a → a) → (∀a.a → a))

(∀a.a → a)
auto
id

The type of the whole translated term is ∀a.a → a. The translation enjoys a type preservation property.

E Translation from FreezeML to Poly-ML
Types Let ϵ be a fixed label. Then ⟦⟧τ is defined as follows:

⟦a⟧τ = a

⟦A1 → A2⟧τ = ⟦A1⟧τ → ⟦A2⟧τ
⟦∀∆.H⟧τ = [∀∆.⟦H⟧τ ]ϵ if ∆ , ·

Further, ⟦⟧σ is defined as follows, meaning that ⟦⟧σ behaves like ⟦⟧τ but leaves quantifiers at the toplevel unboxed.

⟦a⟧σ = ⟦a⟧τ
⟦A1 → A2⟧σ = ⟦A1 → A2⟧τ

⟦∀∆.H⟧σ = ∀∆.⟦H⟧τ if ∆ , ·

Finally, ⟦A⟧ς is defined as ∀ϵ .⟦A⟧τ and is applied to typing environments by applying ⟦⟧ς to the types therein.

Terms (Core) �
x : A ∈ Γ

∆; Γ ⊢ ⌈x⌉ : A

�
= x��� x : ∀∆′.H ∈ Γ

∆ ⊢ δ : ∆′ ⇒⋆ ·

∆; Γ ⊢ x : δ (H )

��� =

{
x if ∆′ = ·

⟨x⟩ otherwise

���∆; Γ ⊢ M : A → B
∆; Γ ⊢ N : A

∆; Γ ⊢ M N : B

��� = ⟦M⟧ ⟦N⟧

�
∆; Γ,x : S ⊢ M : B

∆; Γ ⊢ λx .M : S → B

�
= λx . ⟦M⟧�

∆; Γ,x : A ⊢ M : B

∆; Γ ⊢ λ(x : A).M : A → B

�
= λ(x : ⟦A⟧τ ). ⟦M⟧
= λx .let x = (x : ⟦A⟧τ ) in ⟦M⟧

Terms (Let, value-restricted)���������
(∆′,∆′′) = gen(∆,A′,M)

∆,∆′′
; Γ ⊢ M : A′

(∆,∆′′,M,A′) ⇕ A
∆; Γ,x : A ⊢ N : B

principal(∆, Γ,M,∆′′,A′)

∆; Γ ⊢ let x = M in N : B

��������� =

{
let x = [⟦M⟧ : ⟦A⟧σ ] in ⟦N⟧ if ∆′ , ·

let x = ⟦M⟧ in ⟦N⟧ otherwise
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Note that in the first case above, the type annotation ⟦A⟧σ would not be needed if Poly-ML was extended with a boxing

operator that does not require a type annotation but uses the principal type instead.�������
(∆′,A′) = split(A,M)

∆,∆′
; Γ ⊢ M : A′

A = ∀∆′.A′

∆; Γ,x : A ⊢ N : B

∆; Γ ⊢ let (x : A) = M in N : B

������� =

{
let x = [⟦M⟧ : ⟦A⟧σ ] in ⟦N⟧ if ∆′ , ·

let x = ⟦M⟧ in ⟦N⟧ otherwise

Lemma E.1. If ∆; Γ ⊢ M : A in FreezeML, then ⟦Γ⟧ς ⊢ ⟦M⟧ : ⟦A⟧τ in Poly-ML.

F Proofs from Section 4
For convenience, we use the following (derivable) System F typing rules, allowing n-ary type applications and abstractions:

∆; Γ ⊢ M : ∀∆′.B ∆′ = a1, . . . ,an A = A1, . . . ,An

∆; Γ ⊢ MA : B[A1/a1] · · · [An/an]

where Amay be empty

F-PolyApp*

∆,∆′
; Γ ⊢ V : A

∆; Γ ⊢ Λ∆′.V : ∀∆′.A
F-PolyLam*

Recall that we have defined let xA = M in N as syntactic sugar for (λxA.N )M in System F .

For readability, we preserve the syntactic sugar in the proofs and use the following typing rule:

∆; Γ ⊢ M : A ∆; Γ,x : A ⊢ N : B

∆; Γ ⊢ let xA = M in N : B
F-Let

Lemma F.1. For each System F value V , E⟦V ⟧ is a FreezeML value.

Proof. By induction on structure of V . □

Theorem 2 (Type preservation). If ∆; Γ ⊢ M : A in System F then ∆; Γ ⊢ E⟦M⟧ : A in FreezeML.

Proof. The proof is by well-founded induction on derivations of ∆; Γ ⊢ M : A. This means that we may apply the induction

hypothesis to any judgement appearing in a subderivation, not just to those appearing in the immediate ancestors of the

conclusion. We slightly strengthen the induction hypothesis so that the A is the unique type of E⟦M⟧. Formally, we show that

if ∆; Γ ⊢ M : A holds in System F, then ∆; Γ ⊢ E⟦M⟧ : A holds in FreezeML and for all B with ∆; Γ ⊢ E⟦M⟧ : B we have A = B.
We show how to extend E⟦−⟧ to a function that translates System F type derivations to FreezeML type derivations.

• Case F-Var, J = ∆; Γ ⊢ x : A:

E

�
x : A ∈ Γ

∆; Γ ⊢ x : A

�
=⇒

x : A ∈ Γ

∆; Γ ⊢ ⌈x⌉ : A

• Case F-Lam, J = ∆; Γ ⊢ λxA.M : A → B:

E

�
∆; Γ,x : A ⊢ M : B

∆; Γ ⊢ λxA.M : A → B

�
=⇒

∆; Γ,x : A ⊢ E⟦M⟧ : B

∆; Γ ⊢ λ(x : A).E⟦M⟧ : A → B
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• Case F-App, J = ∆; Γ ⊢ M N : B:

E

���∆; Γ ⊢ M : A → B
∆; Γ ⊢ N : A

∆; Γ ⊢ M N : B

��� =⇒ ∆; Γ ⊢ E⟦M⟧ : A → B
∆; Γ ⊢ E⟦N⟧ : A

∆; Γ ⊢ E⟦M⟧ E⟦N⟧ : B

• Case F-TAbs, , J = ∆; Γ ⊢ ∆a.V : ∀a.B
Let B = ∀∆B .HB . By Lemma F.1, E⟦V ⟧ is a value, and let y = E⟦V ⟧ in y is a guarded value which we refer to asU@.

E

�
∆,a; Γ ⊢ V : B

∆; Γ ⊢ Λa.V : ∀a.B
�
=⇒

D

x : ∀a.B ∈ Γ, (x : ∀a.B)
∆; Γ, (x : ∀a.B) ⊢ ⌈x⌉ : ∀a.B ((a,∆B ),HB ) = split(∀a.B,U@)

∆; Γ ⊢ let (x : ∀a.B) = U@ in ⌈x⌉ : ∀a.B
The sub-derivation D for ∆,a,∆B ; Γ ⊢ U@ : HB differs based on whether E⟦V ⟧ is a guarded value or not:

If E⟦V ⟧ ∈ GVal: E⟦V ⟧ must have a guarded type and hence we have B = HB and ∆B = ·. By induction we have

∆,a; Γ ⊢ E⟦V ⟧ : B and hence ftv(B) ⊆ ∆,a. This further implies gen((∆,a,∆B ),HB , E⟦V ⟧) = (·, ·). Let δ be the empty

substitution.

∆,a,∆B ; Γ ⊢ E⟦V ⟧ : HB

y : HB ∈ Γ
∆,a,∆B ⊢ δ : · ⇒⋆ ·

∆; Γ,y : HB ⊢ y : δ (HB )

((∆,a,∆B ), ·, E⟦V ⟧,HB ) ⇕ HB (·, ·) = gen((∆,a,∆B ),HB , E⟦V ⟧) principal((∆,a,∆B ), Γ, E⟦V ⟧, ·,B′)

∆,a,∆B ; Γ ⊢ let y = E⟦V ⟧ in y : HB

If E⟦V ⟧ < GVal: Let B′ = ∀∆′.H ′
be alpha-equivalent to B such that all ∆′

are fresh. We then have ∆,a; Γ ⊢ E⟦V ⟧ : B′

by induction. This implies gen((∆,a,∆B ),B
′, E⟦V ⟧) = (·, ·). Let δ be defined such that δ (∆′) = ∆B , which implies

δ (H ′) = HB .

∆,a,∆B ; Γ ⊢ E⟦V ⟧ : B′

y : ∆′.H ′ ∈ Γ
∆,a,∆B ⊢ δ : ∆′ ⇒⋆ ·

∆,a,∆B ; Γ,y : B′ ⊢ y : δ (H ′)

((∆,a,∆B ), ·, E⟦V ⟧,B′) ⇕ B′ (·, ·) = gen((∆,a,∆B ),B
′, E⟦V ⟧) principal((∆,a,∆B ), Γ, E⟦V ⟧, ·,B′)

∆,a,∆B ; Γ ⊢ let y = E⟦V ⟧ in y : HB

In both cases, satisfaction of principal((∆,a,∆B ), Γ, E⟦V ⟧, ·,B′) follows from the fact that by induction, B′
is the unique

type of E⟦V ⟧.
• Case F-TApp, , J = ∆; Γ ⊢ M A : B[A/a]
Let B = ∀∆B .HB and w.l.o.g. a # ∆B and ftv(A) # a,∆B . LetU@ be defined as in the previous case. We then have

E

�
∆; Γ ⊢ M : ∀a.B

∆; Γ ⊢ MA : B[A/a]

�
=⇒

D

x : B[A/a] ∈ Γ, (x : B[A/a])

∆; Γ, (x : B[A/a]) ⊢ ⌈x⌉ : B[A/a] (∆B ,HB [A/a]) = split(B[A/a],U@)

∆; Γ ⊢ let (x : B[A/a]) = U@ in ⌈x⌉ : B[A/a]

We consider the sub-derivation D for ∆,∆B ; Γ ⊢ U@ : HB [A/a]

By induction, we have ∆; Γ ⊢ E⟦V ⟧ : ∀a.B, which implies that E⟦V ⟧ is not a guarded value.
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Let B′ = ∀∆′.H ′
be alpha-equivalent to B such that all ∆′

are fresh. We then have ∆; Γ ⊢ E⟦V ⟧ : ∀a.B′
by induction.

This implies (·, ·) = gen((∆,∆B ),∀a.B′, E⟦V ⟧). Let δ be defined such that δ (∆′) = ∆B and δ (a) = A, which implies

δ (H ′) = HB [A/a].

∆; Γ ⊢ E⟦V ⟧ : ∀a.B′

y : a,∆′.H ′ ∈ Γ
∆,∆B ⊢ δ : a,∆′ ⇒⋆ ·

∆,∆B ; Γ,y : ∀a.B′ ⊢ y : δ (H ′)

((∆,∆B ), ·, E⟦V ⟧,∀a.B′) ⇕ ∀a.B′ (·, ·) = gen((∆,∆B ),∀a.B′, E⟦V ⟧) principal((∆,∆B ), Γ, E⟦V ⟧, ·,∀a.B′)

∆,∆B ; Γ ⊢ let y = E⟦V ⟧ in y : HB [A/a]

As in the previous case, satisfaction of principal((∆,a,∆B ), Γ, E⟦V ⟧, ·,∀a.B′) follows from the fact that by induction,

∀a.B′
is the unique type of E⟦V ⟧.

Finally, we observe that the translated terms indeed have unique types: For variables, the type is uniquely determined from

the context. Functions are translated to annotated lambdas, without any choice for the parameter type. For term applications,

uniqueness follows by induction. For term applications an abstractions, the result type of the expression is the type of freezing

x . In both cases, this variable is annotated with a type.

This completes the proof, since any derivation is in one of the forms used in the above cases. □

Theorem 3 (Type preservation). If ∆; Γ ⊢ M : A holds in FreezeML then ∆; Γ ⊢ C⟦M⟧ : A holds in System F.

Proof. We perform induction on the derivation of ∆, Γ ⊢ M : A. In each case we show how the definition of C⟦−⟧ can be

extended to a function returning the desired derivation.

• Case Freeze:

C

�
x : A ∈ Γ

∆; Γ ⊢ ⌈x⌉ : A

�
=⇒

x : A ∈ Γ

∆; Γ ⊢ x : A
F-Var

• Case Var: Let ∆′ = (a1, . . . ,an).

C

�
x : ∀∆′.H ∈ Γ ∆ ⊢ δ : ∆′ ⇒ ·

∆; Γ ⊢ x : δ (H )

�
=⇒

x : ∀∆′.H ∈ Γ

∆; Γ ⊢ x : ∀a1, . . . ,an .H F-Var

∆; Γ ⊢ x δa1 · · · δan : H [δa1/a1] · · · [δan/an]
F-PolyApp*

• Case Lam:

C

�
∆; Γ,x : S ⊢ M : B

∆; Γ ⊢ λx .M : S → B

�
=⇒

∆; Γ,x : S ⊢ C⟦M⟧ : B

∆; Γ ⊢ λxS .C⟦M⟧ : S → B
F-Lam

• Case Lam-Ascribe

C

�
∆; Γ,x : A ⊢ M : B

∆; Γ ⊢ λ(x : A).M : A → B

�
=⇒

∆; Γ,x : A ⊢ C⟦M⟧ : B

∆; Γ ⊢ λxA.C⟦M⟧ : A → B
F-Lam

• Case App:

C

�
∆; Γ ⊢ M : A → B ∆; Γ ⊢ N : A

∆; Γ ⊢ M N : B

�
=⇒

∆; Γ ⊢ C⟦M⟧ : A → B ∆; Γ ⊢ C⟦N⟧ : A

∆; Γ ⊢ C⟦M⟧C⟦N⟧ : B
F-App

• Case Let: In this case there are two subcases, depending on whetherM is a guarded value or not.
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– M = V ∈ GVal: In this case, we have gen(∆,A′,M) = (∆′,∆′) for some possibly nonempty ∆′
, and (∆,∆′,M,A′) ⇕

∀∆′.A′
. We proceed as follows:

C

�����
∆,∆′

; Γ ⊢ V : A′

∆; Γ,x : ∀∆′.A′ ⊢ N : B
. . .

∆; Γ ⊢ let x = V in N : B

����� =⇒
∆,∆′

; Γ ⊢ C⟦V ⟧ : A′

∆; Γ ⊢ Λ∆′.C⟦V ⟧ : ∀∆′.A′
F-PolyLam*

∆; Γ,x : ∀∆′.A′ ⊢ C⟦N⟧ : B

∆; Γ ⊢ let xA = Λ∆′.C⟦V ⟧ in C⟦N⟧ : B
F-Let

where we rely on the fact that C⟦V ⟧ is a value in System F as well, and appeal to the derivable rule F-PolyLam*.

– M < GVal. In this case, we know that gen(∆,A,M) = (·,∆′) and (∆,∆′,M,A′) = δ (A′) = A for some δ satisfying

∆ ⊢ δ : ∆′ ⇒• ·. We proceed as follows:

C

�����
∆,∆′

; Γ ⊢ M : A′

∆; Γ,x : A ⊢ N : B
. . .

∆; Γ ⊢ let x = M in N : B

����� =⇒
∆; Γ ⊢ δ (C⟦M⟧) : δ (A′) ∆; Γ,x : A ⊢ C⟦N⟧ : B

∆; Γ ⊢ let xA = C⟦M⟧ in C⟦N⟧ : B

where we make use of a standard substitution lemma for System F to instantiate type variables from ∆′
in C⟦M⟧ and

A to obtain a derivation of ∆; Γ ⊢ δ (C⟦M⟧) : δ (A′), which suffices since A = δ (A′). Note that C⟦M⟧ could contain free

type variables from ∆′
since all inferred types are translated to explicit annotations.

• Case Let-Ascribe: This case is analogous to the case for Let.

□

G Type Substitutions, Environments and Well-Scoped Terms
This section collects, and sketches (mostly straightforward) proofs of properties about type substitutions, kind and type

environments, and the well-scoped term judgement. We may then use the properties from this section without explicitly

referencing them in subsequent sections.

Note that when types appear on their own or in contexts Γ, we identify α-equivalent types.
We use the following notations in this and subsequent sections, where Θ = (a1 : K1, . . . ,an : Kn). Recall that this implies all

ai being pairwise different.

• Let (b : K) ∈ Θ hold iff b = ai and K = Ki for some 1 ≤ i ≤ n and let b ∈ Θ hold iff (b : K) ∈ Θ holds for some K .
• For all 1 ≤ i ≤ n, we define Θ(ai ) = Ki .

• We define ftv(Θ) as (a1, . . . ,an).
• Given θ such that ∆ ⊢ θ : Θ ⇒ Θ′

, then ftv(θ ) is defined as ftv(θ (a1) → . . .→ θ (an)).
• Given Θ′ = (b1 : K

′
1
, . . . ,bm : K ′

m), Θ
′ ⊆ Θ holds iff there exists a function f from {1, . . . ,m} to {1, . . . ,n} such that for

all 1 ≤ i ≤ m, we have bi = af (i) and K
′
i = Kf (i).

• We have Θ ≈ Θ′
iff Θ ⊆ Θ and Θ′ ⊆ Θ.

• Given ∆ = (a1, . . . ,an), all of the above notations are defined on ∆ by applying them to Θ = (a1 : •, . . . ,an : •).

• Given kinds K ,K ′
, we write K ≤ K ′

iff K ⊔ K ′ = K ′
.

Lemma G.1. If A = B then θ (A) = θ (B) for any θ .

Proof. The point of this property is that alpha-equivalence is preserved by substitution application, because substitution

application is capture-avoiding. Concretely, the proof is by induction on the (equal) structure of A and B. In the case of

a binder A = ∀a.A′ = ∀b .B′ = B, where one or both of a,b are affected by θ , alpha-equivalence implies that we may

rename a and b respectively to a sufficiently fresh c , such that A′[c/a] = B′[c/a] and θ (c) = c . Therefore, by induction

θ (A) = θ (∀a.A′) = θ (∀c .A′[c/a]) = ∀c .θ (A′[c/a]) = ∀c .θ (B′[c/b]) = θ (∀c .B′[c/b]) = θ (∀b .B′) = θ (B). □
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Lemma G.2. θ (∀a.A) = θ (∀c .A[c/a]), where c < ftv(θ ) ∪ ftv(A) is fresh.

Proof. This is a special case of the previous property, observing that ∀a.A = ∀c .A[c/a] if c is sufficiently fresh. □

Lemma G.3. If ∆ ⊢ θ [a → A] : Θ, (a : K) ⇒ Θ′, then ∆ ⊢ θ : Θ ⇒ Θ′ and ∆,Θ′ ⊢ A : K .

Proof. This follows by inversion on the substitution well-formedness judgement. □

Lemma G.4. If ∆ ⊢ θ : Θ ⇒ Θ′ and ∆,Θ ⊢ a : K then ∆,Θ′ ⊢ θ (a) : K .

Proof. By induction on the structure of the derivation of ∆ ⊢ θ : Θ ⇒ Θ′
. The base case is straightforward: if θ is empty then

Θ is also empty so a ∈ ∆. Moreover, θ (a) = a so we can conclude ∆,Θ′ ⊢ θ (a) : K . For the inductive case, we have a derivation
of the form:

∆ ⊢ θ : Θ ⇒ Θ′ ∆,Θ ⊢ A′
: K ′

∆ ⊢ θ [a′ 7→ A′] : (Θ,a′ : K ′) ⇒ Θ′

There are two cases. If a = a′ then the subderivation of ∆,Θ ⊢ A′
: K ′

proves the desired conclusion since θ [a′ 7→ A′](a) = A′

and K = K ′
. Otherwise, a , a′ so from ∆,Θ,a′ : K ′ ⊢ a : K we can infer that ∆,Θ ⊢ a : K as well. So, by induction we have

that ∆,Θ′ ⊢ θ (a) : K . Since a , a′ we can also conclude that ∆,Θ′ ⊢ θ [a′ 7→ A′](a) : K , as desired. □

Lemma G.5. If ∆,Θ ⊢ A : K and ∆ ⊢ θ : Θ ⇒ Θ′, then ∆,Θ′ ⊢ θA : K .

Proof. By induction on the structure of the derivation of ∆,Θ ⊢ A : K . The case for TyVar is G.4. The cases for Cons and

Upcast are immediate by induction. For the ForAll case, assume the derivation is of the form:

∆,Θ,a : ⋆ ⊢ A : ⋆

∆,Θ ⊢ ∀a.A : ⋆

Without loss of generality, assume a is fresh and in particular not mentioned in Θ,Θ′,∆. Then we can derive ∆ ⊢ θ [a 7→ a] :
Θ,a : ⋆⇒ Θ′,a : ⋆, and we may apply the induction hypothesis to conclude that ∆,Θ′,a : ⋆ ⊢ θ [a 7→ a](A) : ⋆. Moreover,

since a was sufficiently fresh, and is unchanged by θ [a 7→ a], we can conclude ∆,Θ′ ⊢ ∀a.A : ⋆. □

Lemma G.6. If ∆,Θ ⊢ Γ and ∆ ⊢ θ : Θ ⇒ Θ′. then ∆,Θ′ ⊢ θΓ.

Proof. By induction on the derivation of ∆,Θ ⊢ Γ. The base case is:

∆,Θ ⊢ ·

Moreover, it follows from ∆ ⊢ θ : Θ ⇒ Θ′
that ∆ # Θ′

, so the conclusion is immediate, since θ (·) = ·. In the inductive case, the

derivation of ∆,Θ ⊢ Γ,x : A is of the form:

∆,Θ ⊢ Γ ∆,Θ ⊢ A : ⋆ ∀a ∈ ftv(A).(∆,Θ)(a) = •

∆,Θ ⊢ Γ,x : A

In this case, by induction we have ∆,Θ′ ⊢ θΓ and using Lemma G.5 we have ∆,Θ′ ⊢ θA : K . We also need to show that

∀a ∈ ftv(θ (A)), we have (∆,Θ′)(a) = •. There are two cases: if a ∈ ∆ this is immediate. If a ∈ Θ′
, then since a ∈ ftv(θ (A)) we

know that there must exist b ∈ Θ such that a ∈ ftv(θ (b)) and b ∈ ftv(A). By virtue of the assumption ∀a ∈ ftv(A).(∆,Θ)(a) = •,

we know that (∆,Θ)(b) = •, hence Θ(b) = •. This implies that ∆,Θ′ ⊢ θ (b) : •, which further implies that all the free type

variables of θ (b), including a, must also have kind •. Now the desired conclusion ∆,Θ′ ⊢ θ (Γ,x : A) follows. □

Lemma G.7. 1. If ∆ ⊢ δ1 : ∆1 ⇒K ∆2 and ∆ ⊢ δ2 : ∆2 ⇒K ∆3 then ∆ ⊢ δ2 ◦ δ1 : ∆1 ⇒K ∆3.
2. If ∆ ⊢ θ : Θ ⇒ Θ′ and ∆′

# Θ′
# ∆′′ and ∆,Θ ⊢ δ1 : ∆

′ ⇒K ∆′′ then ∆,Θ′ ⊢ θ ◦ δ1 : ∆
′ ⇒K ∆′′.

Proof. In both cases, by straightforward induction on structure of δ1. □

Lemma G.8. If Θ ⊢ A : K and Θ′
# Θ then Θ,Θ′ ⊢ A : K .

Proof. Straightforward by induction on the structure of derivations of Θ ⊢ A : K . The only subtlety is in the case for ∀-types,
where we assume without loss of generality that the bound type variable a is renamed away from Θ and Θ′

, so that the

induction hypothesis applies. □

Lemma G.9. If ∆ ⊢ θ : Θ ⇒ Θ′ and ∆′
# ∆,Θ′ as well as ∆′

# Θ then ∆,∆′ ⊢ θ : Θ ⇒ Θ′.
24



FreezeML

Proof. By induction on the derivation of ∆ ⊢ θ : Θ ⇒ Θ′
. The base case is immediate given that ∆′

is fresh for ∆ and Θ′
. For

the inductive case, we have a derivation of the form:

∆ ⊢ θ : Θ ⇒ Θ′ ∆,Θ′ ⊢ A : K

∆ ⊢ θ [a 7→ A] : (Θ,a : K) ⇒ Θ′

By induction (since ∆′
is clearly fresh for ∆,Θ, and Θ′

) we have ∆,∆′ ⊢ θ : Θ ⇒ Θ′
. Moreover, by weakening (Lemma G.8) we

also have ∆,∆′,Θ′ ⊢ A : K . We can conclude, as required, that ∆,∆′ ⊢ θ [a 7→ A] : (Θ,a : K) ⇒ Θ′
. □

Lemma G.10. If ΘD = demote(K ,Θ,∆′) and ∆ ⊢ θ : ΘD ⇒ Θ′ then ∆ ⊢ θ : Θ ⇒ Θ′.

Proof. If K = ⋆, demote yields Θ = ΘD and the statement holds immediately.

Otherwise, if K = •, we perform induction on ΘD . By definition of demote, we have ftv(Θ) = ftv(ΘD ).

If ΘD = · we have Θ = · and can derive the following:

∆ ⊢ ∅ : · ⇒ Θ′

Let ΘD = (Θ′′
D ,a : K ′). By inversion we then have

∆ ⊢ θ : Θ′′
D ⇒ Θ′ ∆,Θ′ ⊢ A : K ′

∆ ⊢ θ [a 7→ A] : (Θ′′
D ,a : K ′) ⇒ Θ′

By ftv(Θ) = ftv(ΘD ) we have Θ = (Θ′′,a : K ′′). By induction this implies ∆ ⊢ θ : Θ′′ ⇒ Θ′
.

If K ′ = ⋆, then by definition of demote we have a < ∆′
and K ′′ = ⋆. We can then derive the following:

∆ ⊢ θ : Θ′′ ⇒ Θ′ ∆,Θ′ ⊢ A : ⋆

∆ ⊢ θ [a 7→ A] : (Θ′′,a : ⋆) ⇒ Θ′

Otherwise, we have K ′ = • and show that ∆,Θ′ ⊢ A : K ′′
holds. If K ′′ = •, this follows immediately from ∆,Θ′ ⊢ A : K ′

. If

K ′′ = ⋆, we upcast ∆,Θ′ ⊢ A : • to ∆,Θ′ ⊢ A : ⋆.
In both cases for K ′′

, we can then derive the following:

∆ ⊢ θ : Θ ⇒ Θ′ ∆,Θ′ ⊢ A : K ′′

∆ ⊢ θ [a 7→ A] : (Θ′′,a : •) ⇒ Θ′

□

Lemma G.11. If Θ′ = demote(K ,Θ,∆) then ftv(Θ) = ftv(Θ′) and ∆ ⊢ ι : Θ ⇒ Θ′.

Proof. Proof by case analysis on K and induction on Θ. There are three cases. If K = ⋆ then the result is immediate since

Θ = Θ′
. If K = • and Θ = · then the result is also immediate. Otherwise, if K = • and Θ = Θ1,a : K then demote(K ,Θ,∆) =

demote(K ,Θ1,∆),a : K ′
, where Θ′

1
= demote(K ,Θ1,∆) and K ′

is • if a ∈ ∆, otherwise K = K ′
. Then by induction we have

ftv(Θ1) = ftv(Θ′
1
) and ∆ ⊢ ι : Θ1 ⇒ Θ′

1
. Clearly, ftv(Θ1,a : K) = ftv(Θ′

1
,a : K ′). To see that ∆ ⊢ ι : Θ ⇒ Θ′

, consider two cases:

if a ∈ ∆ then K ′ = • and we can conclude ∆ ⊢ ι : Θ,a : K ⇒ Θ′
1
,a : • since if K = ⋆ then we can use Upcast. Otherwise,

K = K ′
so the result is immediate. □

Lemma G.12. Let ∆ : Θ ⇒ Θ′ and ∆,Θ ⊢ A : K such that ∆,Θ′ ⊢ θ (A) : K ′ for some K ′ with K ′ ≤ K . Furthermore, let
demote(K ′,Θ,ftv(A) − ∆) = ΘD . Then ∆,ΘD ⊢ A : K ′.

Proof. For K ′ = K , the statement follows immediately. Therefore, we consider only the case K = ⋆,K ′ = •.

We perform induction on the derivation of ∆,Θ′ ⊢ θ (A) : •.

Case θ (A) = a:

a : K ′ ∈ Θ′

∆,Θ′ ⊢ a : •

We have A = b for some b ∈ ∆,Θ. If b ∈ ∆, then ∆ ⊢ b : • follows immediately. Otherwise, we have (b : K ′′) ∈ Θ for

some K ′′
. By b ∈ ftv(A) − ∆, we then have (b : •) in ΘD .
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Case θ (A) = D θ (A1) . . . θ (An):

arity(D) = n
∆,Θ′ ⊢ θ (A1) : • · · · ∆,Θ′ ⊢ An : •

∆,Θ′ ⊢ D θ (A) : •

By induction we have ∆,ΘD ⊢ θ (Ai ) : • for all 1 ≤ i ≤ n. We can therefore derive ∆,ΘD ⊢ DA : •.

Note that we can disregard upcasts and θ (A) = ∀b .B as they would both yield K ′ = ⋆:

∆,Θ′,b : • ⊢ B : ⋆

∆,Θ′ ⊢ ∀b .B : ⋆

∆,Θ′ ⊢ A : •

∆,Θ′ ⊢ A : ⋆

□

The following property states the well-formedness conditions needed in order for composition of substitutions to imply

composition of the functions induced by them.

Lemma G.13. Let the following conditions hold:

∆ ⊢ θ ′
: Θ ⇒ Θ′ (1)

∆ ⊢ θ ′′
: Θ′ ⇒ Θ′′ (2)

θ = θ ′′ ◦ θ ′ (3)
∆,Θ ⊢ A (4)

Then θ (A) = θ ′′θ ′(A) holds.

Lemma G.14. If ∆ ⊩ M , and ∆ ⊢ θ : Θ ⇒ Θ′, then:

1. If ftv(A) − (∆,Θ) # Θ′ then gen((∆,Θ),A,M) = gen((∆,Θ′),θ (A),M);
2. if ∆′′

# ∆,Θ and ∆′′
# Θ′ and ((∆,Θ),∆′′,M,A′) ⇕ A then ((∆,Θ′),∆′′,M,θ (A′)) ⇕ θ (A);

Proof. 1. For part 1: Observe that

gen((∆,Θ),A,M) =

{
(∆′,∆′) M ∈ GVal
(.,∆′) M < GVal

gen((∆,Θ′),θ (A),M) =

{
(∆′′,∆′′) M ∈ GVal
(.,∆′′) M < GVal

where ∆′ = ftv(A) − (∆,Θ) and ∆′′ = ftv(θ (A)) − (∆,Θ′). So, the equation gen((∆,Θ),A,M) = gen((∆,Θ′),θ (A),M)

holds if and only if ∆′ = ∆′′
. Suppose a ∈ ∆′

, that is, it is a free type variable of A and not among ∆,Θ. Since θ only

affects type variables in Θ, we have θ (a) = a and it follows that a ∈ ftv(θ (A)). Moreover, by assumption ∆′
# Θ′

so

a ∈ ftv(θ (A)) − (∆,Θ′) = ∆′′
. Conversely, suppose a ∈ ∆′′

, that is, a is a free type variable of θ (A) and not among ∆,Θ′
.

Since a < ∆,Θ′
, we must have θ (a) = a since θ was a well-formed substitution mentioning only type variables in ∆,Θ′

.

This implies that a ∈ ftv(A) since a cannot have been introduced by θ .
We has thus shown ∆′ ≈ ∆′′

. To show ∆′ = ∆′′
, assume a,b ∈ ∆′

such that a occurs before b in ∆′
. This means that the

first occurrence of a in A is before the first occurrence of b in A. For all c ∈ Θ we have c , b and ftv(θ (c)) # b. Thus, the
first occurrence of a in θ (A) remains before the first occurrence of b in θ (A).

2. For part 2: We consider two cases.

• If the derivation is of the form

M ∈ GVal

((∆,Θ),∆′′,M,A′) ⇕ ∀∆′′.A′

then we may derive

M ∈ GVal

((∆,Θ′),∆′′,M,θ (A′)) ⇕ ∀∆′′.θ (A′)

by observing that since ∆′′
# Θ and ∆′′

# Θ, we know that θ (∀∆′′.A′) = ∀∆′′.θ (A′).
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• If the derivation is of the form

∆,Θ ⊢ δ : ∆′′ ⇒• · M < GVal

((∆,Θ),∆′′,M,A′) ⇕ δ (A′)

Then first we observe (by property G.7) that ∆,Θ′ ⊢ θ ◦ δ : ∆′′ ⇒• ·, so we can derive

∆,Θ′ ⊢ θ ◦ δ : ∆′′ ⇒• · M < GVal

((∆,Θ′),∆′′,M,θ (A′)) ⇕ θ ◦ δ (θ (A′))

observing that θ (δ (A′)) = θ ◦ δ (θ (A′)) since ftv(θ ) # ∆′′
.

□

Lemma G.15. Let ∆′′
; Γ ⊢ M : A and ∆ ⊩ M . Further, let ∆′ such that ∆ ⊆ ∆′ ⊆ ∆′′ and ∆′ ⊢ Γ and ∆′ ⊆ ftv(A), then

∆′
; Γ ⊢ M : A holds.

Proof. Follows directly from observing that the variables in ∆′′ − ∆′
have no influence on the typing derivation. □

Lemma G.16. Let ∆ ⊢ θ : Θ ⇒ Θ′ be a bijection between the type variables in Θ and Θ′. Furthermore, let Θ # ∆′
# Θ′. and

∆ ⊩ M hold.
Then the following holds:

1. If ∆,Θ; Γ ⊢ M : A then ∆,Θ′
;θ (Γ) ⊢ M : θ (A).

2. If principal((∆,Θ), Γ,M,∆′,A) then principal((∆,Θ′),θ (Γ),M,∆′,θ (A)).

Proof. Follows from the fact that θ merely swaps variables independent from ∆ and ∆′
. □

Lemma G.17. If ∆ ⊢ θ : Θ ⇒ Θ′′ and ∆ ⊢ θ ′ : Θ ⇒ Θ′ and ∆ ⊢ θ ′′ : Θ′ ⇒ Θ′′,ΘE as well as θ = θ ′′ ◦ θ ′ then for all
a ∈ ftv(θ ′) − ∆ we have ∆,Θ′′ ⊢ θ ′′(a).

Proof. Via induction on θ ′, observing that ∆ ⊢ θ : Θ ⇒ Θ′′
dictates the behaviour of θ ′′ on all variables in the intersection of

Θ′
and the codomain of θ ′. □

H Correctness of unification proofs
H.1 Soundness of unification
Theorem 4 (Unification is sound). If ∆,Θ ⊢ A,B : K and unify(∆,Θ,A,B) = (Θ′,θ ) then θ (A) = θ (B) and ∆ ⊢ θ : Θ ⇒ Θ′.

Proof. Via induction on the maximum of the sizes of A and B. We only consider the cases where unification succeeds.

1. unify(∆,Θ,a,a): we have θ = ι∆,Θ (identity substitution) and the result is immediate.

2. unify(∆, (Θ,a : K ′),a,A) or unify(∆, (Θ,a : K ′),A,a): We consider the first case; the second is symmetric. We have

unify(∆, (Θ,a : K ′),a,A) = (Θ1, ι[a 7→ A])
demote(K ′,Θ,ftv(A) − ∆) = Θ1

∆,Θ1 ⊢ A : K ′

First, observe that a < ftv(A) since a < ∆,Θ and ftv(Θ1) = ftv(Θ). Therefore

ι[a 7→ A](a) = A = ι[a 7→ A](A)

Next, by Lemma G.11 we know that ∆ ⊢ ι : Θ ⇒ Θ1. Moreover, by ∆,Θ1 ⊢ A : K ′
we can derive ∆ ⊢ ι[a 7→ A] : Θ,a :

K ′ ⇒ Θ1.

3. unify(∆,Θ,DA1 . . . An ,D B1 . . . Bn): we need to show that types under the constructor D are pairwise identical after a

substitution: θ (A1) = θ (B1), . . . ,θ (An) = θ (Bn), where n = arity(D). We perform a nested induction, showing that for all

0 ≤ j ≤ n + 1 the following holds: ∆ ⊢ θ j ⊢ Θ ⇒ Θj and for all 1 ≤ i < j we have θ j (Ai ) = θ j (Bi ).
For j = 0, this holds immediately.

In the inductive step, by definition of unify we have θ j+1 = θ ′ ◦ θ j , and by the outer induction θ ′(Aj ) = θ ′(Bj ) and
∆ ⊢ θ ′

: Θj ⇒ Θj+1. Together, we then have ∆ ⊢ θ j+1 : Θ ⇒ Θj+1. From Lemma G.1 we know that θ j+1 maintains

equalities established by θ j , and so we have θ j+1(Ai ) = θ j+1(Bi ) for all 1 ≤ i < j + 1.
From the definition of substitutionwe then haveθ (DA1 . . . An) = D θ (A1) . . . θ (An) = D θ (B1) . . . θ (Bn) = θ (D B1 . . . Bn),
with ∆ ⊢ θ : Θ ⇒ Θn+1.
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4. unify(∆,Θ,∀a.A,∀b .B): In this case we must have

unify((∆, c),Θ,A[c/a],B[c/b]) = (Θ1,θ )

c # ∆,Θ (1)
ftv(B) # c # ftv(A) (2)

c # ftv(θ ) (3)

so from the inductive hypothesis we have θ (A[c/a]) = θ (B[c/b]) (4), where c is fresh and ∆, c ⊢ θ : Θ ⇒ Θ1. We now

derive:

θ (∀a.A)
= θ (∀c .A[c/a]) (by (2) and (3), Lemma G.2)

= ∀c .θ (A[c/a]) (by (1) and (3))

and by exactly the same reasoning, θ (∀b .B) = ∀c .θ (B[c/b]). Then by (4) we can conclude θ (∀a.A) = ∀c .θ (A[c/a]) =
∀c .θ (B[c/b]) = θ (∀b .B), which is the desired equality, and ∆ ⊢ θ : Θ1 ⇒ Θ because c < ftv(θ ) implies that we can remove

it from ∆ without damaging the well-formedness of θ .

□

H.2 Completeness of unification
Lemma H.1 (Unifiers are surjective). Let unify(∆,Θ,A,B) = (Θ′,θ ). Then ftv(Θ′) ⊆ ftv(Θ) and for all b ∈ Θ′ there exists a ∈ Θ
such that b ∈ ftv(θ (a)).

Proof. The first part follows immediately from the fact that in each case Θ′
, is always constructed from Θ by removing variables

or demoting them.

For the second part, observe that θ ′ is constructed by manipulating appropriate identity functions. Mappings are only

changed in the cases (a,A) and (A,a), such that θ (a) = A. However, at the same time, a is removed from the output.

□

Theorem 5 (Unification is complete and most general). If ∆ ⊢ θ : Θ ⇒ Θ′ and ∆,Θ ⊢ A : K and ∆,Θ ⊢ B : K and θ (A) = θ (B),
then unify(∆,Θ,A,B) = (Θ′′,θ ′) where there exists θ ′′ satisfying ∆ ⊢ θ ′′ : Θ′′ ⇒ Θ′ such that θ = θ ′′ ◦ θ ′.

Proof. Via induction on the maximum of the sizes of A and B.

1. Case A = a = B: In this case unify(∆,Θ,a,a) succeeds and returns (Θ, ι∆,Θ). Moreover, we may choose θ ′′ = θ and

conclude that ∆ ⊢ θ : Θ ⇒ Θ′
and θ = θ ◦ ι∆,Θ, as desired.

2. Case A = a , B or B = b , A. The two cases where one side is a variable are symmetric; we consider A = a , B.
Since θ (a) = θ (B) for B , a, we must have that a ∈ Θ. Thus, Θ = Θ′

1
,a : K ′

for some kind K ′
such that K ′ ≤ K (due

to assumption ∆,Θ ⊢ A : K). Also, since types are finite syntax trees we must have a , ftv(B) (1). By assumption

∆ ⊢ θ : Θ ⇒ Θ′
, we have θ (a) : K ′

and by θ (a) = θ (B) therefore also ∆,Θ′ ⊢ θ (B) : K ′ (2).
We now define Θ1 = demote(K ′,Θ′

1
,ftv(B) − ∆) and choose θ ′′

to agree with θ on Θ1, and undefined on a, yielding
∆ ⊢ θ ′′

: Θ′
1
⇒ Θ′ (3). By (1) we then have θ ′′(B) = θ (B), making (2) equivalent to ∆,Θ′ ⊢ θ ′′(B) : K ′

. We apply

Lemma G.12, yielding ∆,Θ1 ⊢ B : K ′

Hence unification succeeds in this case with unify(∆,Θ,a,B) = (Θ1, ι[a 7→ B]).
We strengthen (3) to ∆ ⊢ θ ′′ : Θ1 ⇒ Θ′

by observing that for each b ∈ ftv(B)−∆ (i.e., those variables potentially demoted

to K ′
in Θ1), we have ∆,Θ

′ ⊢ θ (b) : K ′
. If K ′ = ⋆we have K ′ = K by K ′ ≤ K and ∆,Θ′ ⊢ θ (b) : K ′

follows immediately.

Otherwise, if K ′ = •, then due to b ∈ ftv(B), θ (b) occurs in θ (B), and θ (b) : ⋆ ≥ K ′
would violate (2).

Clearly, θ ′′ ◦ (ι[a 7→ B]) = (θ ′′ ◦ ι)[a 7→ θ ′′(B)] = θ since θ ′′ agrees with θ on all variables other than a, and a < ftv(B)
as well as θ (a) = θ (B).

3. θ (DA1 . . . An) = θ (D B1 . . . Bn): by definition of substitution we have θ (Ai ) = θ (Bi ), where i ∈ 1, . . . ,n and n ≥ 0. We

perform a nested induction, showing that for all 0 ≤ j ≤ n + 1 the following holds: We have ∆ ⊢ θ j : Θ ⇒ Θj (4) and
there exists θ ′′

j such that ∆ ⊢ θ ′′
j : Θn ⇒ Θ′

and θ ′′j ◦ θ j = θ (5) as well as for all 1 ≤ i < j unification of θi (Ai ) and θi (Bi )
succeeds.

a. j = 0: unification succeeds with θ ′ = θ1 = ι and the theorem holds for θ ′′ = θ and Θ′′ = Θ.
b. j ≥ 1: We use (5) to obtain θ ′′j (θ j (Aj )) = θ (A) (6) and θ ′′j (θ j (Bj )) = θ (B) (7).

We then have

(Θj+1,θ
′
j+1) = unify(∆,Θj ,θ j (Aj ),θ j (Bj ))

and θ j+1 = θ
′
j+1 ◦ θ j (by definition of unify).
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By (4), (6) and (7) the outer induction shows that unification of θ j (Aj ) and θ j (Bj ) succeeds and there exists ∆ ⊢ θ ′′ :
Θj+1 ⇒ Θ′

such that θ ′′ ◦ θ ′j+1 = θ
′′
j (8). By Theorem 4, we have ∆ ⊢ θ ′

j+1 : Θj ⇒ Θj+1 and hence by composition also

∆ ⊢ θ j+1 : Θ ⇒ Θj+1. Further, by (5) and (8), we have

(θ ′′ ◦ θ ′j+1) ◦ θ j = θ
′′
j ◦ θ j = θ

Choosing θ ′′j+1 = θ
′′
then satisfies θ ′′

j+1 ◦ θ j+1 = θ and ∆ ⊢ θ ′′
j+1 : Θj+1 ⇒ Θ′

.

4. θ (∀a.A) = θ (∀b .B): we take fresh c < ftv(θ ,A,B). By Lemma G.2 and definition of substitution we have θ (A[c/a]) =
θ (B[c/b]). By induction unify((∆, c),Θ,A[c/a],B[c/b]) succeeds with (Θ1,θ

′) and there exist θ ′′
such that θ = θ ′′ ◦ θ ′ (9)

and ∆, c ⊢ θ ′′ : Θ1 ⇒ Θ′ (10). The latter implies c < ∆,Θ′
. By (9) and c < ftv(θ ) we have c < ftv(θ ′).

This means that unify(∆,Θ,∀a.A,∀b .B) succeeds with (Θ1,θ
′)

We strengthen (10) to ∆ ⊢ θ ′′ : Θ1 ⇒ Θ′
by showing that c < ftv(θ ′′). Hence, assume e ∈ Θ such that c ∈ ftv(θ ′′(e)). By

Lemma H.1, there exists f ∈ Θ such that e ∈ ftv(θ ′(f )). This would imply c ∈ ftv(θ ′′(θ ′(e)), which by (9) contradicts

∆ ⊢ θ : Θ ⇒ Θ′
and c < ∆,Θ′

.

□

I Correctness of type inference proofs
This section contains proofs of correctness of the type inference algorithm. Observe that the proofs are mutually recursive in a

well-founded way:

• The proofs in appendix I.1 are not mutually recursive among themselves. However, they use Theorems 6 and 7.

• The proof of Theorem 6 in appendix I.2 uses the lemmas from appendix I.1 only on subterms.

• Likewise, the proof of Theorem 7 in appendix I.3 uses Theorem 6 and the lemmas from appendix I.1 only on subterms.

I.1 Principality
In this subsection we collect together proofs of properties related to principality.

Lemma I.1 (Inferred types are principal). If infer(∆,Θ, Γ,M) = (Θ′,θ ,A) and ∆ ⊩ M and ∆,Θ ⊢ Γ then principal((∆,Θ′ −

∆′),θΓ,∆′,A) holds, where ∆′ = ftv(A) − ∆ − ftv(θ ).

Proof. By Theorem 6 we have ∆ ⊢ θ : Θ ⇒ Θ′ (1) and ∆,Θ′
;θ (Γ) ⊢ M : A (2). The latter implies ∆,Θ′ ⊢ A and hence ∆′ ⊆ Θ′

.

We can therefore rewrite (2) as ∆, (Θ′ − ∆′),∆′
;θ (Γ) ⊢ M : A, satisfying the first condition of principal((∆,Θ′ − ∆′),θΓ,∆′,A).

By definition of ∆′
, we have ∆′

# ftv(θ ). We can therefore strengthen (1) to ∆ ⊢ θ : Θ ⇒ Θ′ − ∆′ (3)
Let ∆p ,Ap such that ∆p = ftv(Ap ) − (∆,Θ′ − ∆′) and ∆, (Θ′ − ∆′),∆p ⊢ M : Ap (4). The latter implies ∆p # ∆,Θ′ − ∆′

and

we can weaken (3) to ∆ ⊢ θ : Θ ⇒ (Θ′ − ∆′),∆p (5).
Hence, we can apply Theorem 7, to (4) and (5), stating that there exists θ ′′ s.t. ∆ ⊢ θ ′′ : Θ′ ⇒ (Θ′ − ∆′),∆p and θ ′′(A) = Ap

and θ = θ ′′ ◦ θ .
The latter implies that for all a ∈ ftv(θ ), θ ′′(a) = a must hold. Hence, by defining δ as a restriction of θ ′′ such that

δ (a) = θ ′′(a) for all a ∈ ftv(A) − ∆ − ftv(θ ) (i.e., ∆′
), we get ∆ ⊢ δ : ∆′ ⇒⋆ (Θ′ − ∆′),∆p and maintain δ (A) = Ap . We rewrite

the former to ∆, (Θ′ − ∆′) ⊢ δ : ∆′ ⇒⋆ ∆p , obtaining an instantiation as required by the definition of principal. □

Lemma I.2 (Inferred types and principal types are isomorphic). Let the following conditions hold:

∆,Θ ⊢ Γ (1)
∆ ⊩ M (2)
∆′

# Θ′ (3)
principal((∆,Θ), Γ,M,∆′,A) (4)
infer(∆,Θ, Γ,M) = (Θ′,θ ,A′) (5)
∆′′ = ftv(A′) − ∆ − ftv(θ ) (6)

Then there exists δ such that ∆, (ftv(θ ) − ∆) ⊢ δ : ∆′′ ⇒• ∆
′ and δ (∆′′) = ∆′ and δ (A′) = θ (A).

Proof. By definition of principal we have ∆,Θ,∆′
; Γ ⊢ M : A (7) and ∆′ = ftv(A) − ∆,Θ.

Applying Theorem 6 to (5), we get ∆ ⊢ Θ ⇒ Θ′
and ∆,Θ′

;θ (Γ) ⊢ M : A′ (8).
We have ∆ ⊢ ι∆,Θ : Θ ⇒ Θ and therefore by ∆′

#Θ and weakening also ∆ ⊢ ι∆,Θ : Θ ⇒ Θ,∆′ (9). Trivially, we can rewrite

(7) and (4) as ∆,Θ,∆′
; ι∆,Θ(Γ) ⊢ M : A (10) and principal((∆,Θ), ι∆,Θ(Γ),M,∆′,A) (11), respectively. We can apply Theorem 7,

using (2), (9) and (10), which yields existence of θ ′′ such that ∆ ⊢ θ ′′ : Θ′ ⇒ Θ,∆′
and ι∆,Θ = θ

′′ ◦ θ (12) and θ ′′(A′) = A (13).
The latter implies that θ ′′ maps the type variables from ∆′′

surjectively into ∆′ (14).
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Let Θθ = ftv(θ ). By (12), we then have ∆′
# Θθ and θ is a bijection from Θ to Θθ . Conversely, the restriction of θ ′′ to Θθ is a

bijection from Θθ to Θ.
We can therefore apply Lemma G.16(2) and obtain principal((∆,Θθ ),θ (Γ),M,∆

′,θ (A)) (15).
By Lemma G.15 and ∆,Θθ ⊢ θ (Γ) as well as ∆,Θθ ,∆

′′ ⊆ ftv(A′), we can strengthen (8) to ∆,Θθ ,∆
′′
;θ (Γ) ⊢ M : A′ (16).

We have ftv(θ (A)) − (∆,Θθ ) = ∆′ = ftv(A) − (∆,Θ). By definition of principal, (15) and (16) imposes that there exists δI such
that ∆,Θθ ⊢ δI : ∆

′ ⇒• ∆
′′
and δI (θ (A)) = A′

.

Using (13), we rewrite the latter to

δI (θ (θ
′′(A′)) = A′ (17)

This implies that θ ′′ maps ∆′′
not only surjectively (cf. (14)), but bijectively into ∆′

. By (13) we further have θ ′′(∆′′) = ∆′
(i.e.,

the order of variables is preserved).

Since θ is the identity on ∆′
, δI must be the inverse of θ ′′ on ∆′

. Hence, we define δ such that δ (a) = θ ′′(a) for all a ∈ ∆′′
,

yielding ∆,Θθ ⊢ δ : ∆′′ ⇒• ∆
′
. As the inverse of δI , applying δ to both sides of (17) yields θ (θ ′′(A′)) = θ (A) = δ (A′), which is

the desired property.

□

Lemma I.3 (Stability of principality under substitution). Let the following conditions hold:

∆,Θ ⊢ Γ (1)
∆′

# Θ′ (2)
∆ ⊩ M (3)
∆ ⊢ θ : Θ ⇒ Θ′ (4)
principal((∆,Θ), Γ,M,∆′,A) (5)

Then principal((∆,Θ′),θΓ,M,∆′,θA) holds.

Proof. By definition of principal, we have ∆,∆′,Θ; Γ ⊢ M : A and ∆′ = ftv(A) − ∆,Θ (6).
By (2), we can weaken (4) to ∆,∆′ ⊢ Θ ⇒ Θ′

. Together with the latter, we can then apply LemmaG.5 and obtain ∆,∆′,Θ′ ⊢ θA.
Let ∆′′ = ftv(θA) − ∆,Θ′

. By (2), (4) and (6), Lemma G.14 yields ∆′ = ∆′′ (7).
Let Ap and ∆p such that ∆p = ftv(Ap ) − ∆,Θ′

and ∆,Θ′,∆p ;θΓ ⊢ M : Ap (8). Our goal is to show that there exists δ such

that ∆,Θ′ ⊢ δ : ∆′′ ⇒ ∆p and δ (θA) = Ap .

We weaken (4) to ∆ ⊢ θ : Θ ⇒ Θ′,∆p . We can then apply Theorem 7 to (8), which states that infer(∆,Θ, Γ,M) returns

(Θ′′,θ ′,A′) (9) and there exists θ ′′ such that

∆ ⊢ θ ′′ : Θ′′ ⇒ Θ′,∆p (10)
θ = θ ′′ ◦ θ ′ (11)
θ ′′(A′) = Ap (12)

By definition of infer, all type variables in Θ′′
but not in Θ are fresh, which implies ∆′

# Θ′′ (13).
By Theorem 6, we have ∆ ⊢ θ ′ : Θ ⇒ Θ′′ (14) and ∆,Θ′′ ⊢ A′ (15).
We split ∆p into a (possibly empty) part that is contained in ∆′

and a remaining part that is not. Concretely, let ∆′
p ,∆

′′
p such

that ∆p ≈ (∆′
p ,∆

′′
p ) and ∆′

p ⊆ ∆′
and ∆′′

p # ∆′
. We weaken (14), (10), and (4), respectively:

∆,∆′ ⊢ θ ′
: Θ ⇒ Θ′′ (16)

∆,∆′ ⊢ θ ′′
: Θ′′ ⇒ Θ′,∆′′

p (17)
∆,∆′ ⊢ θ : Θ ⇒ Θ′,∆′′

p (18)

Let ∆′′′ B ftv(A′) − ∆ − ftv(θ ′) (19), which implies ∆′′′ ⊆ Θ′′ (20) (using (14) and (15)). Further, let Θθ ′ = ftv(θ ′) − ∆.
By (1), (3), (5), (9), (13) and (19), Lemma I.2 yields existence of δb such that ∆,Θθ ′ ⊢ δb : ∆′′′ ⇒• ∆

′ (21) and δb (∆′′′) = ∆′

(22) and δb (A′) = θ ′A (23).
Let ∆′ = (a1, . . . ,an) and ∆′′′ = (b1, . . . ,bn). Let δ be defined such that for all 1 ≤ i ≤ n, δ (ai ) = θ

′′(bi ). By (7), (10) and (20)

this yields ∆,Θ′ ⊢ δ : ∆′′ ⇒⋆ ∆p .

Next, we show δθ ′′δb (A
′) = θ ′′(A′) (24): To this end, we show that for each a ∈ ftv(A′) we have δθ ′′δb (a) = θ

′′(a). By the

definition of ∆′′′
(cf. (19)) and (15), we have ftv(A′) ⊆ ∆,∆′′′,Θθ ′ .

We consider three cases:

Case 1 a = bi ∈ ∆′′′: We have δb (bi ) = ai by (22). By ai ∈ ∆′
and (17) we have θ ′′(ai ) = θ ′′(δb (bi )) = ai . By definition of δ ,

we have δ (ai ) = δ (θ ′′(δb (bi ))) = θ
′′(bi ).
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Case 2 a ∈ Θθ ′ : We have a < ∆′′′
and therefore δb (a) = a by (21). By (14), we have Θθ ′ ⊆ Θ′′

. Applying Lemma G.17 to (4)

and (11) yields θ ′′(a) = θ ′′(δb (a)) = A for some A with ∆,Θ′ ⊢ A. By ∆′′ = ∆′
# ∆,Θ′

we then have δ (A) = A. In total,

this yields δθ ′′δb (a) = θ
′′(δb (a)) = θ

′′(a).
Case 3 a ∈ ∆: We have δ (a) = a, δb (a) = a and θ ′′(a) = a. This immediately yields δθ ′′δb (a) = θ

′′(a) = a.

Finally, we show δ (θA) = Ap :

δθ (A)
= δθ ′′θ ′(A) (by (11) and (16) to (18))

= δθ ′′δb (A
′) (by (23))

= θ ′′(A′) (by (24))

= Ap (by (12))

□

Lemma I.4. If ∆ ⊩ M and ∆ ⊢ θ : Θ ⇒ Θ′ and ∆,Θ; Γ ⊢ M : A, then ∆,Θ′
;θΓ ⊢ M : θA.

Proof. By induction on structure ofM . In each case we apply inversion on derivations of ∆,Θ; Γ ⊢ M : A and ∆ ⊩ M and start

by showing the final steps in each derivation, then describe how to construct the needed conclusion.

• CaseM = ⌈x⌉. In this case we have derivations of the form:

x : A ∈ Γ

∆,Θ; Γ ⊢ ⌈x⌉ : A ∆ ⊩ ⌈x⌉

Then we have x : θ (A) ∈ θ (Γ), and may conclude

x : θ (A) ∈ θ (Γ)

∆,Θ′
;θ (Γ) ⊢ ⌈x⌉ : θ (A)

• CaseM = x . In this case, we have derivations of the form:

x : ∀∆′.H ∈ Γ ∆,Θ ⊢ δ : ∆′ ⇒⋆ ·

∆,Θ; Γ ⊢ x : δ (H ) ∆ ⊩ x

As before, we have x : θ (∀∆′.H ) ∈ θ (Γ). Moreover, we can assume without loss of generality that the type variables in

∆′
are fresh, so θ (∀∆′.H ) = ∀∆′.θ (H ). Since ∆,Θ ⊢ Γ, we know that ∀a ∈ ftv(A).(∆,Θ)(a) = •. Hence, for each such a,

the substituted type θ (a) is a monotype, which implies that θ (H ) is also a guarded type. Next, by Lemma G.7 we have

∆,Θ′ ⊢ θ ◦ δ : ∆′ ⇒⋆ ·. We may conclude:

x : ∀∆′.θ (H ) ∈ θ (Γ) ∆,Θ′ ⊢ θ ◦ δ : ∆′ ⇒⋆ ·

∆,Θ′
;θ (Γ) ⊢ x : θ (δ (H ))

Note that in this case it is critical that we maintain the invariant (built into the context well-formedness judgement)

that type variables in Γ are always of kind •. This precludes substituting a type variable a = H with a ∀-type, thereby
changing the outer quantifier structure of ∀∆′.H .

• CaseM = λx .M0. In this case we have derivations of the form:

∆,Θ; Γ,x : S ⊢ M0 : B

∆,Θ; Γ ⊢ λx .M0 : S → B

∆ ⊩ M0

∆ ⊩ λx .M0

By induction, we have that ∆,Θ′
;θ (Γ,a : S) ⊢ M0 : θB. Moreover, clearly θ (Γ,a : S) = θ (Γ),a : θ (S). Since S is a monotype,

and θ is a well-kinded substitution, and ∆,Θ ⊩ Γ,x : S , all of the free type variables in S are of kind • and are replaced

with monotypes. Hence θ (S) is also a monotype, so we may derive:

∆,Θ′
;θ (Γ),x : θ (S) ⊢ M0 : θ (B)

∆,Θ′
;θ (Γ) ⊢ λx .M0 : θ (S) → θ (B)

since θ (S → B) = θ (S) → θ (B).
• CaseM = λ(x : A0).M0:

∆,Θ; Γ,x : A0 ⊢ M0 : B0

∆,Θ; Γ ⊢ λ(x : A0).M0 : A0 → B0

∆ ⊢ A0 : ⋆ ∆ ⊩ M0

∆ ⊩ λ(x : A0).M0
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By induction, we have that ∆,Θ′
;θ (Γ,x : A0) ⊢ M0 : θ (B0), and again θ (Γ,x : A0) = θ (Γ),x : θ (A0). Moreover, since

∆ ⊢ A0 : ⋆, we know that ftv(A0) ⊆ ∆. Since the only variables substituted by θ are those in Θ, which is disjoint from ∆,
we know that θ (A0) = A0. Thus, we can proceed as follows:

∆,Θ′
;θ (Γ),x : A0 ⊢ M0 : θ (B0)

∆,Θ′
;θ (Γ) ⊢ λ(x : A0).M0 : A0 → θ (B0)

observing that θ (A0 → B0) = θ (A0) → θ (B0) = A0 → θ (B0), as required. This case illustrates part of the need for the

∆ ⊩ M0 judgement: to ensure that the free type variables in terms are always treated rigidly and never “captured” by

substitutions during unification or type inference.

• CaseM = M0 N0. In this case we proceed (refreshingly straightforwardly) by induction as follows.

∆,Θ; Γ ⊢ M0 : A0 → B0 ∆,Θ; Γ ⊢ N0 : A0

∆,Θ; Γ ⊢ M0 N0 : B0

∆ ⊩ M0 ∆ ⊩ N0

∆ ⊩ M0 N0

By induction, we obtain the necessary hypotheses for the desired derivation:

∆,Θ′
;θ (Γ) ⊢ M0 : θ (A0) → θ (B0) ∆,Θ′

;θ (Γ) ⊢ N0 : θ (A0)

∆,Θ;θ (Γ) ⊢ M0 N0 : θ (B0)

again observing that θ (A0 → B0) = θ (A0) → θ (B0).

• CaseM = let x = M0 in N0. In this case we have derivations of the form:

(∆′,∆′′) = gen((∆,Θ),A′,M0)

∆,Θ,∆′′
; Γ ⊢ M0 : A

′ ((∆,Θ),∆′′,M0,A
′) ⇕ A0 ∆,Θ; Γ,x : A0 ⊢ N0 : B principal((∆,Θ), Γ,M0,∆

′′,A′)

∆,Θ; Γ ⊢ let x = M0 in N0 : B

∆ ⊩ M0 ∆ ⊩ N0

∆ ⊩ let x = M0 in N0

We assume without loss of generality that ∆′′
is fresh with respect to ∆, Θ, and Θ′

. This is justified as we may otherwise

apply a substitution θF to ∆,Θ,∆′′
; Γ ⊢ M0 : A

′
that replaces all variables in ∆′′

by pairwise fresh ones. By induction,

this would yield a corresponding typing judgement forM0 using those fresh variables.

To apply the induction hypothesis toM0, we need to extend θ to a substitution θ ′ satisfying ∆ ⊢ θ ′
: Θ,∆′′ ⇒ Θ′,∆′′

,

which is the identity on all variables in ∆′′
. Then by induction we have ∆,Θ′,∆′′

;θ ′(Γ) ⊢ M0 : θ
′(A′). Since θ ′ acts as the

identity on ∆′′
its behaviour is the same as θ weakened to ∆,∆′′ ⊢ θ : Θ ⇒ Θ′

, so we have ∆,Θ′,∆′′
;θ (Γ) ⊢ M0 : θ (A

′).

We also obtain by the induction hypothesis for N0 that ∆,Θ
′
;θ (Γ),x : θ (A0) ⊢ N0 : θ (B), since θ (Γ,x : A0) = θ (Γ),x :

θ (A0). By Lemma G.14(1), we have that (∆′,∆′′) = gen((∆,Θ′),θ (A′),M0) and by Lemma G.14(2), we also know that

((∆,Θ′),∆′′,M0,θ (A
′)) ⇕ θ (A0). By applying Lemma I.3 to principal((∆,Θ), Γ,M0,∆

′′,A′)we obtain principal((∆,Θ′),θ (Γ),M0,∆
′′,θ (A′)).

We can conclude:

(∆′,∆′′) = gen((∆,Θ′),θ (A′),M0) ∆,Θ′,∆′′
;θ (Γ) ⊢ M0 : θ (A

′)

((∆,Θ′),∆′′,M0,θ (A
′)) ⇕ θ (A0) ∆,Θ′

;θ (Γ),x : θ (A0) ⊢ N : θ (B) principal((∆,Θ′),θ (Γ),M0,∆
′′,θ (A′))

∆,Θ′
;θ (Γ) ⊢ let x = M0 in N0 : θ (B)

• CaseM = let (x : A0) = M0 in N0. In this case we have derivations of the form:

(∆′,A′) = split(A0,M0) ∆,Θ,∆′
; Γ ⊢ M0 : A

′ A0 = ∀∆′.A′ ∆,Θ; Γ,x : A0 ⊢ N0 : B

∆,Θ; Γ ⊢ let (x : A0) = M0 in N0 : B

∆ ⊢ A0 : ⋆ (∆′,A′) = split(A0,M0) ∆,∆′ ⊩ M0 ∆ ⊩ N0

∆ ⊩ let (x : A0) = M0 in N0

We have A0 = ∀∆′.A′
and ∆′

# ∆. According to ∆,∆′ ⊩ M0, annotations in M0 may use type variables from ∆,∆′
. By

alpha-equivalence, we can assume ∆′
# Θ and ∆′

# Θ′
. Note that this may require freshening variables from ∆′

(but not

∆) inM0 as well.

By induction (and rearranging contexts), we have that ∆,Θ′,∆′
;θ (Γ) ⊢ M0 : θ (A

′) and ∆,Θ′
;θ (Γ,x : A0) ⊢ N0 : θ (B).
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Moreover, since ∆ ⊢ A0 : ⋆, we know that θ (A0) = A0 since θ only replaces variables in Θ, which is disjoint from ∆.
Furthermore, (∆′,A′) = split(A0,M0) implies that A′

is a subterm of A0 so θ (A
′) = A′

also. As a result, we can construct

the following derivation:

(∆′,A′) = split(A0,M0) ∆,Θ′,∆′
;θ (Γ) ⊢ M0 : A

′ A0 = ∀∆′.A′ ∆,Θ′
;θ (Γ),x : A0 ⊢ N0 : θ (B)

∆,Θ′
;θ (Γ) ⊢ let (x : A0) = M0 in N0 : θ (B)

□

Lemma I.5. Let ∆′ = (a1, . . . ,an) and ∆′′ = (b1, . . . ,bn) for some n ≥ 0. Let ∆,Θ ⊢ δ : ∆′ ⇒ ∆′′ such that δ (ai ) = bi for all
1 ≤ i ≤ n. Furthermore, let ∆ ⊩ M and principal((∆,Θ), Γ,M,∆′,A) and ∆,Θ ⊢ Γ.

Then principal((∆,Θ), Γ,M,∆′′,δA) holds.

Proof. We first show that ∆,Θ,∆′′
; Γ ⊢ M : δA holds. By principal((∆,Θ), Γ,M,∆′,A) we have ∆,Θ,∆′

; Γ ⊢ M : A. We extend δ
to a substitution θ with ∆ ⊢ θ : Θ,∆′ ⇒ Θ,∆′′

by defining θ (a) = δ (a) for all a ∈ ∆′
and by defining θ as the identity on all

a ∈ Θ.
We apply Lemma G.16(1), yielding ∆,Θ,∆′′

;θ (Γ) ⊢ M : θA. We have θ (Γ) = Γ as well as θ (A) = δ (A) and obtain the desired

judgement.

Now, let ∆p and Ap such that ftv(Ap ) − ∆,Θ = ∆p and ∆,Θ,∆p ; Γ ⊢ M : Ap . By principal((∆,Θ), Γ,M,∆′,A) we have that
there exists an instantiation δp s.t. ∆,Θ ⊢ δp : ∆′ ⇒• ∆p and δp (A) = Ap .

We need to show that then there also exists an instantiation δ ′
p with ∆,Θ ⊢ δ ′

p : ∆′′ ⇒• ∆p and δ ′
p (δA) = Ap . We observe

that this holds for δ ′
p = δp ◦ δ

−1
, where δ−1 is the inverse of δ . □

Lemma I.6. Let the following conditions hold:

∆ ⊩ M (1)
θ = θ ′′ ◦ θ ′ (2)
∆ ⊢ θ : Θ ⇒ Θ′ (3)
∆ ⊢ θ ′′ : Θ′′ ⇒ Θ′,∆′′ (4)
∆′ = ftv(A) − ∆ − ftv(θ ′) (5)
∆,Θ′′

;θ ′Γ ⊢ M : A (6)
principal((∆,Θ′),θΓ,∆′′,A′) (7)
θ ′′(A) = A′ (8)

(9)

Then θ ′′(∆′) = ∆′′ holds.

Proof. By (7), we have ∆′′ = ftv(A′) − Θ′ − ∆. Further, (6) yields ∆,Θ′′ ⊢ A (10).
Let ∆′ = (a′

1
, . . . ,a′n) for some n ≥ 0 and let ∆F = (f1, . . . , fn) for pairwise different, fresh type variables fi .

By (10), we have ftv(A) ⊆ ∆,Θ′′
. Let Θθ ′ be defined as ftv(θ ′) − ∆. We then have Θθ ′ ⊆ Θ′′ (11) and ∆′

# Θθ ′ (12) and
∆′ ⊆ ftv(Θ′′) (13).
By (2) to (4) we have ∆,Θ′ ⊢ θ ′′(a) : K for all (a : K) ∈ Θθ ′ (14).
Let θ ′′F be defined such that

θ ′′F (a) =


θ ′′(a) if a ∈ Θθ ′

fi if a = a′i ∈ ∆′

AD if a ∈ Θ′′ − Θθ ′ − ∆′

(15)

where AD is some arbitrary type with ∆,Θ′ ⊢ AD : • (e.g., Int, cf. fig. 1).
By (11) to (13), this definition is well-formed. Together with (14) we then have ∆ ⊢ θ ′′

F : Θ′′ ⇒ Θ′,∆F (16) and θ = θ ′′F ◦θ
′ (17).

By (10) and Lemma G.5, we then have ∆,Θ′,∆F ⊢ θ ′′F A which implies ftv(θ ′′F A) ⊆ ∆F ,∆,Θ
′
. In general, for every a ∈ ftv(A),

θ ′′
F (a) is part of θ

′′
F (A). In particular, for each a′i ∈ ∆′ ⊆ ftv(A), θ ′′F (a

′
i ) = fi occurs in θ ′′F (A). Thus, ftv(θ

′′
F A) − ∆,Θ′ = ∆F

holds (18).
By (1), (6) and (16), Lemma I.4 yields ∆,Θ′,ΘF ;θ

′′
F θ

′Γ ⊢ M : θ ′′F (A), which by (17) is equivalent to ∆,Θ′,∆F ;θΓ ⊢ M :

θ ′′
F (A) (19). By definition of principal as well as (7), (18) and (19) there exists δ such that ∆,Θ′ ⊢ δ : ∆′′ ⇒ ∆F (20) and

δ (A′) = θ ′′F (A).
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By (8), the latter is equivalent to δ (θ ′′(A)) = θ ′′
F (A) (21)

Let a ∈ ∆′ ⊆ ftv(A), which implies a = a′i for some 1 ≤ i ≤ n. By (21), we have

δθ ′′(ai ) = θ ′′
F (ai )

equiv. δθ ′′(ai ) = fi (by (15))

We therefore have that for each such a′i , θ
′′(ai ) maps to pairwise different type variables bi . By (20) and ∆,Θ′,∆′′

# ∆F , we

have δ (bi ) , bi and therefore bi ∈ ∆′′
. We have therefore shown that θ ′′ maps ∆′

injectively into ∆′′ (22).
We now show that θ ′′ is also surjective from ∆′

into ∆′′
, which means that θ ′′(∆′) is a permutation of ∆′′

. To this end,

assume that there exists b ∈ ∆′′
such that there exists no a ∈ ∆′

with θ ′′(a) = b. By b ∈ ∆′′ ⊆ ftv(A′) and (8) we have that there

must exist a ∈ ftv(A) such that b ∈ ftv(θ ′′(a)). By (22), a ∈ ∆′
would immediately yield a contradiction. By ftv(A) ⊆ Θθ ′,∆′,∆,

we therefore consider the cases a ∈ Θθ ′ and a ∈ ∆. If a ∈ Θθ ′ , according to (14), we then have ftv(θ ′′(a)) ⊆ ∆,Θ′
, which is

disjoint from ∆′′
. If a ∈ ∆, we have θ ′′(a) = a < ∆′′

. As all choices for a yield contradictions, we have shown that θ ′′(∆′) is a

permutation of ∆′′

We now show that θ ′′(∆′) = ∆′′
holds (i.e., θ ′′ preserves the order of type variables). To this end, let a ∈ ftv(A) − ∆′

, which

implies a ∈ ∆,Θθ ′ . If a ∈ ∆, then θ ′′(a) = a ∈ ∆ # ∆′′
. If a ∈ Θθ ′ then by (14) we have ftv(θ ′′(a)) ⊆ ∆,Θ′

#∆′′
. Therefore,

together with (8) for all a′i ,a
′
j ∈ ∆′

with 1 ≤ i < j ≤ n, we have that the first occurrence of θ ′′(a′i ) in A′
is located before the

first occurrence of θ ′′(a′j ) in A′
.

□

I.2 Soundness of type inference
Lemma I.7. If ∆ ⊩ M and (Θ′,θ ,A) = infer(∆,Θ, Γ,M) then for all a ∈ (Θ − ftv(Γ)) we have θ (a) = a and a < ftv(A).

Proof. Straightforward by induction on the structure ofM , in each case checking that a successful evaluation of type inference

only instantiates free variables present in Γ. Furthermore, each type variable in A is either fresh or results from using a type in

θ (Γ). □

Theorem 6. If ∆,Θ ⊢ Γ and ∆ ⊩ M0 and infer(∆,Θ, Γ,M0) = (Θ′,θ ,A0) then ∆,Θ′
;θ (Γ) ⊢ M0 : A0 and ∆ ⊢ θ : Θ ⇒ Θ′.

Proof. By induction on structure ofM0. In each case, we have ∆,Θ ⊢ Γ (1), ∆ ⊩ M0 (2), and infer(∆,Θ, Γ,M0) = (Θ′,θ ,A0). For

each case, we show:

I. ∆,Θ′
;θΓ ⊢ M0 : A0

II. ∆ ⊢ θ : Θ ⇒ Θ′

We write (I ) and (I I ) to indicate that we have shown the respective statement.

Case ⌈x⌉: By definition of infer, we have A0 = Γ(x), Θ′ = Θ, and θ = ι∆,Θ, which implies ∆ ⊢ θ : Θ ⇒ Θ′
(II) and ∆,Θ′ ⊢ Γ.

We can then derive:

x : A0 ∈ Γ

∆,Θ′
; Γ ⊢ ⌈x⌉ : A0 (I )

Freeze

Case x : By definition of infer, we have (x : ∀a.H ) ∈ Γ and b #∆,Θ and A0 = H [b/a] as well as Θ′ = Θ,b : ⋆. Due to

α-equivalence, we can assume a #b,∆,Θ.

Let δ = [b/a]. We have ∆,Θ,b ⊢ δ (a) : ⋆ for all a ∈ a and therefore ∆,Θ,b ⊢ δ : (a : •) ⇒⋆ ·. By (1) and b # ∆,Θ, we

have ∆,Θ,b : ⋆ ⊢ Γ and derive the following:

x : ∀a.H ∈ Γ ∆,Θ,b ⊢ δ : (a : •) ⇒⋆ ·

∆,Θ,b : ⋆ ⊢ x : δ (H ) (I )
Var

We weaken ∆ ⊢ ι∆,Θ : Θ ⇒ Θ to ∆ ⊢ ι∆,Θ : Θ ⇒ Θ,b : ⋆ (II).

Case λx .M : By definition of infer, we have a #∆,Θ, which implies a #ftv(Γ) (3). Let θ1 = θ [a → S] (4).
Together with (1) we then have ∆,Θ,a : • ⊢ Γ,x : a. By induction, we further have

∆,Θ1;θ1(Γ,x : a) ⊢ M : B

equiv. ∆,Θ1;θΓ,x : S ⊢ M : B (by (3), (4)) (5)

as well as ∆ ⊢ θ1 : (Θ,a : •) ⇒ Θ1, which implies ∆ ⊢ θ : Θ ⇒ Θ1 (II).

By (5) we have ∆,Θ1 ⊢ θΓ, which allows us to derive the following:
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∆,Θ1;θΓ,x : S ⊢ M : B (by (5))

∆,Θ1;θΓ ⊢ λx .M : S → B (I )
Lam

Case λ(x : A).M : By ∆ ⊩ M0 we have ∆ ⊢ A (6), and in particular all free type variables of A in the judgement ∆,Θ ⊢ A are

monomorphic. Together with (1) this yields ∆,Θ ⊢ Γ,x : A. Induction then yields ∆,Θ1;θ (Γ,x : A) ⊢ M : B (7) and
∆ ⊢ θ : Θ ⇒ Θ1 (II).

According to (6) and the latter we further have θ (A) = A (8). By (7) we have ∆,Θ1 ⊢ θΓ and can derive the following:

∆,Θ1;θΓ,x : A ⊢ M : B (by (7), (8))

∆,Θ1;θΓ ⊢ λ(x : A).M : A → B (I )
Lam-Ascribe

CaseM N : By definition of infer, we have:

(Θ1,θ1,A
′) = infer(∆,Θ, Γ,M) (9)

(Θ2,θ2,A) = infer(∆,Θ1,θ1Γ,N ) (10)

By induction, (9) yields ∆,Θ1;θ1Γ ⊢ M : A′ (11) and ∆ ⊢ θ1 : Θ ⇒ Θ1 (12).
By (11) we have ∆,Θ1 ⊢ θ1Γ. Therefore, by induction, (10) yields ∆,Θ2;θ2θ1Γ ⊢ N : A (13) and ∆ ⊢ θ2 : Θ1 ⇒ Θ2 (14). By
definition of infer, we have:

b #ftv(A′) b #ftv(A) b #Θ (15)
(Θ3,θ

′
3
) = unify(∆, (Θ2,b : ⋆),θ2A

′,A → b) (16)
θ ′
3
= θ3[b → B] (17)

By (11) we have ∆,Θ1 ⊢ A′
and by (14) further ∆,Θ2 ⊢ θ2A

′
. This implies ∆,Θ2,b : ⋆ ⊢ θ2A

′
by (15). By (13) we have

∆,Θ2 ⊢ A and therefore also ∆,Θ2,b : ⋆ ⊢ A → b. Together, those properties allow us to apply Theorem 4, which gives

us:

θ ′
3
θ2(A

′) = θ ′
3
(A → b)

implies θ3θ2(A
′) = θ3(A) → B (by (15) and (17)) (18)

and

∆ ⊢ θ ′
3
: (Θ2,b : ⋆) ⇒ Θ3

implies ∆ ⊢ θ3 : Θ2 ⇒ Θ3 (by (17)) (19)

By (14), (19), and composition, we have ∆ ⊢ θ3 ◦ θ2 : Θ1 ⇒ Θ3. By (11) and Lemma I.4, we then have ∆,Θ3;θ3θ2θ1Γ ⊢ M :

θ3θ2A
′ (20). Similarly, by (19), (13), and Lemma I.4, we have ∆,Θ3;θ3θ2θ1Γ ⊢ N : θ3A (21)

By (12), (14), (19), and Lemma G.6, we have ∆ ⊢ θ3θ2θ1Γ. We can then derive:

∆,Θ3;θ3θ2θ1Γ ⊢ M : θ3(A) → B (by (20), (18)) ∆,Θ3;θ3θ2θ1Γ ⊢ N : θ3A (by (21))

∆,Θ3;θ3θ2θ1Γ ⊢ M N : B (I )
App

Finally, we show ∆ ⊢ θ3 ◦ θ2 ◦ θ1 : Θ ⇒ Θ3. It follows from (12), (14), (19), and composition (II).

Case let x = M in N : By definition of infer, we have (Θ1,θ1,A) = infer(∆,Θ, Γ,M) (22). By induction, this implies ∆,Θ1;θ1Γ ⊢

M : A (23) and ∆ ⊢ θ1 : Θ ⇒ Θ1 (24).
By definition of infer we further have

(∆′′,∆′′′) = gen(∆′,A,M)

= gen((∆, (ftv(θ1Θ) − ∆)),A,M)

where ∆′′′ = ftv(A) − (∆, (ftv(θ1) − ∆)) = (ftv(A) − ∆) − ftv(θ1) (25)

By applying Lemma I.1 to (22), we obtain principal((∆,Θ1 − ∆′′′),θ1Γ,∆
′′′,A) (26).

We have ∆′′′ ⊆ Θ1 and can therefore rewrite (23) as ∆,Θ1 − ∆′′′,∆′′′
;θ1Γ ⊢ M : A (27).

Next, define Θ′
1
= demote(•,Θ1,∆

′′′). Again by definition of infer we have (Θ2,θ2,B) = infer(∆,Θ′
1
− ∆′′, (θ1(Γ),x :

∀∆′′.A),N ) (28).
By definition of ∆′′′

, we have ∆′′′
# ftv(θ1) and thus ∆ ⊢ θ1 : Θ ⇒ Θ1 − ∆′′′ (29).

We distinguish betweenM being a generalisable value or not. In each case, we show that there exist ∆′′
G ,∆

′′′
G ,θ

′
2
and A′

such that the following conditions are satisfied:
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θ ′
2
◦ θ1 = θ2 ◦ θ1 (30)

∆ ⊢ θ ′
2
◦ θ1 : Θ ⇒ Θ2 (31)

(∆′′
G ,∆

′′′
G ) = gen((∆,Θ2),θ

′
2
A,M) (32)

∆,Θ2,∆
′′′
G ;θ ′

2
θ1Γ ⊢ M : θ ′

2
A (33)

(∆,Θ2),∆
′′′
G ,M,θ

′
2
A) ⇕ A′ (34)

∆,Θ2; (θ
′
2
θ1Γ,x : A′) ⊢ N : B (35)

principal((∆,Θ2),θ
′
2
θ1Γ,M,∆

′′′
G ,θ

′
2
A) (36)

Sub-CaseM ∈ GVal: By definition of gen, we have ∆′′ = ∆′′′
. We choose ∆′′

G B ∆′′′
and ∆′′′

G B ∆′′′
.

In order to apply the induction hypothesis to (28), we need to show ∆,Θ′
1
−∆′′ ⊢ θ1(Γ),x : ∀∆′′′.A. First, by (1) and (29)

and Lemma G.6, we have ∆,Θ1 − ∆′′ ⊢ θ1(Γ).
Second, by (23) we have ∆,Θ1 ⊢ A and thus ∆,Θ1 − ∆′′′ ⊢ ∀∆′′′.A. It remains to show that for all a ∈ ftv(A) − ∆′′′

we have ∆,Θ1 ⊢ a : •. For a ∈ ∆, this follows immediately. Otherwise, we have a ∈ Θ1 − ∆′′′
and a ∈ ftv(θ1), which

implies that there exists b ∈ Θ such that a ∈ ftv(b). If b ∈ ftv(Γ), then by ∆,Θ ⊢ Γ we have ∆,Θ1 ⊢ θ (b) : •, which
implies ∆,Θ1 ⊢ a : •. Otherwise, if b < ftv(Γ), then by Lemma I.7 we have θ (b) = b = a and a < ftv(A), contradicting
our earlier assumption. By Θ1 − ∆′′ = Θ′

1
− ∆′′

we then have ∆,Θ′
1
− ∆′′ ⊢ θ1(Γ),x : ∀∆′′.A

In summary, we can apply the induction hypothesis by which we then have ∆,Θ2,θ2(θ1(Γ,x : ∀∆′′.A) ⊢ N : B (37)
and ∆ ⊢ θ2 : Θ1 − ∆′′′ ⇒ Θ2 (38). We choose θ ′

2
= θ2 and A

′ = ∀∆′′′.θ ′
2
A, therefore satisfying (30) and (34).

By (29) and (38), condition (31) is also satisfied.

No type variable in ∆′′′
is freely part of the input to infer that resulted in (28). As all newly created variables are fresh,

we then have ∆′′′
# Θ2 (39).

Due to our choice of θ ′
2
we have θ ′

2
(θ1(Γ) = θ2(θ1Γ) and by (38) and (39) also θ2(∀∆′′′.A) = ∀∆′′′.θ ′

2
(A). Therefore, (37)

is equivalent to (35).

By applying Lemma I.3 to (26), (38) and (39) we show that (36) is satisfied.

Recall the following relationships:

ftv(A) ⊆ ∆,Θ1

ftv(θ ) ⊆ ∆,Θ1

∆′′′ = ftv(A) − ∆ − ftv(θ ) ⊆ Θ1

Therefore, ftv(A) − ∆ − ftv(θ ) (i.e., ∆′′′
) is equal to ftv(A) − ∆, (Θ1 − ∆′′′). This results in (∆′′,∆′′′) = gen((∆,Θ1 −

∆′′′),A,M) (40). Together with (38) and ∆′′′
# Θ2 we can then apply Lemma G.14(1) to (40), yielding satisfaction of

(32).

By applying Lemma I.4 to (27) and (38), we obtain (33).

Sub-CaseM < GVal: By definition of gen, we have ∆′′ = ·. Let ∆′′′
have the shape (a1, . . . ,an). We choose ∆′′

G B · and

∆′′′
G B (b1, . . . ,bn) for n pairwise different, fresh type variables bi .

We show that the induction hypothesis is applicable to (28). To this end, we show ∆,Θ′
1
− ∆′′ ⊢ θ1Γ,x : ∀∆′′.A. We

have ∆,Θ1 ⊢ θ1Γ and ∆,Θ1 ⊢ A by (23). It remains to show that for all a ∈ ftv(A) we have (a : •) ∈ ∆,Θ′
1
. If a ∈ ∆′′′

,

then by definition of Θ′
1
we have (a : •) ∈ Θ′

1
. Otherwise, if a ∈ Θ1 − ∆′′′

, we use the same reasoning as in the case

M ∈ GVal.
By induction, we then have ∆,Θ2;θ2(θ1(Γ),x : A) ⊢ N : B (41) and ∆ ⊢ θ2 : Θ

′
1
⇒ Θ2. By Lemma G.10 the latter implies

∆ ⊢ θ2 : Θ1 ⇒ Θ2 (42).
We define θ ′

2
such that

θ ′
2
(c) =

{
bi if c = ai ∈ ∆′′′

θ2(c) if c ∈ Θ1 − ∆′′′

By (42) and the definition of ∆′′′
we then have ∆ ⊢ θ ′

2
: Θ1 ⇒ Θ2,∆

′′′
G (43). Observe that we have θ ′

2
(a) = θ2(a) for all

a ∈ ftv(θ1) − ∆ and therefore (30) as well as (31) are satisfied.

Furthermore, we define θ ′′
2
such that θ ′′

2
(a) = θ2(a) for all a ∈ Θ1 − ∆′′′

, which implies ∆ ⊢ θ ′′
2
: Θ1 − ∆′′′ ⇒ Θ2 (44)

and θ ′′
2
◦ θ1 = θ2 ◦ θ1 (45).

36



FreezeML

We define the instantiation δ such that δ (bi ) = θ2(ai ) for all ai ∈ ∆′′′
. By definition of Θ′

1
and (42) we then have

∆,Θ2 ⊢ δ (bi ) : • for all bi ∈ ∆′′′
G . This implies ∆ ⊢ δ : ∆′′′

G ⇒• Θ2.

We define A′ B δ (θ ′
2
(A)), which is identical to θ2(A). Together with θ2(θ1Γ) = θ ′

2
(θ1Γ), this choice satisfies (34) and

makes (41) equivalent to (35).

We have ftv(θ2A) ⊆ ∆,Θ2 and ∆′′′ ⊆ ftv(A). By θ ′
2
(∆′′′) = ∆′′′

G we have ∆′′′
G ⊆ ftv(θ ′

2
A). Together with ftv(θ ′

2
(a)) =

ftv(θ2(a)) # ∆′′′
G holding for all a ∈ ftv(A) − ∆′′′

, we then have ftv(θ ′
2
A) − ∆,Θ2 = ∆′′′

G . Therefore, we have

gen((∆,Θ2),θ
′
2
A,M) = (·,∆′′′

G ), satisfying (32).

Let δF be defined such that δ (ai ) = bi for all 1 ≤ i ≤ n, which implies ∆,Θ ⊢ δF : ∆′′′ ⇒• ∆
′′′
G and θ ′′

2
δF (A) = θ

′
2
(A) (46)

(by weakening θ ′′
2
such that ∆,∆′′′

G ⊢ θ ′′
2
: Θ1 − ∆′′′ ⇒ Θ2 ) Using Lemma I.5, we then get principal((∆,Θ1 − ∆′′′),θ1Γ,

M,∆′′′
G ,δFA),

We apply Lemma I.3 to this freshened principality statement and (44), which gives us principal((∆,Θ2),θ
′′
2
θ1Γ,M,∆

′′′,
θ ′′
2
δFA).

Using (46), we restate this as principal((∆,Θ2),θ
′′
2
θ1Γ,M,∆

′′′
G ,θ

′
2
A), which by (30) and (45) is equivalent to (36).

By applying Lemma I.4 to (23) and (43), we obtain (33).

We have shown that (30) to (36) hold in each case. We can now derive the following:

(∆′′
G ,∆

′′′
G ) = gen((∆,Θ2),θ

′
2
A,M) (by (32))

∆,Θ2,∆
′′′
G ;θ ′

2
θ1Γ ⊢ M : θ ′

2
A (by (33))

((∆,Θ2),∆
′′′
G ,M,θ

′
2
A) ⇕ A′ (by (34))

∆,Θ2; (θ
′
2
θ1Γ,x : A′) ⊢ N : B (by (35))

principal((∆,Θ2),θ
′
2
θ1Γ,M,∆

′′′
G ,θ

′
2
A) (by (36))

∆,Θ2;θ
′
2
θ1Γ ⊢ let x = M in N : B

Let

By (30) and (31) we have therefore shown (I) and (II).

Case let (x : A) = M in N : Let A = ∀∆′′.H for appropriate ∆′′
and H . By alpha-equivalence, we assume ∆′′

# Θ. According
to (2), we have ∆ ⊢ A (47).
We distinguish between whether of notM is a guarded value. We show that the following conditions hold for the choice

of A′
and ∆′

imposed by (∆′,A′) = split(A,M) (48) in each case.

∆,∆′ ⊢ A′ (49)
ftv(A) # ∆′ (50)
∆′

# Θ (51)

Sub-CaseM ∈ GVal: We have split(A,M) = (∆′′,H ) (i.e, ∆′ = ∆′′
and A′ = H ).

Together with (47) we have ∆,∆′ ⊢ H (satisfying (49)). Assumption ∆′′
# Θ satisfies (51). By A = ∀∆′.A′

we further

have ftv(A) # ∆′
.

Sub-CaseM < GVal: We have split(A,M) = (·,A) (i.e, ∆′ = · and A′ = A). This immediately satisfies (50) and (51). It

further makes (47) equivalent to (49).

Moreover, by (2), we have ∆,∆′ ⊩ M (52) using inversion.

We show that ∆,Θ1,∆
′
;θ1Γ ⊢ M : A1 (53) holds. By (1) and since ∆′

# Θ, we have ∆,∆′,Θ ⊢ Γ. Together with (52), we

then have ∆,∆′,Θ1;θ
′
1
Γ ⊢ M : A1 and ∆,∆′ ⊢ θ1 : Θ ⇒ Θ1 (54) by induction. Further, this indicates ∆′

# Θ1.

By (53) we also have ∆,∆′,Θ1 ⊢ A1. Recall ∆,∆
′ ⊢ A′

and therefore ∆,∆′,Θ1 ⊢ A′
. Thus, by Theorem 4, we have

θ ′
2
(A1) = θ

′
2
(A′) (55) and ∆,∆′ ⊢ θ ′

2
: Θ1 ⇒ Θ2 (56).

According to the assertion, we have ftv(θ ′
2
◦ θ1) #∆

′ (57). By definition of infer, we have θ2 = θ ′
2
◦ θ1 (58), yielding

∆,∆′
: θ2 : Θ ⇒ Θ2, which further implies ∆′

# Θ2(59). By (57), we can strengthen θ2 s.t. ∆ ⊢ θ2 : Θ ⇒ Θ2 (60).
By (52), (53) and (56), and Lemma I.4, we have ∆,∆′,Θ2;θ

′
2
θ1Γ ⊢ M : θ ′

2
A1. By (54), (56) and (58), this is equivalent to

∆,∆′,Θ2;θ2Γ ⊢ M : θ ′
2
A1 (61).

By (49) and (56) we have θ ′
2
(A′) = A′

. Together with (55), this makes (61) equivalent to ∆,∆′,Θ2;θ2Γ ⊢ M : A′ (62).
By definition of infer, we have (Θ3,θ3,B) = infer(∆,Θ2, (θ2Γ,x : A),N ). Due to (2), we have ∆ ⊩ N . By (47) and Θ2 # ∆,
we have ∆,Θ2 ⊢ x : A. Together with (1) and (60) we then have ∆,Θ2 ⊢ (θ2Γ,x : A). Therefore, by induction, we have

∆,Θ3;θ3(θ2Γ,x : A) ⊢ N : B (63) and ∆ ⊢ θ3 : Θ2 ⇒ Θ3 (64).
According to (50) and (59), none of the variables in ∆′

are freely part of the input to infer, yielding ∆′
# Θ3. Together

with (59), we can then weaken (64) to ∆,∆′ ⊢ θ3 : Θ2 ⇒ Θ3. By the latter, (62), (52), and Lemma I.4, we have

∆,Θ3,∆
′
;θ3θ2Γ ⊢ M : θ3A

′ (65).
Using a similar line of reasoning as before, we have θ3(A

′) = A′ (66) and θ3(A) = A (67).
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By (60), (64), and composition, we have ∆ ⊢ θ3 ◦ θ2 : Θ ⇒ Θ3. (II).

Together with (1), we obtain ∆,Θ3 ⊢ θ3θ2Γ and can derive the following:

(∆′,A′) = split(A,M) (by (48))

A = ∀∆′.A′(by (48))

∆,Θ3,∆
′
;θ3θ2Γ ⊢ M : A′ (by (65) and (66))

∆,Θ3;θ3θ2Γ,x : A ⊢ N : B (by (63) and (67))

∆,Θ3;θ3θ2Γ ⊢ let (x : A) = M in N : B (I )
Let-Ascribe

□

I.3 Completeness of type inference
Theorem 7 (Type inference is complete and principal). Let ∆ ⊩ M0 and ∆,Θ ⊢ Γ. If ∆ ⊢ θ0 : Θ ⇒ Θ′ and ∆,Θ′

;θ0(Γ) ⊢ M0 : A0,
then infer(∆,Θ, Γ,M0) = (Θ′′,θ ′,AR ) where there exists θ ′′ satisfying ∆ ⊢ θ ′′

: Θ′′ ⇒ Θ′ such that θ0 = θ ′′ ◦θ ′ and θ ′′(AR ) = A0.

Proof. By induction on the structure of M0. In each case, we assume ∆ ⊩ M0 (1), and ∆,Θ ⊢ Γ (2), and ∆ ⊢ θ0 : Θ ⇒ Θ′ (3),
and ∆,Θ′

;θ0Γ ⊢ M0 : A0 (4), which implies ∆,Θ′ ⊢ θ0Γ (5), and ∆,Θ′ ⊢ A0 (6). For each case, we show:

I. infer(∆,Θ, Γ,M0) = (Θ′′,θ ′,AR )

II. ∆ ⊢ θ ′′
: Θ′′ ⇒ Θ′

III. θ0 = θ
′′ ◦ θ ′

IV. θ ′′(AR ) = A0

We reference the proof obligations above to indicate when we have shown them.

Case ⌈x⌉: By (4) and Freeze, we have (x : A0) ∈ θ0Γ. infer succeeds, and we have Θ′′ = Θ, θ ′ = ι∆,Θ, and AR = Γ(x). The
latter implies A0 = θ0(AR ).

We have ∆ ⊢ θ ′ : Θ ⇒ Θ. Let θ ′′ := θ0. By (3) we then have ∆ ⊢ θ ′′ : Θ ⇒ Θ′
(II). We observe θ0 = θ ′′ = θ ′′ ◦ ι∆,Θ =

θ ′′ ◦ θ ′ (III).
Finally, this yields θ ′′(AR ) = θ0(AR ) = A0 (IV).

Case x : The derivation for (4) must be of the following form:

Var

x : ∀∆′.H ′ ∈ θ0Γ ∆,Θ′ ⊢ δ : ∆′ ⇒⋆ ·

∆,Θ′
;θ0Γ ⊢ x : δ (H ′)

Therefore, there exists x : ∀∆′′.H ∈ Γ such that ∀∆′.H ′ = θ0(∀∆′′.H ). By alpha-equivalence, we assume that ∆′′
is fresh,

yielding θ0(∀∆′′.H ) = ∀∆′′.θ0H . By (2), all free type variables in H are monomorphic, meaning that θ0H cannot have

toplevel quantifiers. Thus, the quantifier structure is preserved by θ0; in particular ∆′ = ∆′′
, H ′ = θ0(H ).

Further, due to our freshness assumption about ∆′′ = ∆′
, we have ∆′

# ∆,Θ (7) and ∆′
# ∆,Θ′

.

In total, we have A0 = δθ0H (8) and Γ(x) = ∀∆′.H (9) and θ0Γ(x) = θ0(∀∆′.H ) = ∀∆′.θ0H (10).
Let ∆′ = a = (a1, . . . ,an) with corresponding fresh b = (b1, . . . ,bn) for some n ≥ 0. Then infer succeeds with Θ′′ =

(Θ,b : ⋆), and θ ′ = ι∆,Θ (11), andAR = H [b/a] (12). Due toΘ ⊆ Θ′′
and the freshness ofb, we have ∆ ⊢ θ ′ : Θ ⇒ Θ′′ (13).

We define θ ′′
such that

θ ′′(c) =

{
θ0(c) if c ∈ Θ

δ (ai ) if c = bi for some bi ∈ b
(14)

By (3) and (14), for all (c : K) ∈ Θ we have ∆,Θ′ ⊢ θ0(c) : K (15). By ∆,Θ′ ⊢ δ : ∆′ ⇒⋆ ·, we have ∆,Θ′ ⊢ δ (a) : ⋆ for all

a ∈ ∆′
and thus ∆,Θ′ ⊢ θ ′′(b) : ⋆ for all b ∈ b. Together, we then have ∆ ⊢ θ ′′ : Θ′′ ⇒ Θ′

(II).

By (11) and (14), we have θ ′′θ ′(c) = θ ′′(c) = θ0(c) for all c ∈ Θ (III).

It remains to show that θ ′′(H [b/a]) = A0 = δ (θ0(H )).

By (2) and (9), we have ∆,Θ ⊢ ∀∆′.H and further ∆,Θ,∆′ ⊢ H .

We show that for all c ∈ ftv(H ) ⊆ ∆,Θ,∆′
, we have θ ′′(c[b/a]) = δθ0(c) (16). We distinguish three cases:

1. Let c = ai ∈ ∆′
. We then have

ai = θ0(ai ) (by (3))

implies θ ′′(ai [b/a]) = δ (θ0(ai )) (by (14): θ ′′(bi ) = δ (ai ))
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2. Let c ∈ Θ. We then have

θ0(c) = θ0(c)

implies θ0(c[b/a]) = θ0(c) (by (7): c[b/a] = c)

implies θ ′′(c[b/a]) = δθ0(c) (by (14) : θ ′′(c) = δ (c) for all c ∈ Θ)

3. Let c ∈ ∆. Then all involved substitutions/instantiations return c unchanged.
By (12) and (8), (16) then yields θ ′′(AR ) = A0 (IV).

Case λx .M : By (4) and Lam, we have A0 = S ′ → B′
for some S ′,B′

as well as ∆,Θ′
;θ0Γ, (x : S ′) ⊢ M : B′ (17). The latter

implies ∆,Θ′ ⊢ S ′ : • (18).
Let a be the fresh variable as in the definition of infer; in particular a #Θ (19). Let θa be defined such that θa(b) = θ0(b)
for all b ∈ Θ (20) and θa(a) = S ′ (21). By (3) and (18), we have ∆ ⊢ θa : (Θ,a : •) ⇒ Θ′(22). This definition makes (17)

equivalent to ∆,Θ′
;θa(Γ,x : a) ⊢ M : B′

.

By induction, we therefore have that infer(∆, (Θ,a : •), (Γ,x : a),M) succeeds (23), returning (Θ1,θ
′
1
,B) and there exists

θ ′′
1
s.t.

∆ ⊢ θ ′′
1
: Θ1 ⇒ Θ′ (24)

θa = θ
′′
1
◦ θ ′

1
(25)

θ ′′
1
(B) = B′ (26)

By Theorem 6, we have ∆ ⊢ θ ′
1
: (Θ,a : •) ⇒ Θ1 (27)4. By preservation of kinds under substitution, we have

∆,Θ1 ⊢ θ
′
1
(a) : •. This implies that θ ′

1
(a) is a syntactic monotype. Thus, θ ′

1
= θ [a 7→ S] (28) is well-defined, yielding a

substitution ∆ ⊢ θ : Θ ⇒ Θ1. Hence, all steps of infer succeed.
According to the return values of infer, we have AR = S → B, Θ′′ = Θ1, and θ

′ = θ (29).
Let θ ′′

be defined as θ ′′
1
(30). By (24), this choice immediately satisfies (II).

We show (III) as follows: Let b ∈ Θ. We then have

θ0(b)
= θa(b) (by (19) and (20))

= θ ′′
1
θ ′
1
(b) (by (22), (24), (25) and (27))

= θ ′′
1
θ (b) (by (19), (28))

= θ ′′θ ′(b) (by (29), (30))

By (28), we have θ ′
1
(a) = S . By (21), we have θa(a) = S ′. By (25) we therefore have θ ′′

1
(S) = θa(a) = S ′. Together with (26),

A0 = S ′ → B′
, and AR = S → B we have shown ( IV).

Case λ(x : A).M : This case is analogous to the previous one; the only difference is as follows:

By (4) and Lam-Ascribe, we have A0 = A → B′
for some B′

as well as ∆,Θ′
;θ0Γ, (x : A) ⊢ M : B′

. However, by (1), we

have ∆ ⊢ A and therefore θ0(A) = A.
Hence, we can apply the induction hypothesis directly to the typing judgement above, rather than having to construct

θa .
CaseM N : By (4) and App, we have ∆,Θ′

;θ0Γ ⊢ M : AN → A0 and ∆,Θ′
;θ0Γ ⊢ N : AN (31) for some type AN . The former

implies ∆,Θ′ ⊢ A0 (32)
By induction, infer(∆,Θ, Γ,M) succeeds, returning (Θ1,θ1,A

′) and there exists θ ′′
1
such that the following conditions

hold:

∆ ⊢ θ ′′
1
: Θ1 ⇒ Θ′ (33)

θ0 = θ
′′
1
◦ θ1 (34)

∆,Θ′ ⊢ θ ′′
1
(A′) = AN → A0 (35)

By (35),A′
must not have toplevel quantifiers. LetBN andBM such thatA′ = BN → BM (36). This yieldsθ ′′

1
(BN ) = AN (37)

and θ ′′
1
(BM ) = A0 (38).

By Theorem 6, we have ∆ ⊢ θ1 : Θ ⇒ Θ1 (39) and ∆,Θ1;θ1(Γ) ⊢ M : A′
, which implies ∆,Θ1 ⊢ A′

. By choosing b as

fresh, we have b #∆, and b #Θ1, and b #Θ2 and b #Θ
′ (40)

4
Observe that we cannot deduce this from (24) and (25). A counter-example would be the following: Θ = (a : •), Θ′′ = (b : ⋆), θ ′ = (c : •), θ ′ = [a 7→ b],

θ ′′ = [b 7→ c]. We have ⊢ (θ ′′ ◦ θ ′) : Θ ⇒ Θ′
and ⊢ θ ′′ : Θ′′ ⇒ Θ′

, but not ⊢ θ ′ : Θ′ ⇒ Θ′′
.
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By (34), we can rewrite (31) as ∆,Θ′
;θ ′′

1
θ1Γ ⊢ N : AN . By induction (using (33)), we then have that infer(∆,Θ1,θ1Γ,N )

succeeds, returning (Θ2,θ2,A) and there exists θ ′′
2
such that

∆ ⊢ θ ′′
2
: Θ2 ⇒ Θ′ (41)

θ ′′
1
= θ ′′

2
◦ θ2 (42)

∆,Θ′ ⊢ θ ′′
2
(A) = AN (43)

By Theorem 6, ∆ ⊢ θ2 : Θ1 ⇒ Θ2 (44) as well as ∆,Θ2;θ2θ1Γ ⊢ N : A, which implies ∆,Θ2 ⊢ A (45).
Let θb be defined such that

θb (c) =

{
θ ′′
2
(c) if c ∈ Θ2

θ ′′
2
θ2(BM ) if c = b

(46)

We have θb (b) = θ
′′
2
θ2(BM ) = θ ′′

1
(BM ) = A0(47). By (32) and (41) we thus have ∆ ⊢ θb : (Θ2,b : ⋆) ⇒ Θ′

. Due to (45), we

further have θb (A) = θ
′′
2
(A) (48).

We show applicability of the completeness of unification theorem:

θbθ2(A
′)

= θbθ2(BN ) → θbθ2(BM ) (by (36))

= θ ′′
2
θ2(BN ) → θ ′′

2
θ2(BM ) (by (40) and (46))

= θ ′′
1
(BN ) → θ ′′

2
θ2(BM ) (by (42))

= AN → θ ′′
2
θ2(BM ) (by (37))

= θ ′′
2
(A) → θ ′′

2
θ2(BM ) (by (43))

= θb (A) → θb (b) (by (46) and (48))

= θb (A → b) (by (36))

By the equality above as well as ∆,Θ2 ⊢ θ2(A
′) and ∆,Θ2,b : ⋆ ⊢ (A → b), Theorem 5 states that unify(∆, (Θ2,b :

⋆),θ2(H ),A → b) succeeds, returning (Θ3,θ
′
3
), and there exists θ ′′

3
such that ∆ ⊢ θ ′′

3
: Θ3 ⇒ Θ′ (49) and θb = θ ′′3 ◦θ ′

3
(50).

The latter implies ∆ ⊢ θ ′
3
: (Θ2,b : ⋆) ⇒ Θ3. This makes defining θ ′

3
= θ3[b → B] (51) succeed, resulting in

∆ ⊢ θ3 : Θ2 ⇒ Θ3 (52).
Observe that θ ′′

2
arises from θb in the same way as θ3 arises from θ ′

3
by removing b from its domain. Therefore, (50)

yields θ ′′
2
= θ ′′

3
◦ θ3 (53).

By (39), (44), (52), and composition, we have ∆ ⊢ θ3 ◦ θ2 ◦ θ1 : Θ ⇒ Θ3.

We have shown that all steps of the algorithm succeed and it returns (Θ′′,θ ′,AR ) = (Θ3,θ3 ◦ θ2 ◦ θ1,B) (54).
Let θ ′′ be defined as θ ′′

3
, satisfying (II), by (49).

We show satisfaction of (III) as follows:

θ0

= θ ′′
1
◦ θ1 (by (34))

= (θ ′′
2
◦ θ2) ◦ θ1 (by (42))

= ((θ ′′
3
◦ θ3) ◦ θ2) ◦ θ1 (by (53))

= θ ′′ ◦ θ ′

We show (IV):

θ ′′(AR )

= θ ′′
3
(B) (by θ ′′ = θ ′′

3
, AR = B)

= θ ′′
3
θ ′
3
(b) (by (51))

= θb (b) (by (50))

= A0 (by (47))
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Case let x = M in N : By (4) and Let, there exist A′
, Ax , and ∆G such that

∆G = ftv(A′) − (∆,Θ′) (55)
∆,Θ′,∆G ;θ0Γ ⊢ M : A′ (56)
((∆,Θ′),∆G ,M,A

′) ⇕ Ax (57)
∆,Θ′

;θ0Γ,x : Ax ⊢ N : A0 (58)
principal((∆,Θ′),θ0Γ,∆G ,A

′) (59)

We assume without loss of generality that ∆G is fresh, in particular ∆G # Θ. This is justified, as we may otherwise apply

Lemma I.4 to (56) using a substitution that does the necessary freshening. This would yield corresponding judgements

for deriving ∆,Θ′
;θ0Γ ⊢ M0 : A0.

By (3) and weakening, we have ∆ ⊢ θ0 : Θ ⇒ Θ′,∆G . Together with (56) we then have that infer(∆,Θ, Γ,M) succeeds,

returning (Θ1,θ1,A), and there exists θ ′′
1
such that

∆ ⊢ θ ′′
1
: Θ1 ⇒ (Θ′,∆G ) (60)

θ0 = θ
′′
1
◦ θ1 (61)

θ ′′
1
(A) = A′ (62)

By (1) and (2), Theorem 6 yields ∆ ⊢ θ1 : Θ ⇒ Θ1 (63) and ∆,Θ1;θ1Γ ⊢ M : A, which implies ∆,Θ1 ⊢ A (64).
Note that ∆G does not appear as part of the input to infer, and we therefore have ∆G # Θ1.

Let Θθ1 = ftv(θ1) −∆, which implies Θθ1 ⊆ Θ1 and ∆
′′′
#Θθ1 and ∆

′′
#Θθ1 . By (3), (60) and (61) we have ∆,Θ

′ ⊢ θ ′′
1
(a) : K

for all (a : K) ∈ Θθ1 (65).
By (3), (55), (59), (60) to (62) and (64), we can apply Lemma I.6, yielding θ ′′

1
(∆′′′) = ∆G (66).

We have ∆′′
#Θθ1 and can therefore strengthen (63) to ∆ ⊢ θ1 : Θ ⇒ Θ1 − ∆′′ (67).

We distinguish two cases based on the shape ofM . In each case we show that there exists θ ′′N such that

∆ ⊢ θ ′′N : (Θ′
1
− ∆′′) ⇒ Θ′ (68)

∆,Θ′
;θ ′′N (θ1(Γ),x : ∀∆′′.A) ⊢ N : A0 (69)

θ0 = θ
′′
N ◦ θ1 (70)

Subcase 1,M ∈ GVal: We have ∆′′ = ∆′′′
. By (57), we have that Ax = ∀∆G .A

′
holds.

According to ∆′′ = ∆′′′
and Θ′

1
= demote(•,Θ1,∆

′′′) we have that Θ′
1
− ∆′′ = Θ1 − ∆′′

.

Let θ ′′N be defined as follows for all c ∈ Θ1 − ∆′′ = Θ′
1
− ∆′′

:

θ ′′N (c) =

{
θ ′′
1
(c) if c ∈ Θθ1

AD if c ∈ Θ1 − ∆′′ − Θθ1

Where AD is some arbitrary type with ∆,Θ′ ⊢ AD : • (e.g., Int). By Θθ1 ⊆ Θ1, this definition is well-formed.

By ∆′′ = ∆′′′ = ftv(A) − ∆ − Θθ1 we have θ
′′
N (c) = θ

′′(c) for all c ∈ ftv(A) − ∆′′ (71).
Together with (65) and ∆,Θ′ ⊢ AD : •, we then have ∆,Θ′ ⊢ θ ′′N (c) : K for all (c : K) ∈ Θ1 − ∆′′

and therefore

∆ ⊢ θ ′′N : Θ′
1
− ∆′′ ⇒ Θ′

.

By (61) and (67) and θ ′′N (c) = θ
′′
1
(c) for all c ∈ Θθ1 we also have θ0 = θ

′′
N ◦ θ1.

We have

= θ ′′
N (∀∆′′.A)

= θ ′′
N (∀∆G .A[∆G/∆

′′])

= ∀∆G .θ
′′
N (A[∆G/∆

′′]) (by ftv(θ ′′N ) ⊆ ∆,Θ′
and ∆,Θ′

#∆G # Θ1)

= ∀∆G .θ
′′
1
(A) (by ∆′′ = ∆′′′

and (66) and (71) )

= Ax (by Ax = ∀∆G .A
′
and (62))

Thus, (58) is equivalent to ∆,Θ′
;θ ′′N ((θ1Γ),x : ∀∆′′.A) ⊢ N : A0.

Subcase 2,M < GVal: We have ∆′′ = ·. By (57), we have Ax = δ (A′) for some δ with ∆,Θ′ ⊢ δ : ∆G ⇒• · (72).
Let θ ′′

N be defined as follows for all c ∈ Θ1 − ∆′′ = Θ1:

θ ′′N (c) =


θ ′′
1
(c) if c ∈ Θθ1

AD if c ∈ Θ1 − ∆′′′ − Θθ1

δ (θ ′′
1
(c)) if c ∈ ∆′′′

(73)
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Here, AD is defined as before.

By ∆′′
# Θθ1 and ∆′′′ ⊆ Θ1 and Θθ1 ⊆ Θ1, the three cases are non-overlapping and exhaustive for Θ1.

Using (65), we have that ∆,Θ′ ⊢ θ ′′N (c) : K for all (c : K) ∈ Θθ1 . Note that by ∆′′′
# Θθ1 we have Θ1(c) = Θ′

1
(c) for all

c ∈ Θθ1 .

By (72), we have ∆,Θ′ ⊢ δ (c) : • for all c ∈ ∆G and therefore ∆,Θ′ ⊢ θ ′′N (c
′) : • for all (c ′ : K) ∈ ∆′′′

.

Together with ∆,Θ′ ⊢ AD : •, we then have ∆ ⊢ θ ′′
N : Θ′

1
⇒ Θ′

. By Lemma G.10, we also have ∆ ⊢ θ ′′N : Θ1 ⇒ Θ′
. We

have θ ′′N (c) = θ
′′(c) for all c ∈ Θθ1 and together with (63), (61), and ∆′′ = · we then have θ0 = θ

′′
N ◦ θ1.

We have

θ ′′N (∀∆′′.A)
= θ ′′N (A) (by ∆′′ = ·)

= θ ′′
1
(A)[δ (∆G )/∆G ] (by (66) and (73))

= A′[δ (∆G )/∆G ] (by (62))

= δ (A′)

= Ax

We have shown that in each case, (68), (69), and (70) hold. Using the same reasoning as in the case for unannotated let in
the proof of Theorem 6, we obtain ∆,Θ1 − ∆′′ ⊢ θ1 : Γ.
Thus, by induction, we have that infer(∆,Θ′

1
− ∆′′,θ1Γ,N ) succeeds, returning (Θ2,θ2,B), and there exists θ ′′

2
such that

∆ ⊢ θ ′′
2
: Θ2 ⇒ Θ′ (74)

θ ′′N = θ
′′
2
◦ θ2 (75)

θ ′′
2
(B) = A0 (76)

By the return values of infer, we have Θ′
:= Θ2, and θ

′
:= θ2 ◦ θ1 and AR := B.

Let θ ′′ = θ ′′
2
. By (74), this choice immediately satisfies (II).

We have

θ0
= θ ′′N ◦ θ1 (by (70))

= θ ′′
2
◦ θ2 ◦ θ1 (by (75))

and therefore θ0 = θ
′′ ◦ θ ′ (III).

We show satisfaction of (IV) as follows:

A0

= θ ′′
2
(B) (by (76))

= θ ′′(B) (by θ ′′ := θ ′′
2
)

Case let (x : A) = M in N : By (4) and Let-Ascribe, there exist ∆G and AM such that we have

∆G ,AM = split(A,M) (77)
∆,Θ′,∆G ;θ0Γ ⊢ M : AM (78)
A = ∀∆G .AM (79)
∆,Θ′

;θ0(Γ), (x : A) ⊢ N : A0 (80)

By alpha-equivalence, we assume ∆G # Θ.
Note that by definition of infer and split, we have ∆G = ∆′

and A′ = AM (81). By (78), we have ∆′
#Θ′ (82). We weaken

(3) to ∆,∆′ ⊢ θ0 : Θ ⇒ Θ′
.

By inversion on (1), we have ∆,∆′ ⊩ M and ∆ ⊩ N and and ∆ ⊢ A (83), which implies ∆,∆′ ⊢ A′ (84).
Together with (78) we then have the following by induction: infer((∆,∆′),Θ, Γ,M) succeeds, returning (Θ1,θ1,A1) and

there exists θ ′′
1
such that

∆,∆′ ⊢ θ ′′
1
: Θ1 ⇒ Θ′ (85)

θ0 = θ
′′
1
◦ θ1 (86)

θ ′′
1
(A1) = AM (87)

Theorem 6 yields ∆,∆′ ⊢ θ1 : Θ ⇒ Θ1 (88) and ∆,∆′,Θ1;θ1(Γ) ⊢ M : A1, which implies ∆,∆′,Θ1 ⊢ A1 (89).
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We then have

θ ′′
1
(A1)

= AM (by (87))

= A′ (by (81))

= θ ′′
1
(A′) (by (84) and (85))

In addition to above equality and (85) as well as (89), we have ∆,∆′,Θ1 ⊢ A
′
by weakening (84). Hence, Theorem 5 yields

the following: unify((∆,∆′),Θ1,A
′,A1) succeeds, returning (Θ2,θ

′
2
), and there exists θ ′′

2
such that

∆,∆′ ⊢ θ ′′
2
: Θ2 ⇒ Θ′ (90)

θ ′′
1
= θ ′′

2
◦ θ ′

2
(91)

By Theorem 4, we have ∆,∆′ ⊢ θ ′
2
: Θ1 ⇒ Θ2. Together with (88) and composition, we then have ∆,∆′ ⊢ θ2 : Θ ⇒ Θ2 (92).

By (86) and (91), we have θ0 = θ
′′
2
◦ θ ′

2
◦ θ1 = θ

′′
2
◦ θ2 (93). We show ftv(θ2) ⊆ ∆,Θ2: Otherwise, if a ∈ Θ and b ∈ ∆′

such

that b ∈ ftv(θ2(a)), then by (90), θ ′′
2
(b) = b and b ∈ ftv(θ ′′

2
(θ2(a))) = ftv(θ0(a)), violating (3).

Therefore, the assertion ftv(θ2) # ∆′
succeeds, allowing us to strengthen (92) to ∆ ⊢ θ2 : Θ ⇒ Θ2 (94).

By (83) we have ftv(A) ⊆ ∆, and together with (90) this yields θ ′′
2
(A) = A (95).

We have

∆,Θ′
;θ0Γ,x : A ⊢ N : A0 (by (80))

implies ∆,Θ′
;θ ′′

2
θ2Γ,x : A ⊢ N : A0 (by (90), (92) and (93))

implies ∆,Θ′
;θ ′′

2
(θ2(Γ),x : A) ⊢ N : A0 (by (95)) (96)

By (2) and (94), we have ∆,Θ2 ⊢ θ2(Γ). Together with (83), we then have ∆,Θ2 ⊢ θ2(Γ),x : A.
Hence, induction on (94) and (96) shows that infer(∆,Θ2, (θ2Γ,x : A),N ) succeeds, returning (Θ3,θ3,B) and there exists

θ ′′
3
such that

∆ ⊢ θ ′′
3
: Θ3 ⇒ Θ′ (97)

θ ′′
2
= θ ′′

3
◦ θ3 (98)

θ ′′
3
(B) = A0 (99)

We have shown that all steps of the algorithm succeed. According to the return values of infer, we have Θ′′ = Θ3,

θ ′ = θ3 ◦ θ2, and AR = B. Let θ ′′ = θ ′′
3
. By (97), this choice immediately satisfies (II).

We show (III):

θ0
= θ ′′

2
◦ θ2 (by (93))

= θ ′′
3
◦ θ3 ◦ θ2 (by (98))

= θ ′′ ◦ θ ′ (by θ ′
:= θ3 ◦ θ2, θ

′′
:= θ ′′

3
)

By θ ′′ = θ ′′
3
, (99) yields (IV).

□
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