
Lightweight Functional Session Types

Sam Lindley J. Garrett Morris
The University of Edinburgh

{Sam.Lindley,Garrett.Morris}@ed.ac.uk

Abstract
Session types describe communication protocols, capturing both
the type and the order of messages. Recently, we presented a se-
mantics for a core session-typed linear λ-calculus, GV, and proved
that it enjoys a number of desirable properties beyond type sound-
ness, including deadlock freedom, determinism (and hence race
freedom), and termination.

In this paper, we modularly extend GV with practical features.
We begin by introducing FST (System F with Session Types),
an extension of GV, with features including polymorphism, row
typing (to support extensible records, variants, and session types),
and a subkinding system (to integrate linear and unlimited types).
FST preserves all of GV’s desirable properties. We then consider
further extensions of FST with recursion and recursive types, which
preserve all of the properties save for termination. Finally, we
consider an additional extension of FST with access points (a much
more expressive mechanism for initiating communication among
threads) in return for giving up deadlock freedom, determinism
(and indeed race freedom), and termination.

Building on the formal development, we discuss the design
of Session Links, a session-typing extension of the Links web
programming language and a full implementation of FST.

1. Introduction
Concurrency has become a critical aspect of modern programs,
and thus a central problem in program correctness. Concurrency
and communication add a new dimension to assuring program be-
havior: communication protocols specify not just what form mes-
sages between participants must take, but also impose ordering
constraints on the transmission of those messages. For example,
consider the SMTP protocol. All SMTP messages are strings, so
SMTP can be described as the exchange of arbitrary strings. How-
ever, such a description includes many violations of the protocol.
Describing correct SMTP participants requires capturing two ad-
ditional aspects. First, individual SMTP messages must be well-
formed; for example, each recipient is identified by a message RCPT
TO: [email] from the client, where [email] is a valid email ad-
dress. Second, messages must be received in the right order: the
sender must be identified before the recipients, which in turn must
precede the message body.

[Copyright notice will appear here once ’preprint’ option is removed.]

Honda [13] proposed session types as a means to capture pro-
tocols between two participants sharing a communication channel.
A session type captures the messages observable on that channel;
for example, a simplified version of the client side of the SMTP
protocol could be expressed as

!Sender.!Recipient.!Body.End

where !A.S denotes sending a value of type A and then continuing as
S. Session type systems are necessarily substructural: if programs
could duplicate or discard channels, there would be no guarantee
that the observable behavior matched the protocol even if the chan-
nels were otherwise used according to their types.

Recently we introduced a semantics [20] for GV, a core linear
λ-calculus extended with session types due to Wadler [32], and in-
spired by prior work of Gay and Vasconcelos [11]. We gave direct
proofs of deadlock freedom, determinism, and termination for GV.
We also gave semantics-preserving translations between GV and
Wadler’s process calculus CP [32], showing a strong connection
between GV’s small-step operational semantics and cut elimina-
tion in classical linear logic. In this paper, we demonstrate that we
can build practical languages based on the primitives and proper-
ties we used with GV. We begin with a language, FST, that extends
GV with polymorphism and row typing, allowing abstraction over
types, record and variant structure, and subkinding, integrating lin-
ear and unlimited data types. We show that FST, while more expres-
sive, is still deadlock-free, deterministic, and terminating. We then
consider several extensions of FST. Adding recursion and recur-
sive session types permits the definition of long-running services
and repeated behavior; while the resulting system is no longer ter-
minating, it preserves deadlock freedom and determinism. Access
points provide a more flexible mechanism for session initiation. In-
troducing access points results in a system that is not deadlock-free,
deterministic, or terminating; but it still satisfies subject reduction
and a weak form of type progress.

A First Look at FST Before giving a formal account of the syntax
and type system of FST, we give a simple example of programming
in FST. The SMTP protocol is complex, and a complete description
of the protocol would require many details irrelevant to the focus
of this paper. Instead, we will use a desktop calculator as a run-
ning example. Despite its simplicity, it will motivate many of the
features of FST.

We begin with the process that implements the calculator. We
specify it as a function of one channel, c, on which it will commu-
nicate with a user of the calculator.

calc = λc.offer c {
Add c→ let 〈x, c〉 = receive c in

let 〈y, c〉 = receive c in
send 〈x + y, c〉

Neg c→ let 〈x, c〉 = receive c in
send 〈−x, c〉}

1 2015/2/28

On receiving a channel c, the function calc offers a choice of two
behaviors, labeled Add and Neg on c. In the Add case, it then
expects to read two values from c and send their sum along c. The
Neg case is similar. The session type of channel c encodes these
interactions, so the type of calc is

calc : N{Add : ?Int.?Int.!Int.End,Neg : ?Int.!Int.End} →• 〈〉
where the session type !T.S denotes sending a value of type T
followed by behavior S, ?T.S denotes reading a value of type T
followed by behavior S, and N{` : S, . . . , `n : Sn} denotes offering
an n-ary choice, with the behavior of the ith branch given by Si.

Next, we consider clients of the calculator process. For example,
here is a function that uses the calculator service:

user = λc. let c = select Add c in receive (send 〈6, send 〈7, c〉〉)

Like calc, user is specified as a function of a channel on which it
communicates with the calculator. It begins by selecting the Add
behavior; this is the dual of the choice offered by calc. The remain-
der of its behavior is unsurprising. We could give the channel a type
dual to that provided by the calculator:

user : ⊕{Add : !Int.!Int.?Int.End,Neg : !Int.?Int.End} →• Int

However, this over-specifies the behavior of user by specifying the
behavior of the Neg branch, which is unused by user. In FST, we
can use row polymorphism to abstract over the irrelevant labels in
a choice, as follows:

user : ∀ρ◦,π.⊕ {Add : !Int.!Int.?Int.End; ρ} →• Int

This type denotes that user can accept an argument that offers ar-
bitrary choices, so long as it includes the Add branch with suitable
behavior. FST includes explicit type abstractions and type annota-
tions on bound variables; we will omit both in these examples to
improve their legibility. Session Links, our concrete implementa-
tion of FST, is able to reconstruct the types and type abstractions
omitted in the examples using a fairly standard Hindley-Milner-
style type inference algorithm.

The fork primitive creates a new child thread and a channel
through which it can communicate with its parent thread. We can
compose the calculator and the user together as follows

let c = fork calc in user c

yielding the number 13.

Contributions. The paper proceeds as follows:

• Section 2 introduces FST, a linear variant of System F, incor-
porating polymorphism, row-typing, subkinding, and session
types.
• Section 3 gives a small-step semantics for FST, incorporating

explicit buffers to provide asynchronous communication prim-
itives. We characterize deadlock and show that well-typed FST
programs enjoy type soundness, deadlock freedom, progress,
determinism, and termination.
• Section 4 explores extensions of our core calculus with recur-

sion, recursive types, and access points. We demonstrate the
expressivity of access points, giving encodings of state cells,
nondeterministic choice, and recursion. We argue that adding
recursion and recursive types preserves type soundness, deter-
minism, and deadlock freedom, and that even in the presence of
access points we can show a relaxed form of progress.
• Section 5 describes Session Links, a practical implementation

of FST in Links, a functional language for web programming,
and discusses our adaptation of the existing Links syntax and
type inference mechanisms to support linearity and session
types.

Section 6 discusses related work and Section 7 concludes.

2. The Core Language
The calculus we present in this section, FST (F with Session Types),
is a call-by-value linear variant of System F with subkinding, row
types, and session types. It combines a variant of GV, our session-
typed linear λ-calculus [20], with the row typing and subkinding of
our previous core language for Links [18], and the similar approach
to subkinding for linearity of Mazurak and Zdancewic’s lightweight
linear types [22].

As our focus is the semantics of a programming language for
session types rather than its logical underpinnings, we make some
simplifications with respect to our earlier work [20]. Specifically,
we have a single unlimited self-dual type of closed channels, and
we omit the operation for linking channels together.

2.1 Syntax
To avoid duplication and keep the concurrent semantics of FST
as simple, we strive to implement as much as possible in the
functional core of FST, and limit the session typing constructs to the
essentials. The only session type constructors are for output, input,
and closed channels, and no special typing rules are needed for the
primitives, which are specified as constants. Other features such
as choice and selection can be straightforwardly encoded using
features of the functional core.

Types and Kinds. The syntax of types and kinds is given below.

Ordinary Types A,B ::= A→Y B
| 〈R〉 | [R]

| ∀αK(Y,Z).A | α | α
| S

Session Types S ::= !A.S | ?A.S
| End | σ | σ

Row Types R ::= · | ` : P; R | ρ | ρ
Presence Types P ::= Abs | Pre(A) | θ | θ

Types T ::= A | R | P
Type Variables α, σ, ρ, θ

Labels `
Label Sets L ::= {`1, . . . , `k}

Kinds J ::= K(Y, Z)
Primary Kinds K ::= Type | RowL | Presence
Linearity Y ::= • | ◦
Restriction Z ::= π | ?

The function type A →Y B takes an argument of type A and
returns a value of type B and has linearity Y . The record type
〈R〉 has fields given by the labels of row R. The variant type [R]
admits tagged values given by the labels of row R. The polymorphic
type ∀αK(Y,Z).A is parameterized over the type variable α of kind
K(Y, Z).

The input type ?A.S receives an input of type A and proceeds as
the session type S. Dually, the output type !A.S sends an output of
type A and proceeds as the session type S. The type End terminates
a session; it is its own dual. We let σ range over session type
variables and the dual of session type variable σ is σ.

Row Types. Records and variants are defined in terms of row
types. A row type represents a mapping from labels to ordinary
types. A row type includes a list of distinct labels, each of which
is annotated with a presence type. The presence type indicates
whether the label is present with type A (Pre(A)), absent (Abs),
or polymorphic in its presence (θ).

2 2015/2/28

Row types are either closed or open. A closed row type ends in
·. An open row type ends in a row variable ρ or its dual ρ; the latter
are only meaningful for session-kinded rows.

The mapping from labels to ordinary types represented by a
closed row type is defined only on the labels that are explicitly
listed in the row type, and cannot be extended. In contrast, the row
variable in an open row type can be instantiated in order to extend
the row type with additional labels. As usual, we identify rows up
to reordering of labels.

`1 : P1; `2 : P2; R = `2 : P2; `1 : P1; R

Furthermore, absent labels in closed rows are redundant:

` : Abs; `1 : P1, . . . ; `n : Pn; · = `1 : P1, . . . ; `n : Pn; ·

Duality. The duality operation is lifted to session types, session
row types, and session presence types in the standard way:

?A.S = !A.S
!A.S = ?A.S
End = End
α = α

· = ·
` : P; R = ` : P; R

ρ = ρ

Abs = Abs

Pre(S) = Pre(S)

θ = θ

Kinds. Types are classified into kinds. Ordinary types have kind
Type. Row types R have kind RowL where L is a set of labels not
allowed in R. Presence types have kind Presence.

The three primary kinds are refined with a simple subkinding
discipline, similar to the system described in our previous work on
Links [18] and the system of Mazurak et al. on lightweight lin-
ear types [22]. A primary kind K is parameterized by a linearity
Y and a restriction Z. The linearity can be either unlimited (•)
or linear (◦). The restriction can be session typed (π) or uncon-
strained (?). The interpretation of these parameters on row and
presence kinds is pointwise on the ordinary types contained within
the row or presence types inhabiting those kinds. For instance, the
kind RowL(◦, π) is inhabited by row types whose fields are linear
session types and the kind Presence(•, ?) is inhabited by presence
types whose fields are unlimited unconstrained ordinary types.

We often omit the primary kind, assuming a default of Type. For
instance, we write α(•,?) instead of αType(•,?). We write A → B as
an abbreviation for A→• B.

Subkinding. The two sources of subkinding are the linearity and
restriction parameters.

` • ≤ ◦ ` π ≤ ?

` Y ≤ Y ′

` K(Y, Z) ≤ K(Y ′, Z)

` Z ≤ Z′

` K(Y, Z) ≤ K(Y, Z′)

Our notion of linearity corresponds to usage, not alias freedom.
Thus, any unlimited type can be used linearly, but not vice versa.

Kind and Type Environments.

Kind Environments ∆ ::= · | ∆, α : K(Y, Z)
Type Environments Γ ::= · | Γ, x : A

Kind environments map type variables to kinds. Type environments
map term variables to types.

Terms. The syntax of terms and values is given below.

Terms L,M,N ::= x | c
| λYxA.M | L M
| ΛαJ .V | M T
| 〈〉 | 〈` = M; N〉
| let 〈〉 ← M in N
| let 〈` = x; y〉 ← M in N
| (` M)R | case L {` x→ M; y→ N}
| case⊥ L

Values V,W ::= x
| λYxA.M
| ΛαK(Y,Z).V
| 〈〉 | 〈` = V; W〉
| (` V)R

Constants c ::= send | receive | fork

We let x range over term variables and c range over constants.
Lambda abstractions λYxA.M are annotated with linearity Y . Type
abstractions ΛαJ .V are annotated with kind J. Note that the body
of a type abstraction is restricted to be a syntactic value in the
spirit of the ML value restriction (in order to avoid problems
with polymorphic linearity and with polymorphic session types).
Records are introduced with the unit record 〈〉 and record exten-
sion 〈` = M; N〉 constructs. They are eliminated with the binding
form let 〈` = x; y〉 ← M in N, which binds the value labeled by `
to x and the remainder of the record to y. Conventional projections
M.` are definable using this form, but note that because projection
discards the remainder of the record, its applicability to records
with linear components is limited. Variants are introduced with the
injection ` M and eliminated using the case L {` x → M; y → N}
and case⊥ L constructs.

Concurrency. The concurrency features of FST are provided by
a collection of special constants. The term send 〈V,W〉 sends
V along channel W, returning the updated channel. The term
receive W receives a value V along channel W, and returns a pair
of V and the updated channel. The term fork (λx.M) returns one
end of a channel and forks a new process M in which x is bound to
the other end of the channel.

Notation. We use the following abbreviations:

let x = M in N def
= (λx.N) M

M; N def
= let x = M in N, x fresh

` : A def
= ` : Pre(A)

` : P def
= ` : P(〈〉)

〈A1, . . . ,Ak〉
def
= 〈1 : A1; . . . ; k : Ak; ·〉

#»

`
def
= `1, . . . , `k

»

` : P def
= `1 : P1, . . . , `k : Pk

We interpret n-ary record and case extension at the type and term
levels in the obvious way. For instance

〈 # »

` : P; R〉 def
= 〈`1 : P1; . . . ; `n : Pn; R〉

and

case L {·} def
= case⊥ L

case L {z→ N} def
= let z = L in N

case L {` x→ N;χ} def
= case L {` x→ N; z→ case z {χ}}

where we let χ range over sequences of cases:

χ ::= · | z→ N | ` x→ N;χ

We often write cases on separate lines without the ; delimiter.
We write fv(M) for the free variables of M. We write ftv(T)

for the free type variables of a type T and ftv(Γ) for the free type

3 2015/2/28

∆ ` T : K(Y, Z)

Ordinary Types
FUNCTION
∆ ` A : Type(Y, ?) ∆ ` B : Type(Y ′, ?)

∆ ` A→Y′′
B : Type(Y ′′, ?)

RECORD
∆ ` R : Row∅(Y, ?)
∆ ` 〈R〉 : Type(Y, ?)

VARIANT
∆ ` R : Row∅(Y, ?)
∆ ` [R] : Type(Y, ?)

FORALL
∆, α : K(•, Z) ` A : Type(Y, ?)

∆ ` ∀αK(Y′,Z).A : Type(Y, ?)

Session Types
INPUT

∆ ` A : Type(Y, ?)
∆ ` S : Type(Y ′, π)

∆ ` ?A.S : Type(◦, π)

OUTPUT
∆ ` A : Type(Y, ?)
∆ ` S : Type(Y ′, π)

∆ ` !A.S : Type(◦, π)

END

∆ ` End : Type(•, π)

Row Types

EMPTYROW

∆ ` · : RowL(Y, Z)

EXTENDROW
∆ ` R : RowL]{`}(Y, Z)
∆ ` P : Presence(Y, Z)

∆ ` (` : P; R) : RowL(Y, Z)

Presence Types

ABSENT

∆ ` Abs : Presence(Y, Z)

PRESENCE
∆ ` A : Type(Y, Z)

∆ ` Pre(A) : Presence(Y, Z)

Type Variables
TYVAR
α : K(Y, Z) ∈ ∆

∆ ` α : K(Y, Z)

DUALTYVAR
α : K(Y, π) ∈ ∆

∆ ` α : K(Y, π)

Subkinding
UPCAST
` J ≤ J′ ∆ ` T : J

∆ ` T : J′

Figure 1. Kinding Rules

variables of type environment Γ. We write dom(Γ) for the domain
of type environment Γ.

2.2 Typing and Kinding Judgments
The kinding rules are given in Figure 1. The kinding judgment
∆ ` A : K(Y, Z) states that in kind environment ∆, the type A
has kind K(Y, Z). Type variables in the kind environment are well-
kinded. The rules for forming function, record, variant, universally
quantified, and presence types follow the syntactic structure of
types. Because of the subkinding relation, a record is linear if any
of its fields are linear, and similarly for variants. Recall that RowL
is the kind of row types whose labels cannot appear in L. (To be
clear, this constraint applies equally to absent and present labels;
it is a constraint on the form of row types. In contrast, ` : Abs
in a row type is a constraint on terms.) An empty row has kind

∆ ` Γ : Y

LEMPTY

∆ ` · : Y

LEXTEND
∆ ` Γ : Y ∆ ` A : K(Y, Z)

∆ ` (Γ, x : A) : Y

∆ ` Γ = Γ1 + Γ2

CEMPTY

∆ ` · = ·+ ·

C-•
∆ ` A : Type(•, ?) ∆ ` Γ = Γ1 + Γ2

∆ ` Γ, x : A = (Γ1, x : A) + (Γ2, x : A)

C-◦-LEFT
∆ ` A : Type(◦, ?) ∆ ` Γ = Γ1 + Γ2

∆ ` Γ, x : A = (Γ1, x : A) + Γ2

C-◦-RIGHT
∆ ` A : Type(◦, ?) ∆ ` Γ = Γ1 + Γ2

∆ ` Γ, x : A = Γ1 + (Γ2, x : A)

Figure 2. Linearity of Contexts and Context Splitting

RowL(Y, Z) for any label set L, linearity Y , and restriction Z. The
side-conditions ` /∈ L in EXTENDROW ensures that row types have
distinct labels. A row type can only be used to build a record or
variant if it has kind Row∅. This constraint ensures that any absent
labels in an open row type must be mentioned explicitly.

In Figure 2 we define two auxiliary judgments that for use in
the typing rules. The linearity judgment ∆ ` Γ : Y is the pointwise
extension of the kinding judgment restricted to the linearity com-
ponent of the kind. It states that in kind environment ∆, each type
in environment Γ has linearity Y . The type environment splitting
judgment ∆ ` Γ = Γ1 + Γ2 states that in kind environment ∆, the
type environment Γ can be split into type environments Γ1 and Γ2.
Contraction of unlimited types is built into this judgment.

The typing rules are given in Figure 3. The typing judgment
∆; Γ ` M : A states that in kind environment ∆ and type envi-
ronment Γ, the term M has type A. We assume that Γ and A are
well-kinded with respect to ∆. If ∆ and Γ are empty (that is, M is
a closed term), then we will often omit them, writing ` M : A for
·; · ` M : A.

We assume a signature Σ mapping constants to their types. The
definition of Σ on the basic concurrency primitives is given in
Figure 4.

The EXTEND rule is strict in the sense that it requires a label to
be absent from a record before the record can be extended with the
label. The CASE rule refines the type of the value being matched
so that in the type of the variable bound by the default branch, the
non-matched label is absent.

Selection and Choice. Traditional accounts of session types
include types for selection and choice. Following our previous
work [20], inspired by Kobayashi [15], we encode selection and
choice using variant types.

⊕{R} def
= ![R].End

N{R} def
= ?[R].End

select ` M def
= fork (λx.send 〈` x,M〉)

offer L {χ} def
= let 〈x, z〉 = receive L in case x {χ}

In the implementation of Session Links we support selection and
choice in the source language. This is primarily for programming
convenience. One might imagine desugaring these using the rules
above, and then potentially rediscovering them in the back-end for
performance reasons.

4 2015/2/28

∆; Γ ` M : A

VAR
∆ ` Γ : •

∆; Γ, x : A ` x : A

CONST
Σ(c) = A

∆; Γ ` c : A

LINLAM
∆; Γ, x : A ` M : B

∆; Γ ` λ◦xA.M : A→◦ B

UNLLAM
∆ ` Γ : •
∆; Γ, x : A ` M : B

∆; Γ ` λ•xA.M : A→• B

APP
∆ ` Γ = Γ1 + Γ2

∆; Γ1 ` L : A→Y B ∆; Γ2 ` M : A
∆; Γ ` L M : B

POLYLAM
∆, α :: K(•, Z); Γ ` V : A α /∈ ftv(Γ)

∆; Γ ` ΛαK(Y,Z).V : ∀αK(Y,Z).A

POLYAPP

∆; Γ ` M : ∀αK(Y,Z).A ∆ ` T :: K(Y, Z)

∆; Γ ` M T : A[α := T]

UNIT
∆ ` Γ : •

∆; Γ ` 〈〉 : 〈〉

EXTEND
∆ ` Γ = Γ1 + Γ2

∆; Γ1 ` M : A ∆; Γ2 ` N : 〈` : Abs; R〉
∆; Γ ` 〈` = M; N〉 : 〈` : Pre(A); R〉

LETUNIT
∆ ` Γ = Γ1 + Γ2

∆; Γ1 ` M : 〈〉 ∆; Γ2 ` N : B
∆; Γ ` let 〈〉 ← M in N : B

LETRECORD
∆ ` Γ = Γ1 + Γ2

∆; Γ1 ` M : 〈` : Pre(A); R〉 ∆; Γ2, x : A, y : 〈R〉 ` N : B
∆; Γ ` let 〈` = x; y〉 ← M in N : B

INJECT
∆; Γ ` M : A

∆; Γ ` (` M)R : [` : Pre(A); R]

CASE
∆ ` Γ = Γ1 + Γ2 ∆; Γ1 ` L : [` : Pre(A); R]
∆; Γ2, x : A ` M : B ∆; Γ2, y : [` : Abs; R] ` N : B

∆; Γ ` case L {` x→ M; y→ N} : B

CASEZERO
∆; Γ ` L : []

∆; Γ ` case⊥L : B

Figure 3. Typing Rules

Σ(send) = ∀α◦,?.∀σ◦,π.〈α, !α.σ〉 →• σ
Σ(receive) = ∀α◦,?.∀σ◦,π.?α.σ →• 〈α, σ〉

Σ(fork) = ∀σ◦,π.∀α•,?.(σ →◦ α)→• σ

Figure 4. Type Schemas for Constants

Evaluation contexts E ::= [] | E M | V E | E T
| 〈` = E; N〉 | 〈` = V; E〉
| let 〈〉 = E in N
| let 〈` = x; y〉 = E in N
| ` E
| case E {` x→ M; y→ N}
| case⊥ E

F ::= φE
Configurations C,D ::= φM | C ‖ D | (νx)C

| x(
#»
V)! y(

#»
W)

Configuration contexts G ::= [] | G ‖ C | (νx)G
Flags φ ::= ♦ | �

Figure 5. Syntax of Configurations and Contexts

3. Semantics
We give an asynchronous small-step operational semantics for FST.
Following Gay and Vasconcelos [11], whose calculus we call LAST
(for Linear Asynchronous Session Types), we factor the semantics
into functional and concurrent reduction relations, and introduce
explicit buffers to provide asynchrony. For the functional fragment
of the language, we give a standard left-to-right call-by-value se-
mantics. The semantics of the concurrent portion of the language
is given by a reduction relation on configurations of threads and
buffers. This differs from our previous work on GV [20] by the
introduction of buffers, allowing asynchrony between the sending
and receiving of a message, and by using standard β-reduction in-
stead of weak explicit substitutions. FST, like GV but unlike LAST,
is deadlock-free, deterministic, and terminating.

3.1 Expressions, Configurations and Reduction
Figure 5 gives the syntax of evaluation contexts (which are stan-
dard), thread configurations, and configuration contexts. In addi-
tion to standard notions of name restriction and parallel composi-
tion, configurations include threads (φM) and buffers (x(

#»
V) !

y(
#»
W)). Our treatment of threads accounts for the functional nature

of FST—as functional programs return values, we distinguish be-
tween the main thread (�M), which computes the return value, and
its child threads (♦M), which do not. Buffers mediate communica-
tion, allowing sending threads to continue immediately while queu-
ing sent values for the receiving thread. A buffer x(

#»
V) ! y(

#»
W)

has two endpoints (x and y) and two queues of values (
#»
V and

#»
W).

The queue
#»
V holds those values to be read on endpoint x; corre-

spondingly, writes to endpoint x are stored in
#»
W.

Figure 6 gives reduction and equivalence relations for FST. We
write fv(C) for the free variables of configuration C. The term re-
duction −→V is standard. Configuration equivalence reflects that
‖ is associative and commutative, and allows name restriction to
be floated outwards. We have two unusual equivalences: first, we
reflect that buffers are symmetric, and second, we allow garbage
collection of buffers once neither of their endpoints are in use by
any threads. The reduction rules for send and receive are straight-
forward. In each case, the reduction involves a thread and a buffer.
Threads performing send can always reduce, while threads per-
forming receive can reduce only if there is a buffered value to be
read. The rule for fork introduces a new buffer and spawns a child
process.

FST programs are free of deadlock. However, our grammar
clearly admits deadlocked configurations. For example, if we define

Mxy = let 〈z, x〉 = receive x in
let y = send 〈z, y〉 in 〈〉

5 2015/2/28

Term reduction
(→.β) (λx.M) V −→V M{V/x}
(∀.β) (Λα.V) T −→V V{T/α}
(UNIT.β) let 〈〉 = 〈〉 in N −→V N
(RECORD.β) let 〈` = x; y〉 = 〈` = V; W〉 in N −→V N{V/x,W/y}
(MATCH.β) case ` V {` x→ M; y→ N} −→V M{V/x}
(DEFAULT.β) case ` V {`′ x→ M; y→ N} −→V N{` V/y}, if ` 6= `′

TERMEVAL
M −→V M′

E[M] −→V E[M′]

Configuration equivalence

C ‖ D ≡ D ‖ C C1 ‖ (C2 ‖ C3) ≡ (C1 ‖ C2) ‖ C3 C ‖ (νx)D ≡ (νx)(C ‖ D), if x 6∈ fv(C) G[C] ≡ G[D], if C ≡ D

x(
#»
V)! y(

#»
W) ≡ y(

#»
W)! x(

#»
V) (νxy)(x(ε)! y(ε)) ‖ C ≡ C ♦ 〈〉 ‖ C ≡ C

Configuration reduction

(SEND) F[send 〈W′, x〉] ‖ x(
#»
V)! y(

#»
W) −→ F[x] ‖ x(

#»
V)! y(

#»
WW′)

(RECEIVE) F[receive x] ‖ x(V ′
#»
V)! y(

#»
W) −→ F[(V ′, x)] ‖ x(

#»
V)! y(

#»
W)

(FORK) F[fork (λz.M)] −→ (νxy)(F[x] ‖ ♦M{y/z} ‖ x(ε)! y(ε)), x, y fresh

TERMCONFIG
M −→V M′

G[M] −→ G[M′]

CONFIGCONFIG
C −→ C′

G[C] −→ G[C′]

Figure 6. Reduction Rules and Equivalences for Terms and Configurations

then the configuration

(νxx′yy′)(Mxy ‖ x(ε)! x′(ε) ‖ y(ε)! y′(ε) ‖ My′x′)

is stuck. To rule out such configurations, we introduce a typing
relation on configurations, given in Figure 7. The primary typing
relation ∆; Γ `φ C indicates that a configuration is well-typed. The
rules for threads ensure that only the main thread has a non-trivial
return value. In order to define name restriction, we extend the type
system inside configuration contexts. Name restriction introduces a
new channel of type S]; intuitively, this represents both endpoints
of the channel, and will be split into S and S endpoints at a later
composition. Note that channel types are not permitted in terms
(the MAIN and CHILD rules have implicit side-conditions asserting
that Γ is not allowed to contain a channel type), so configurations
such as (νx)(� x) are ruled out by the type system.

The composition rules impose two restrictions. First, a config-
uration contains at most one main thread �M, which is ensured
by leaving � + � undefined. Second, at most one channel may be
shared across a composition of threads. Note that only channels of
type S] can be shared, with the dual types S and S in the subconfig-
urations.

The buffer typing rule requires that values stored in the buffer
match the expectations of the endpoints and that the endpoints are
dual. These properties are captured by two auxiliary judgments.
First, ∆; Γ ` #»

V :
#»
T expresses that the queue of values V have

types T; the environment is necessary as channels themselves can
appear as values in buffers. Second, the quotient S/

#»
T denotes the

“remainder” of session type S after sending values of types
#»
T . Note

that, because the endpoint types must be dual and S/
#»
T is defined

only if S = !T.S′, at most one of the queues can be non-empty in a
well-typed buffer.

We conclude our summary of the semantics with a subject
reduction (type preservation) theorem.

Lemma 1. If ∆; Γ ` M : A and M −→V N, then ∆; Γ ` N : A.

The proof is by induction on M; the cases are standard. We now lift
this result to configurations. We must account for the possibility
that a configuration reduction advances the session type of one of
the channels in the environment. We write Γ −→ Γ′ to denote that

environment Γ can reduce to environment Γ′ (see Figure 8), and
−→? for the reflexive closure of −→.

Theorem 2. If ∆; Γ ` C and C −→ C′, then there is a Γ′ such
that Γ −→? Γ′ and ∆; Γ′ ` C′.

The proof is by induction the derivation of C −→ C′.
Our notion of typing is not preserved by configuration equiva-

lence. For example, suppose that ∆; Γ ` C1 ‖ (C2 ‖ C3) where
x ∈ fv(C1), y ∈ fv(C2), x, y ∈ fv(C3); we would have that
∆; Γ ` C2 ‖ (C1 ‖ C3), but that ∆; Γ 0 (C1 ‖ C2) ‖ C3.
Nonetheless, typing modulo equivalence is preserved by reduction.

Theorem 3. If ∆; Γ ` C, C ≡ C′, and C′ −→ D′, then there is
some Γ′ and D such that Γ −→? Γ′, ∆; Γ′ ` D, and D ≡ D′.

Our asynchronous semantics only admits communication be-
tween a thread and a buffer: a thread can send a value to a buffer
or receive a value from a buffer. However, our type system does
not distinguish between channels used in threads and channels that
appear as endpoints of buffers. Thus, the following configuration is
well-typed, but cannot reduce:

(νx)(� (receive x) ‖ ♦ (send 〈〈〉, x〉; 〈〉))
There are a number of ways to address this issue. For example, we
could distinguish between buffer endpoints and channels used in
threads (but this would complicate the typing rules). Instead, we
introduce the notion of a well-buffered configuration, defined in
Figure 9. Configuration C is well-buffered with respect to variables
X (wbX (C)) if every variable x ∈ X occurs as the end point of
exactly one buffer in C. It is straightforward to show that well-
buffering is preserved by reduction:

Theorem 4. If wbX (C) and C −→ C′ then wbX (C′).

The judgment ∆; Γ `wb C states that well-typed configuration C
is well-buffered with respect to all of its free variables of channel
type.

3.1.1 Asynchrony
Our semantics for GV [20] is synchronous, whereas the semantics
we have presented for FST is asynchronous. The synchronous se-

6 2015/2/28

∆; Γ ` C

MAIN
∆; Γ ` M : A

∆; Γ `� �M

CHILD
∆; Γ ` M : 〈〉
∆; Γ `♦ ♦M

BUFFER
∆ ` Γ = Γ1 + Γ2

∆; Γ1 `
#»
V :

#»
A ∆; Γ2 `

#»
W :

#»
B S/

#»
A = (S′/

#»
B)

∆; Γ, x : S, y : S′ ` x(
#»
V)! y(

#»
W)

NEWSESSION
∆; Γ, x : S] `φ C

∆; Γ `φ (νx)C

COMPOSE-1
∆ ` Γ = Γ1 + Γ2

∆; Γ1, x : S `φ C ∆; Γ2, x : S `φ
′

C′

∆; Γ, x : S] `φ+φ′
C ‖ C′

COMPOSE-0
∆ ` Γ = Γ1 + Γ2

∆; Γ1 `φ C ∆; Γ2 `φ
′

C′

∆; Γ `φ+φ′
C ‖ C′

φ+ φ = φ

♦+ ♦ = ♦ ♦+ � = � �+ ♦ = � �+ � undefined

∆; Γ ` #»
V :

#»
A

∆ ` Γ : •
∆; Γ ` ε : ε

∆ ` Γ = Γ1 + Γ2

∆; Γ1 ` V : A ∆; Γ2 `
#»
A :

#»
A

∆; Γ ` V
#»
V : A

#»
A

S/
#»
T = S

S/ε = S !A.S/A
#»
A = S/

#»
A

∆ ` T · · ·

SHARP
∆ ` S : Type(Y, π)

∆ ` S] : Type(◦, π)

Figure 7. Configuration Typing

S −→ S Γ −→ Γ

(!A.S)] −→ S] (?A.S)] −→ S]
S −→ S′

Γ, x : S −→ Γ, x : S′

Figure 8. Session Type Reduction

wb{x,y}(x(
#»
V)! y(

#»
W)) wb∅(φM)

wbX1(C1) wbX2(C2)

wbX1]X2(C1 ‖ C2)

wbX]{x}(C)

wbX ((νx)C)

∆; Γ `� C wb{x|x:S]∈Γ}(C)

∆; Γ `wb C

Figure 9. Well-buffered Configurations

mantics for GV is convenient in theory, particularly for drawing out
the connections with cut-elimination in linear logic. In practice an
asynchronous semantics is often more appropriate, and indeed our
Session Links implementation is asynchronous. It is perfectly nat-
ural to define synchronous and asynchronous variants of GV and
FST.

It is straightforward to show that the asynchronous semantics of
GV admits all of the behaviors of the synchronous semantics: we
simulate each synchronous reduction by a write to a buffer followed
by a read from the same buffer. Furthermore, given that both the
asynchronous semantics and the synchronous semantics are deter-
ministic, and the asynchronous semantics can always simulate the
synchronous semantics, it is clear that asynchronous reduction to a
value will always produce the same result as synchronous reduction
to a value. The same arguments apply for synchronous versus asyn-
chronous variants of FST. Of course, if we lose determinism, such
as when we add access points (§4.2), then this line of reasoning no
longer holds.

3.2 Deadlock
Deadlock freedom is a prerequisite for ensuring conventional no-
tions of progress (although, we will later consider a weaker no-
tion of progress, suitable for more expressive systems that do admit
deadlock). We will give a characterization of deadlock that allows
us to show that typed configurations are deadlock-free, and because
of preservation, that well-typed FST terms can never deadlock. Re-
call the example of a deadlocked configuration in the previous sec-
tion: given the definition

Mxy = let 〈z, x〉 = receive x in
let y = send 〈z, y〉 in 〈〉

the configuration

(νxx′yy′)(Mxy ‖ x(ε)! x′(ε) ‖ y(ε)! y′(ε) ‖ My′x′)

is deadlocked. In this case, the individual threads (Mxy and My′x′)
are well-typed. However, the configuration is stuck because send-
ing on x is blocked on receiving on y, while sending on y′ is blocked
on receiving on x′. In combination with the buffers connecting x to
x′ and y to y′, we can see that these dependencies form a cycle. Our
formalization of deadlock is based on such cycles of dependencies;
Carbone and Debois consider a similar criterion for deadlock free-
dom in session-typed π-calculi [8]. We say that a term M is blocked
on channel x, if M is about to send or receive on x:

blocked(x,M) ⇐⇒ M = E[receive x]∨
M = E[send 〈V, x〉]

We say that y depends on x in C if y appears in some thread blocked
by x, or if y depends on some channel z which depends on x.
Formally:

depends(x, y, x(
#»
V)! y(

#»
W))

depends(x, y, φM) ⇐⇒ blocked(x,M) ∧ y ∈ fv(M)
depends(x, y,C) ⇐⇒ C ≡ G[C1 ‖ C2]∧

∃z.depends(x, z,C1) ∧ depends(z, y,C2)

We define deadlocked configurations as those with cyclic depen-
dencies:

deadlocked(C) ⇐⇒ C ≡ G[C1 ‖ C2] ∧ ∃x, y.
depends(x, y,C1) ∧ depends(y, x,C2)

We can now show that well-typed terms are not deadlocked.
The crucial observation is graph theoretic. In a well-typed configu-
ration, each composition partitions the available channels such that
at most one channel is shared between the two subconfigurations.
A cycle cannot have such a partitioning: it must have at least one
composition where the subconfigurations share at least two chan-
nels. That is, if we think of the threads and buffers as the nodes in

7 2015/2/28

a graph, and the edges as indicating channels, then if the graph can
be partitioned where no partition has more than one cut edge, then
it must be cycle free.

Theorem 5. If ∆; Γ `wb C, then ¬deadlocked(C).

Subject reduction ensures that well-typed FST terms can never
reduce to deadlocked configurations.

Corollary 6.
If ∆; Γ ` M : A and φM −→? C, then ¬deadlocked(C).

3.3 Progress and Canonical Forms
FST, just like GV [20], is not a pure language due to the concur-
rency primitives. Thus, a fully evaluated closed term will always
yield a value, but if that value contains channels, then there may be
blocked threads present in the final configuration.

We let H range over buffers and child threads, which we will
subsequently refer to as configuration leaves. We begin by defining
a notion of canonical form for configurations; in particular, this
form identifies the main thread and (for closed configurations) the
blocking channel for each child thread.

Definition 7. A process C is in canonical form if there is a se-
quence of variables x1, . . . , xn, a sequence of configuration leaves
H1, . . . ,Hn, and some term M, such that:

C = (νx1)(H1 ‖ (νx2)(H2 ‖ · · · ‖ (νxn−1)(Hn−1 ‖ �M) . . .))

Lemma 8. If ∆; Γ `wb C, then there is some C′ ≡ C such that
∆; Γ `wb C′ and C′ is in canonical form.

This is established by a counting argument, relying on the
acyclicity of well-typed configurations (established in the previ-
ous section). In the case of processes that share no channels, a
channel of type End can be introduced to assure canonical form.
It is intuitive to see that, if C is a stuck configuration in canonical
form, each thread φMj in C must be blocked either on one of the
preceding ν-bound variables or on one of the free variables of the
configuration.

Theorem 9. Let ∆; Γ `wb C, with C 6−→ and let C′ =
(νx1)(H1 ‖ (νx2)(H2 ‖ · · · ‖ (νxn)(Hn ‖ φN) . . .)) be a canoni-
cal form of C. Then:

1. For 1 ≤ i ≤ n, either Hi is a buffer, or Hi = ♦Mi, for some
term Mi, and blocked(xj,Mi), where j ≤ i or blocked(y,Mi)
for some y ∈ dom(Γ); and

2. Either N is a value or blocked(y,N) for some y ∈ {xi | 1 ≤
i ≤ n} ∪ dom(Γ).

If we assume that C is a closed configuration, we can state a more
precise result.

Theorem 10. Let `wb C, with C 6−→ and let C′ = (νx1)(H1 ‖
(νx2)(H2 ‖ · · · ‖ (νxn)(Hn ‖ φN) . . .)) be a canonical form of C.
Then:

1. For 1 ≤ i ≤ n, either Hi is a buffer, or Hi = ♦Mi, for some
term Mi, and blocked(xi,Mi); and

2. N is a value.

Intuitively, we know that the first thread must be blocked on the first
ν-bound variable, x1. The second thread cannot be blocked on x1,
as it could then reduce, so it must be blocked on a different ν-bound
variable, and so on. Note that some of the xi must appear in N; thus,
as an immediate corollary, we have that closed configurations that
do not return channels evaluate to values.

Corollary 11. Let `wb C such that C 6−→; if the value returned
by C contains no channels, then C ≡ φV for some value V.

3.4 Determinism and Termination
FST is deterministic. In fact, FST enjoys a strong form of determin-
ism, called the diamond property [5].

Theorem 12 (Diamond property). If ∆; Γ ` C, C ≡−→≡ D1,
and C ≡−→≡ D2, then there exists D3 such that D1 ≡−→≡ D3,
and D2 ≡−→≡ D3.

FST is strongly normalizing.

Theorem 13 (Strong normalization). If ∆; Γ ` C, then there are
no infinite ≡−→≡ reduction sequences beginning from C.

As FST satisfies the diamond property, strong normalization
is in fact implied by weak normalization. A canonical approach
to proving strong normalization directly is to construct a logical
relations proof along the lines of Perez et al. [24] taking account
of the impredicativity of FST. The approach we take instead is
to define a translation into Fω, an existing strongly normalizing
language, and show that terms in the image of the translation
simulate reduction in FST.

The full details of the translation are beyond the scope of this
paper. Here we give a brief sketch.

• The problem of defining a translation is simplified somewhat by
observing that we can disregard linearity and subkinding in the
target calculus (it is perfectly acceptable for the target language
to admit terms and reductions that have no equivalent in the
source language).
• The problem can be further simplified by switching to a syn-

chronous semantics and observing that because of the diamond
property synchronous reduction can simulate asynchronous re-
duction (§3.1.1).
• It is straightforward to simulate reductions of row-typed terms

in Fω [18].
• The most interesting part of the translation is the simulation of

concurrency. We do this by a CPS translation. The translation
of send and receive is unsurprising. The translation of fork
is unusual because it is type-directed, differing depending on
whether the channel bound by the forked thread has input,
output, or closed session type.
• Having defined the CPS translation on terms, it is straightfor-

ward to extend it to cover configurations. The interesting case
is parallel composition whose CPS translation is much like that
of fork.

4. Extensions
FST can be straightforwardly extended with additional features.

If we add a fixed point constant, then we lose termination,
but deadlock freedom and determinism continue to hold. Another
standard extension supported by Session Links is recursive types.
While care is needed in defining the dual of a recursive session
type, the treatment is otherwise quite standard. Negative recursive
types allow a fixed point combinator to be defined, so again we
lose termination, but deadlock freedom and determinism continue
to hold.

The price we pay for the strong properties we obtain is that
our model of concurrency is rather weak. For instance, it gives
us no way of implementing a server with any notion of shared
state. Drawing from LAST (and previous work on session-typed
π-calculi), Session Links supports access points, which provide a
much more expressive model of concurrency at the cost of intro-
ducing deadlock. Nevertheless, it is often possible to locally restrict
code to a deadlock-free subset of Session Links.

8 2015/2/28

4.1 Recursion
The grammar of session types we have presented so far is extremely
limited: it cannot express repeated behavior. A typical approach
to doing so is to add recursive session types. Continuing with the
calculator example, we could write a recursive session type to allow
multiple calculations as follows

recσ(?,π).N{Add : ?Int.?Int.!Int.σ,Neg : ?Int.!Int.σ, Stop : End}
Here we have replaced each End with the recursion variable σ;
consequently, we add a new branch to terminate the interaction.

We can straightforwardly extend FST with equi-recursive types.
We add a kinding rule for recursive types

REC
∆, α : Type(Y, Z) ` A

∆ ` recα(Y,z).A

and identify each recursive type with its unrolling:

recα(Y,Z).A = A[recα(Y,Z).A/α]

It is well-known [6, 7] that recursive types complicate the definition
of duality, particularly when the recursion variable appears as a
carried type (that is, as A in ?A.S or !A.S). For example, consider
the simple recursive session type recσ◦,π.?σ.σ. The dual of this
type is not recσ◦,π.!σ.σ, as one would obtain by taking the dual of
the body of the recursive type directly, but is recσ◦,π.!σ.σ instead.
Previous solutions to this problem [6, 7] involve a new notion of
substitution that only applies to the carried types in session types.
We give an alternative, but equivalent, definition that relies on
standard notions of substitution, as follows:

recσX,π.S = recσX,π.(S[σ/σ])

Having added recursive types, one can of course encode a fixed
point combinator. Alternatively, we can add a fixed point constant
to FST, even without recursive types

Σ(fix) = ∀α(•,?).∀β(•,?).
((α→• β)→• (α→• β))→• (α→• β)

with the reduction rule

fix (λf .λx.M) V −→V M{fix (λf .λx.M)/f ,V/x}
Of course, these extensions allows us to write nonterminating

programs, but it is straightforward to show that subject reduction,
progress, deadlock freedom, and determinism continue to hold.

4.2 Access Points
Access points provide a more flexible mechanism for session ini-
tiation than the fork primitive. Intuitively, we can think of access
points as providing a matchmaking service for processes. Processes
may either accept or request connections at a given access point; ac-
cepting and requesting processes are paired nondeterministically.
As a simple example, we can adapt our calculator example to syn-
chronize on an access point instead of a fixed channel:

calcAP = λa z.let c = accept a in
offer c {

Add c→ let 〈x, c〉 = receive c in
let 〈y, c〉 = receive c in
let c = Send 〈x + y, c〉 in

calcAP a z
Neg c→ let 〈x, c〉 = receive c in

let c = Send 〈−x, c〉 in
calcAP a z

MP c→ let 〈x, c〉 = receive c in
calcAP a (z + x)

MR c→ let c = send 〈z, c〉 in
calcAP a z}

We assume some form of recursive definition; we will show later in
this section that access points are themselves sufficient to encode
term-level recursion. We have also extended the calculator with a
single memory register, as is not uncommon for desktop calcula-
tors. The calcAP function takes two arguments: an access point a
and the value of the register z. Note that because access points are
unlimited, a client can make multiple requests on the same access
point, and so we have no need to also build recursion into each in-
teraction with the calculator. The behavior of an individual action
is now

S = N{Add : ?Int.?Int.!Int.End,Neg : ?Int.!Int.End,
MP : ?Int.End,MR : !Int.End}

and the type of calcAP, given the above, is:

calcAP : ∀α.AP(S)→• Int→• α

We can define a client as before, but beginning with a call to
request:

userAP = λz.let c = request a in
let 〈x, c〉 = receive send 〈6 send 〈7, c〉〉 in x

Finally, to compose them we use new to create a fresh access point
and spawn to spawn threads.

let a = new in
spawn (λ◦〈〉.calcAP a);
userAP a

The result of evaluation is again 13.
In order to extend FST with access points, we replace the con-

stant fork with four new constants:
Σ(spawn) = ∀α•,?.(〈〉 →◦ α)→• 〈〉

Σ(new) = ∀σ◦,π.〈〉 →• AP σ
Σ(accept) = ∀σ◦,π.AP σ →• σ

Σ(request) = ∀σ◦,π.AP σ →• σ
A process M is spawned with spawn M, where M is a thunk that
returns an arbitrary unlimited value. The spawn operation can be
defined in terms of fork

spawn M def
= (λxEnd.〈〉)(fork (λxEnd.M 〈〉))

and vice versa:

fork M def
= let z = new 〈〉 in spawn (λx.M (accept z)); request z

Session-typed channels are created through access points. A fresh
access point of type AP S is created with new. Given an access
point L of type AP S we can create a new server channel (accept L),
of session type S, or client channel (request L), of session type S.
Processes can accept and request an arbitrary number of times on
any given access point. Access points are synchronous in the sense
that each accept will block until it is paired up with a corresponding
request and vice-versa.

In order to model access points in the operational semantics we
add a new kind of configuration

C ::= · · · | z(X ,Y)

which associates each access point z with a set of server names X
and a set of client names Y , and we add an associated typing rule

ACCESS
∆ ` Γ : •

∆; Γ, z : AP S,X : S,Y : S ` z(X ,Y)

where we write X : A as shorthand for x1 : A, . . . , xk : A, where
X = {x1, . . . , xk}.

We introduce reduction rules for the constants and for access
points themselves. The reduction rule for access points makes it

9 2015/2/28

clear that the semantics is no longer deterministic.

F[spawn V] −→ F[〈〉] ‖ V 〈〉
F[new 〈〉] −→ (νz)(F[z] ‖ z(∅, ∅))

F[accept z] ‖ z(X ,Y) −→ (νx)(F[x] ‖ z({x}] X ,Y))
F[request z] ‖ z(X ,Y) −→ (νy)(F[y] ‖ z(X , {y}] Y))

z({x}] X , {y}] Y) −→ z(X ,Y) ‖ x(ε)! y(ε)

We must also amend the rules for name restriction and parallel
composition of configurations. This is where deadlock freedom
breaks. First, we add an additional rule for name restriction of
access points.

NEWACCESS

∆; Γ, x : AP S `φ C

∆; Γ `φ (νx)C

Second, we generalize the two parallel composition rules (COMPOSE-
1 and COMPOSE-0) to a single rule (COMPOSE-n) that allows an
arbitrary number of channels to communicate across a boundary.

COMPOSE-n
∆ ` Γ = Γ1 + Γ2

∆; Γ1, x1 : S, . . . , xn : Sn `φ C
∆; Γ2, x1 : S1, . . . , xn : Sn `φ

′
C′

∆; Γ, x1 : S]1, . . . , xn : S]n `φ+φ′
C ‖ C′

The COMPOSE-n rule is the functional analog of the rule for paral-
lel composition in the linear π-calculus [16] and of a generalization
of the MIX [12] and BICUT [2] rules in classical linear logic.

A weak form of progress holds in the presence of access points.

Theorem 14. Let ` C, with C 6−→, then every leaf of C is either:
an access point, a buffer, a blocked thread, or a value.

Adding access points exposes the difference between asyn-
chronous and synchronous semantics. Referring back to the pre-
vious discussion of asynchrony (§3.1.1), here is an example of a
term that reduces to a value according to our asynchronous seman-
tics, but would deadlock under a synchronous semantics.

let z = new 〈〉 in
let z′ = new 〈〉 in
spawn (λ〈〉.let x = accept z in

let y = accept z′ in
send 〈0, x〉;
let 〈v, y〉 = receive y in v)

let x = accept z′ in
let y = accept z in

send 〈0, x〉;
let 〈v, y〉 = receive y in v

With our asynchronous semantics, both sends happen followed
by both receives, and the term reduces to the value 0. With a
synchronous semantics both sends are blocked and the term is
deadlocked.

Concurrent State. With access points we can implement concur-
rent state cells.

State A = AP (!A.End)

newCell : ∀α(•,?).〈〉 → State α
newCell v = let x = new 〈〉 in

spawn (λ〈〉.send 〈v, accept x〉); x
put : ∀α(•,?).State α→ α→ 〈〉

put x v = let 〈 , 〉 = receive (request x) in
spawn (λ〈〉.send 〈v, accept x〉); 〈〉

get : ∀α(•,?).State α→ α
get x = let 〈v, 〉 = receive (request x) in

spawn (λ〈〉.send 〈v, accept x〉); v

Nondeterminism. We can straightforwardly encode a nondeter-
ministic choice by using an access point to generate a nondeter-
ministic boolean value. Suppose that we have ∆; Γ ` M : T and
∆; Γ ` N : T . The following term will nondeterministically choose
between terms M and N:

let z = new 〈〉 in
spawn (λ〈〉.send 〈True, accept z〉);
spawn (λ〈〉.send 〈False, accept z〉);
let 〈x, 〉 = receive (request z) in

case x {True→ M; False→ N}
This thread does leave one thread waiting on accept z. As z is
cannot escpae this thread, it can be safely garbage collected; we
have not included such a garbage collection equivalence, but it
could be added easily.

Recursion. Recursion can in fact be encoded using access points.
We have already seen that access points are expressive enough to
simulate higher-order state. We can now use Landin’s knot (back-
patching) [17] to implement recursion. For instance, the following
term loops forever:

let x = newCell〈〉→〈〉 (λ〈〉.〈〉) in put 〈x, λ〈〉.get x 〈〉〉; get x 〈〉

5. Links with Session Types
We have implemented Session Links, a session typed extension of
the Links web programming language based on FST. The source
code is available online:

https://github.com/links-lang/links/tree/sessions

Links is a functional programming language for the web. From a
single source program, Links generates code to run on all three
tiers of a web application: the browser, the server, and the database.
Links is a call-by-value language with support for ML-style type
inference (extended with support for first-class polymorphism in
a similar manner to GHC [31]). It incorporates a row-type system
that is used for records, variants, and effects, and provides equi-
recursive types. Subkinding is used to distinguish base types from
other types. This is important for enforcing the constraint that
generated SQL queries must return a list of records whose fields
are of base type [18].

In order to keep the presentation uniform and self-contained we
use the concrete syntax of FST rather than that of Links. However,
all of the examples in the paper can be written directly in Links with
essentially the same abstract syntax, modulo the fact that Links uses
Hindley-Milner style type inference.

5.1 Design Choices
Before implementing session types for Links we considered a num-
ber of design choices. Linearity is crucial for implementing session
types. Most existing functional languages (including vanilla Links)
do not provide native support for linear types. We considered three
broad approaches:

1. encode linearity using existing features of the programming
language (as in Pucella and Tov’s Haskell encoding of session
types [26])

2. stratify the language so that the linear fragment of the language
is separated out from the host language (as in Toninho et al’s
work [28])

3. bake linearity into the type system of the whole language (as in
LAST [11])

The appeal of the first approach is that it does not require any
new language features, assuming the starting point is a language

10 2015/2/28

https://github.com/links-lang/links/tree/sessions

with a sufficiently rich type system—that is able to conveniently en-
code parameterized monads [3], for instance. The second approach
is somewhere in between. It allows a linear language to be embed-
ded in an existing host language without disrupting the host lan-
guage. The third approach requires linearity to pervade the whole
of the type system, but opens up interesting possibilities for code
reuse, for instance by using polymorphism over linearity [33] or
using subkinding [22].

Given that we are in the business of developing our own pro-
gramming language, over which we have full control, we decided
to pursue the third option. We wanted to include most of the fea-
tures of our language in the linear fragment, so we did not see a
significant benefit in stratification. We did want to explore possibil-
ities for code-reuse offered by the third approach.

Having chosen the third approach, we were presented with
another choice regarding how to accommodate code reuse. Given
that Links already supported subkinding [18] we elected to adopt
the linear subkinding approach of Mazurak et al. [22].

An advantage of the LAST (and FST) approach to session typ-
ing is that channels are first class and hence support compositional
programming. This is in contrast to the parameterized monad ap-
proach and approaches based on process calculi, in which channels
are just names.

As an example, in FST with recursive types we can construct
lists of channels, and, for instance, define a function to broadcast a
value to a whole list of channels:

broadcast : ∀α•,?σ◦,π.α→ LinList (!α.σ)→ LinList σ
broadcast v xs = linMap (λx.send 〈v, x〉) xs

where LinList A is a linear list data type and linMap is the map
operation over linear lists:

LinList A = recα(◦,?).[Nil; Cons : 〈A, α〉]

linMap : ∀α(◦,?)β(◦,?).(α→ β)→ LinListα→ LinList β
linMap f xs = case xs {Nil→ Nil

Cons 〈x, xs〉 → Cons 〈f x, linMap f xs〉}

An attendant drawback to having first-class channels is that one
must explicitly rebind channels after each operation, often leading
to verbose code. This is in contrast to the parameterized monad
approach and approaches based on process calculi, which implicitly
rebind channels after each communication.

In order to mitigate the need to explicitly rebind channels,
we introduce process calculus style syntactic sugar inspired by
previous work on the correspondence between classical linear logic
and functional sessions [19, 20, 32]. To ease the job of writing a
parser, we explicitly delimit process calculus style syntactic sugar
with special brackets /− ..

/ x(y).Q . def
= let 〈x, y〉 = receive x in /Q .

/ x[M].Q . def
= let x = send〈M, x〉 in /Q .

/ ` x.Q . def
= let x = select ` x in /Q .

/ offer x {`i → Qi}i .
def
= offer x {`i(x)→ /Qi .}i

/ {M} .
def
= M

We let Q range over process calculus style terms. The desugaring of
input, output, selection, and branching is direct. The {−} brackets
allow values to be returned from the tail of a process calculus
expression. As an example, we can more concisely rewrite the
simple calculator server of (§1) as follows:

sugarCalc = λc./ offer c {
Add → c(x).c(y).c[x + y].{〈〉}
Neg→ c(x).c[−x].{〈〉}} .

In general, the syntactic sugar allows us to take advantage of a
process-calculus style when a lot of rebinding is going on and then
switch back to a functional style for compositional programming.

5.2 Type Reconstruction
Vanilla links provides automatic type reconstruction as in ML; we
would hope to extend this approach to Session Links. Alas, as a
consequence of the treatment of application, the types of higher-
order functions in FST are not uniquely determined by their use;
thus, type reconstruction in Session Links is necessarily incom-
plete. As an example, consider the following FST term, which im-
plements function composition:

Λα1, α2, α3.λfα1→Y1α2 .λgα2→Y2α3 .λxα1 .f (g x).

This term is well-typed for arbitrary choices for Y1 and Y2, giving
four distinct terms, each with distinct types, and Session Links
type reconstruction must make an arbitrary choice among them.
We could imagine repairing this by adding additional forms for
quantification over linearity [33], or by introducing subtyping for
the function types (as in LAST). Session Links does not have
complete type inference; we prefer τ →• τ ′ to τ →◦ τ ′ when
computing the types of expressions. This has the advantage of
working for existing functional code, but is arguably less general
(as a value of type τ →◦ τ ′ can be constructed from a value of
type τ →• τ ′, but not vice versa).

Functions. We also observe that, even in cases where Session
Links expressions have principal types, they are not always as
general as we might hope. Consider the curried pair constructor;
we have two ways to write this, corresponding to the following two
FST terms:

p = ΛαType(◦,?).ΛβType(◦,?).λ•xα.λ◦yβ .〈x, y〉
q = ΛαType(•,?).ΛβType(◦,?).λ•xα.λ•yβ .〈x, y〉

We can distinguish between the corresponding Session Links
terms, as Session Links distinguishes between λ• and λ◦. How-
ever, note that neither of these definitions is as generic as we might
hope. The first accepts more types for α than the second, but the
inner function is always linear, whether or not the instantiation of
α requires it. The second constructs an unlimited inner function,
but at the cost of requiring that α be unlimited. There is no FST
term that can behave as either, depending on α. In future we plan
to explore the use of kind polymorphism (and in particular poly-
morphism over linearity) to mitigate the issues described above.

Unlike general subtyping, implicit subkinding in Links does
not significantly affect the implementation of type inference in the
source language as there are no higher kinds. Aside from the issues
discussed above, our limited use of subkinding seems pleasantly
well-behaved in practice.

6. Related Work
Session types were originally proposed by Honda [13], and later
extended by Takeuchi et al. [27] and by Honda et al. [14]. Honda’s
system relies on a substructural type system (in which channels
cannot be duplicated or discarded). Polyadic linear π-calculus was
introduced by Kobayashi et al. [16], who additionally describe a
notion of linearized channels similar to the sequencing provided by
session types. Kobayashi [15] uses variant types to express choice
for linearized channels. Dardha et al. [10] show the correctness
of this encoding and extend it to polymorphism and subtyping;
Dardha [9] extends the encoding to recursive and replicated session
types.

Abramsky [1] proposed a lambda calculus term language for
intuitionistic linear logic. Vasconcelos et al. [30] develop a lan-
guage that integrates session-typed communication primitives and

11 2015/2/28

a linear functional language. Gay and Vasconcelos [11] extend the
approach to describe asynchronous communication with statically-
bounded buffers. Mazurak and Zdancewic’s lolliproc language [21]
extends a linear λ-calculus with control operators and is capable of
expressing session types. Mazurak et al. [22] demonstrate the use of
subkinding for unlimited types in a linear lambda calculus. Toninho
et al. [28] give a stratified language including both an intuitionis-
tic functional language and a linear session-typed process calculus.
Their system has been implemented as the language SILL [25].
Pucella and Tov [26] give an implementation of session types in
Haskell, built on an existing unsafe communication mechanism.
Their approach relies on capturing the session state in a parame-
terized monad [3], and encoding session types and duality using
the Haskell class system. They also present a core functional cal-
culus with communication primitives, and prove the safety of their
approach when treated as a library for this core language.

7. Conclusion and Future Work
We have presented an account of lightweight functional session
types, extending our core session-typed linear λ-calculus [20] with:
the row typing of our core language for Links [18], the subkind-
ing for linearity of Mazurak and Zdancewic’s lightweight linear
types [22], and the asynchrony and access points of Gay and Vas-
concelos’s linear type theory for asynchronous session types [11].
We conclude by highlighting several areas of future work.

There is a large gap between variants of FST with and without
access points. We would like to investigate abstractions that add
some of the expressive power of access points, but are better be-
haved. In particular, it would be interesting to explore richer type
systems for enforcing deadlock-freedom and race freedom, while
allowing some amount of stateful concurrency. More immediately,
it would also be natural to exploit the existing effect type system
of Links to statically enforce desirable properties, for instance, by
associating the use of access points with a particular effect type.

In this work, we have considered the extension of FST with
general recursive types. We would also like to develop a theory
of total recursive and corecursive session types based on Baelde’s
work on fixed point combinators for classical linear logic [4], and
relate this to total recursive and corecursive data types and to
Toninho et al.’s account of corecursive session types [29].

The connections between continuations and concurrency are
well known. Indeed, our strong normalization argument relies on a
CPS transformation. It would be interesting to investigate the exact
relationship between GV, Mazurak and Zdancewic’s lolliproc [21],
and other calculi with first-class continuations such as Parigot’s λµ-
calculus [23].

References
[1] S. Abramsky. Computational interpretations of linear logic. Theor.

Comput. Sci., 111(1&2):3–57, 1993.

[2] S. Abramsky, S. J. Gay, and R. Nagarajan. Interaction categories
and the foundations of typed concurrent programming. In Deductive
Program Design. Springer, 1996.

[3] R. Atkey. Parameterised notions of computation. J. Funct. Program.,
19(3-4):335–376, 2009.

[4] D. Baelde. Least and greatest fixed points in linear logic. ACM Trans.
Comput. Logic, 13(1):2:1–2:44, Jan. 2012.

[5] H. P. Barendregt. The Lambda Calculus Its Syntax and Semantics,
volume 103. North Holland, revised edition, 1984.

[6] G. Bernardi and M. Hennessy. Using higher-order contracts to model
session types. CoRR, abs/1310.6176, 2013.

[7] V. Bono and L. Padovani. Typing copyless message passing. Logical
Methods in Computer Science, 8(1), 2012.

[8] M. Carbone and S. Debois. A graphical approach to progress for
structured communication in web services. In ICE, 2010.

[9] O. Dardha. Recursive session types revisited. In BEAT, volume 162
of EPTCS, pages 27–34, 2014.

[10] O. Dardha, E. Giachino, and D. Sangiorgi. Session types revisited. In
PPDP. Springer, 2012.

[11] S. J. Gay and V. T. Vasconcelos. Linear type theory for asynchronous
session types. J. Funct. Program., 20(01):19–50, 2010.

[12] J. Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987.
[13] K. Honda. Types for dyadic interaction. In CONCUR. Springer, 1993.
[14] K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and

type discipline for structured communication-based programming. In
ESOP. Springer, 1998.

[15] N. Kobayashi. Type systems for concurrent programs. In 10th An-
niversary Colloquium of UNU/IIST. Springer, 2002.

[16] N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the π-
calculus. In POPL. ACM, 1996.

[17] P. J. Landin. The mechanical evaluation of expressions. Computer
Journal, 6(4):308–320, 1964.

[18] S. Lindley and J. Cheney. Row-based effect types for database inte-
gration. In B. C. Pierce, editor, TLDI. ACM, 2012.

[19] S. Lindley and J. G. Morris. Sessions as propositions. In PLACES,
2014.

[20] S. Lindley and J. G. Morris. A semantics for propositions as sessions.
In ESOP. Springer, 2015. To appear.

[21] K. Mazurak and S. Zdancewic. Lolliproc: to concurrency from clas-
sical linear logic via Curry-Howard and control. In P. Hudak and
S. Weirich, editors, ICFP. ACM, 2010.

[22] K. Mazurak, J. Zhao, and S. Zdancewic. Lightweight linear types in
System F◦. In A. Kennedy and N. Benton, editors, TLDI. ACM, 2010.

[23] M. Parigot. λµ-calculus: An algorithmic interpretation of classical
natural deduction. In LPAR. Springer, 1992.

[24] J. A. Pérez, L. Caires, F. Pfenning, and B. Toninho. Linear logical re-
lations and observational equivalences for session-based concurrency.
Inf. Comput., 239:254–302, 2014.

[25] F. Pfenning, L. Caires, B. Toninho, and D. Griffith. From linear logic
to session-typed concurrent programming. Tutorial at POPL 2015,
2015.

[26] R. Pucella and J. A. Tov. Haskell session types with (almost) no class.
In A. Gill, editor, Haskell. ACM, 2008.

[27] K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language
and its typing system. In PARLE. Springer, 1994.

[28] B. Toninho, L. Caires, and F. Pfenning. Higher-order processes,
functions, and sessions: A monadic integration. In ESOP. Springer,
2013.

[29] B. Toninho, L. Caires, and F. Pfenning. Corecursion and non-
divergence in session-typed processes. In TGC. Springer, 2014.

[30] V. T. Vasconcelos, S. J. Gay, and A. Ravara. Type checking a multi-
threaded functional language with session types. Theor. Comput. Sci.,
368(1-2):64–87, 2006.

[31] D. Vytiniotis, S. Weirich, and S. L. Peyton Jones. FPH: first-class
polymorphism for Haskell. In J. Hook and P. Thiemann, editors, ICFP.
ACM, 2008.

[32] P. Wadler. Propositions as sessions. J. Funct. Program., 24(2-3):384–
418, 2014.

[33] D. Walker. Substructural Type Systems. In B. C. Pierce, editor,
Advanced Topics in Types and Programming Languages, chapter 1.
MIT Press, 2005.

12 2015/2/28

	Introduction
	The Core Language
	Syntax
	Typing and Kinding Judgments

	Semantics
	Expressions, Configurations and Reduction
	Asynchrony

	Deadlock
	Progress and Canonical Forms
	Determinism and Termination

	Extensions
	Recursion
	Access Points

	Links with Session Types
	Design Choices
	Type Reconstruction

	Related Work
	Conclusion and Future Work

