
DRAFT—Do not distribute

Embedding Session Types in Haskell

Sam Lindley J. Garrett Morris
The University of Edinburgh, UK

{Sam.Lindley,Garrett.Morris}@ed.ac.uk

Abstract
We present a novel embedding of session-typed concurrency in
Haskell. We extend an existing HOAS embedding of linear λ-
calculus with a set of core session-typed primitives, using indexed
type families to express the constraints of the session typing disci-
pline. We give two interpretations of our embedding, one in terms
of GHC’s built-in concurrency and another in terms of purely func-
tional continuations. Our safety guarantees, including deadlock
freedom, are assured statically and introduce no additional runtime
overhead.

1. Introduction
Many communication protocols specify not just the types or for-
mats of data or commands in the protocol, but also place restrictions
on the order in which data is to be communicated. For example, the
simple mail transfer protocol (SMTP) not only includes commands
to specify the sender, recipients, and contents of an email message,
but also requires that the sender command precede the recipient
commands, which must in turn precede the commands giving the
message body. Session types [6, 7, 17] capture such protocols in
the types of communication channels. Session types have two dis-
tinguishing features. First, the endpoints of a channel must be given
dual types: if one process expects to send a value along some chan-
nel, the process on the other end of the channel must expect to
receive it. Second, session types must evolve over the course of a
computation to prevent processes from repeating or skipping steps
of the protocol.

Much of the existing work presents session types in the context
of core concurrency-focused calculi (frequently based on either π-
calculus or linear λ-calculus). This gives a holistic view of session
types, integrating aspects of their syntax, the distinguishing aspects
of the types themselves (such as duality), and their concurrent inter-
pretations. However, it makes less clear how session types can be
integrated into existing languages or the relationship between the
concurrency expressed using session typing and that provided by
existing concurrent primitives. We have developed a core session-
typed functional calculus called GV [9, 10]. GV has strong connec-
tions to classical linear logic; consequently, its type system guaran-
tees deadlock freedom in addition to typical safety properties. Our
development of GV is also intended to be modular. We build on

[Copyright notice will appear here once ’preprint’ option is removed.]

a standard linear λ-calculus, and attempt to minimize the number
of concurrent features, preferring to express concurrent features in
terms of λ-calculus constructs when possible. GV’s metatheory is
developed modularly as well; for example, this allows us to show
that the addition of several non-logical features does not compro-
mize GV’s deadlock freedom, even though the extended calculus
no longer enjoys a tight correspondence with classical linear logic.

In this paper, we present a parameterized tagless embedding [1,
3] of GV in Haskell. (We will use the term parameterized tagless
or just tagless in preference to finally tagless or tagless finally.)
GV’s modularity makes it ideally suited to this purpose. First, we
can build on a standard linear calculus; we use Polakow’s [14] em-
bedding of linear λ-calculus in Haskell. To support linear calculi
with side effects, such as GV’s concurrency, we build a monadic
interpretation of Polakow’s embedding. We characterize the prim-
itives GV adds to the core λ-calculus, and give two interpretations
of those primitives, one in terms of the concurrency operations in
the IO monad and another that expresses concurrency using contin-
uations (and so uses the continuation monad). The former demon-
strates that GV’s primitives can be interpreted directly, without in-
troducing additional encoding overhead, while the latter validates
that they also have a purely functional interpretation. Neither Po-
lakow’s embedding of linear λ-calculus nor our embedding of GV
require the programmer to supply types explicitly, either directly or
with proxy arguments, showing that Haskell’s type system and type
inference are expressive enough for session types.

The paper proceeds as follows. We review session types and the
role of linearity in session typing (§2), and Polakow’s embedding
of linear λ-calculus in Haskell (§3). In the course of the latter, we
introduce our monadic interpretation. We introduce the core GV
calculus and give its semantics (§4). We present two implementa-
tions of GV. The first uses the IO monad, and demonstrates that
GV’s static guarantees need introduce no runtime overhead. We
also show extensions of this embedding that increase its expressiv-
ity (at the cost of some of its static guarantees), demonstrating GV’s
modular nature. The second realizes the CPS semantics of GV in
the continuation monad. The CPS semantics is non-parametric in
that the translation of some term forms depends on the type at
which they are used. To restore parametricity, we introduce a po-
larized version of the calculus (§6). We then show that we can im-
plement the original language in terms of its polarized variant (§7).
These implementations show that GV concurrency can be used in a
purely functional setting (or other setting in which using IO would
be undesirable, such as STM), and shows that our embeddings are
are suitable for metaprogramming. We conclude by discussing fu-
ture work and the difficulties we discovered in the course of our
implementation (§8).

This document is literate Haskell. An extended (albeit illiterate)
version of the code in this paper is available at the following URL:

http://github.com/jgbm/gvinhs/

1 2016/6/11

http://github.com/jgbm/gvinhs/

2. Session Types and Linearity
Session types, originally proposed by Honda [6], are an approach to
statically verifying communicating concurrent programs. Session
types specify both the format (i.e., data type) and ordering of
messages along channels. As a simple example, we consider the
client-side protocol for a concurrent calculator. The session type
for a single binary operation on integers might be as follows:

Int 〈!〉 (Int 〈!〉 (Int 〈?〉 End?))

The type T 〈!〉 S means to send a T and then continue as S, the
type T 〈?〉 S means to receive a T and then continue as S, and the
type End? means to wait for the channel to close. The whole type
means send two integers, receive an integer in return, and then wait
for communication to end. We assume that 〈!〉 and 〈?〉 group to the
right and omit parentheses accordingly. Session types also include
constructs corresponding to selecting and offering a choice. For
example, our calculator might offer a choice between one binary
and one unary operation. The client-side view of its protocol would
then be captured by the following session type:

(Int 〈!〉 Int 〈!〉 Int 〈?〉 End?) 〈++〉 (Int 〈!〉 Int 〈?〉 End?)

The type S1 〈++〉 S2 means to select between S1 and S2.
One important feature of session types is duality: if the session

type above represents the client’s view of a communication, the
server must have dual behavior. The session type of the correspond-
ing server is as follows:

(Int 〈?〉 Int 〈?〉 Int 〈!〉 End!) 〈&&〉 (Int 〈?〉 Int 〈!〉 End!)

The offer construct S1 〈&&〉S2 on the server is dual to the selection
construct S1 〈++〉S2 in the client: the server must be able to provide
either behavior, while the client only has to select one of the offered
behaviors. Unlike many presentations of session types, but inspired
by their logical connections, our session types represent closing of
channels explicitly . The type End! means to close the channel,
while End? means to wait for the channel to close.

Functional session-typed calculi typically present communica-
tion primitives as transforming channels of one session type into
channels of another session type. For example, the sending prim-
itive might have a type like T → (T 〈!〉 S) → S, reflecting that
it consumes a channel that expects an output to occur, and returns
a new channel without that expectation (i.e., with the expectation
satisfied). However, this in itself is not enough to assure that proto-
cols are followed: a process could reuse the original channel (with
type T 〈!〉 S) to send unexpected T values, or could discard chan-
nels without performing the expected communications. To rule out
these possibilities, session-typed calculi either rely on linear type
systems [5, 19] or on some amount of dynamic checking [11, 16].
GV is a linear calculus: its type system excludes duplication or dis-
carding of variables, and thus statically assures session fidelity, that
is, that all communication along a channel satisfies the protocol
specified by its session type.

3. Linear λ-Calculus, Monadically
GV is based on extending a standard linear λ-calculus with a small
set of concurrent primitives. This simplifies the metatheory of GV,
by relying on standard metatheoretic results for (linear) λ-calculi.
It is also beneficial for embedding GV in Haskell. It allows us to
build on an existing embedding of linear λ-calculus in Haskell, and
thus to distinguish those aspects of the language unique to session
typing from those aspects shared by other linear λ-calculi.

We build on Polakow’s [14] embedding of linear λ-calculus in
Haskell. This is a parameterized tagless embedding, using higher-
order abstract syntax (HOAS) to account for the treatment of
binders. We will give a brief overview of this embedding, and

then show how it can be given a monadic interpretation. We refer
readers to Polakow [14] for a full description of the embedding and
the required type-level machinery.

Tagless embeddings use terms of the meta language to embed
terms of an object language. Parameterising over the concrete rep-
resentation of an object term, for instance using type classes, al-
lows the same term to be given multiple interpretations. A canoni-
cal example is a parameterized tagless embedding of simply-typed
lambda calculus.

class Exp repr where
lam :: (repr a → repr b)→ repr (a → b)
app :: repr (a → b)→ repr a → repr b

A term of type repr a represents the type-correct construction of
a λ-term of type a; each type constructor repr denotes a partic-
ular concrete interpretation of simply-typed λ-calculus. Because
Haskell’s type system includes that of simply-typed λ-calculus,
there is a natural correspondence between the typing of terms of the
meta language and the typing of terms of the object language. The
same is not true for embedding linear λ-calculus. For reference, we
give typing rules for variables, abstraction, and application in linear
λ-calculus.

x : A ` x : A

∆, x : A `M : B

∆ ` λx.M : A(B

∆ `M : A(B ∆′ ` N : A

∆]∆′ `M ̂ N : B

The variable rule insists that there can be no other variables in the
environment, while the application rule divides its typing environ-
ment among its hypotheses. (We write ∆] ∆′ to indicate that ∆
and ∆′ must have disjoint domains.) These do not correspond to the
treatment of variables and functions in Haskell, and so we cannot
immediately treat a Haskell term (of a type like repr a → repr b)
as a linear λ-calculus term of type repr (a (b).

To address this problem, Polakow uses representation types
which make explicit the linear variable environment as well as the
result type. Doing so allows him to capture the treatment of linear
assumptions in the types of the term constructors, and thus to define
a HOAS embedding of type-correct linear λ-calculus. He gives an
alternative presentation of the typing rules for linear λ-calculus,
using judgments of the form

Γ; ∆ \∆′ `M : A

Intuitively, ∆ contains the assumptions available before checking
M , while ∆′ contains the assumptions remaining after checking
M ; their difference, then, reflects the assumptions used by M . To
track the use of specific assumptions, as required by the rule for
abstraction, assumptions are replaced by the special assumption �
instead of being removed from the environment when they are used.
Finally, Γ captures a unrestricted (i.e., non-linear) environment,
allowing the use of both linear and non-linear types in linear λ-
calculus terms. Figure 1 gives the linear λ-calculus typing rules
in this form. The rules include linear and intuitionistic abstraction
and application (A(B and A� B), linear pairs (A⊗B), linear
sums (A ⊕ B), and the ! modality, which can be used to move
between the linear and unrestricted contexts. We have omitted
several constructs included in Polakow’s embedding, namely the
additive sum A & B and its unit >. The treatment of > adds
significant complication to the overall type system (and thus to the
embedding), as it can consume arbitrary linear assumptions. As we
have no use for these constructs in our embedding of GV, we chose
a simpler type system.

We now review Polakow’s HOAS embedding of this type sys-
tem in Haskell. We begin by defining the linear types:

2 2016/6/11

Γ; ∆, x : A,∆′ \∆,�,∆′ ` x : A

Γ; ∆, x : A \∆′,� `M : B

Γ; ∆ \∆′ ` λx.M : A(B

Γ; ∆ \∆′ `M : A(B Γ; ∆′ \∆′′ ` N : A

Γ; ∆ \∆′′ `M ̂ N : B

Γ; ∆ \∆′ `M : A Γ; ∆′ \∆′′ ` N : B

Γ; ∆ \∆′′ ` (M,N) : A⊗B
Γ; ∆ \∆′ `M : A⊗B Γ; ∆′, x : A, y : B \∆′′,�,� ` N : C

Γ; ∆ \∆′′ ` let (x, y) = M in N : C

Γ; ∆ \∆ ` () : 1

Γ; ∆ \∆′ `M : 1 Γ; ∆′ \∆′′ ` N : A

Γ; ∆ \∆′′ ` let () = M in N : A

Γ; ∆ \∆′ `M : A

Γ; ∆ \∆′ ` inlM : A⊕B
Γ; ∆ \∆′ `M : B

Γ; ∆ \∆′ ` inrM : A⊕B

Γ; ∆ \∆′ `M : A⊕B Γ; ∆′, x : A \∆′′,� ` N1 : C
Γ; ∆′, y : B \∆′′,� ` N2 : C

Γ; ∆ \∆′′ ` case M of inlx 7→ N1 | inr y 7→ N2 : C

Γ; · \ · `M : A

Γ; ∆ \∆ ` !M : !A

Γ; ∆ \∆′ `M : !A
Γ, x : A; ∆′ \∆′′ ` N : B

Γ; ∆ \∆′′ ` let !x = M in N : B

Γ, x : A; ∆ \∆ ` x : A

Γ, x : A; ∆ \∆′ `M : B

Γ; ∆ \∆′ ` λx.M : A� B

Γ; ∆ \∆′ `M : A� B Γ; · \ · ` N : A

Γ; ∆ \∆′ `M N : B

Figure 1: Linear λ-calculus typing rules.

newtype a (b = Lolli {unLolli :: a → b}
data a ⊗ b = Tensor a b
data One = One
data a ⊕ b = Inl a | Inr b
newtype a � b = Arrow {unArrow :: a → b}
newtype Bang a = Bang {unBang :: a }
infixr 5(,�

Note that� is the intuitionistic function space: a � b is isomor-
phic to Bang a (b.

Next, we present the encodings of terms, as the methods of a
class LLC of interpretations of linear λ-calculus. The characteri-
zation of terms includes not just their types, as in standard tag-
less embeddings, but also captures the linear environment. Po-
lakow represents the linear environment by (type-level) lists of type
Maybe Nat where Nat is a standard Peano encoding of the natural
numbers.

data Nat = Z | S Nat

Each entry in the list represents the presence of a particular vari-
able in the environment, with � denoted by Nothing. As the types
of terms are already captured in the encoding, the encoding of the
environment can omit them. The representation is also parameter-
ized by a counter v used to generate fresh naturals.

class LLC (repr :: Nat→ [Maybe Nat]→ [Maybe Nat]
→ ?→ ?) where

llam :: (LVar repr v a →
repr (S v) (Just v : i) (Nothing : o) b)
→ repr v i o (a (b)

(̂) :: repr v i h (a (b)→ repr v h o a → repr v i o b

Linear application is a simple example of the encoding. The (̂)
method takes two terms, one of type a (b and one of type a ,
threading the initial environment through the types of the terms.
The result term of of type b. The fresh index v is unused as appli-
cation does not introduce binders. Linear abstraction demonstrates
the treatment of binders. The argument is a function from a lin-
ear variable (of type LVar repr v a) to a term of type b, which
is required to have used the new variable. Note that binders in the
subterm will be numbered from S v . We will return to the defini-
tion of the variable type LVar shortly. Other linear term forms are
defined similarly.

(⊗) :: repr v i h a → repr v h o b → repr v i o (a ⊗ b)
letStar :: repr v i h (a ⊗ b)

→ (LVar repr v a → LVar repr (S v) b →
repr (S (S v))

(Just v : Just (S v) : h)
(Nothing : Nothing : o)
c)

→ repr v i o c

one :: repr v i i One
letOne :: repr v i h One→ repr v h o a → repr v i o a

inl :: repr v i o a → repr v i o (a ⊕ b)
inr :: repr v i o b → repr v i o (a ⊕ b)
letPlus :: repr v i h (a ⊕ b)

→ (LVar repr v a →
repr (S v) (Just v : h) (Nothing : o) c)

→ (LVar repr v b →
repr (S v) (Just v : h) (Nothing : o) c)

→ repr v i o c

The treatment of unrestricted terms is similar. The type UVar repr a
represents an unrestricted variable of type a . In the rules for ($$)
and bang, we require that the subterm use no linear assumptions.

ilam :: (UVar repr a → repr v i o b)
→ repr v i o (a � b)

($$) :: repr v i o (a � b)→ repr v o o a
→ repr v i o b

bang :: repr v i i a → repr v i i (Bang a)
letBang :: repr v i h (Bang a)

→ (UVar repr a → repr v h o b)
→ repr v i o b

We return to the encoding of variables. A linear variable
LVar repr v a for representation repr with index v and type a
is a term of type a that replaces Just v with Nothing in its envi-
ronment:

type LVar repr (v :: Nat) a =
∀(w :: Nat) (i :: [Maybe Nat]) (o :: [Maybe Nat]).
Consume v i o ⇒ repr w i o a

The type class Consume implements the details of the environ-
ment transformation; we omit it here, for space reasons, but its
definition can be found in Polakow [14]. An unrestricted variable
UVar repr a has no effect on the linear environment:

type UVar repr a = ∀(v :: Nat) (i :: [Maybe Nat]).repr v i i a

Polakow gives a representation of linear λ-calculus terms of
type a as Haskell terms of the same type; this shows that the HOAS

3 2016/6/11

encoding need introduce no run-time overhead. However, it is lim-
ited to expressing pure computations (as the representation is in
terms of pure Haskell terms). We seek a notion of side effects ex-
pressive enough to capture GV concurrency, but without requir-
ing changies to the signature of LLC. Our solution is to define a
monadic representation for linear λ-calculus terms:

newtype RM (m :: ?→ ?)
(vid :: Nat)
(hi :: [Maybe Nat])
(ho :: [Maybe Nat])
(a :: ?)

= RM {unRM ::m (Mon a m)}

eval :: RM m v ′[] ′[] a → m (Mon a m)
eval = unRM

The representation type RM is parameterized by a monad m , so
RM m v i o a represents the linear λ-calculus terms of type
a . However, unlike Polakow’s representation, we cannot define
RM in an entirely uniform way: the representation of an a (b
function cannot simply be m (a → b), but must instead be
m (a → m b). We account for this by introducing a type family
Mon, which maps from the linear type constructors (such as (
and ∗) to their monadic interpretations (again parameterized by the
particular monad m).

type family Mon (t :: ?) :: (?→ ?)→ ?

We can then introduce monadic versions of each of the linear type
constructors.

newtype MFun (a :: (?→ ?)→ ?) (b :: (?→ ?)→ ?)
(m :: ?→ ?) =

MFun {unMFun :: a m → m (b m)}
type instance Mon (a (b) = MFun (Mon a) (Mon b)
type instance Mon (a � b) = MFun (Mon a) (Mon b)

newtype MProd a b (m :: ?→ ?) =
MProd {unMProd :: (a m, b m)}

type instance Mon (a ⊗ b) = MProd (Mon a) (Mon b)

data MOne (m :: ?→ ?) = MOne
type instance Mon One = MOne

newtype MSum a b (m :: ?→ ?) =
MSum {unMSum :: Either (a m) (b m)}

type instance Mon (a ⊕ b) = MSum (Mon a) (Mon b)

type instance Mon (Bang a) = Mon a

Finally, we can give the LLC instance for RM m; the methods are
straightforward liftings of the corresponding methods in the non-
monadic case.

instance Monad m ⇒ LLC (RM m) where
llam f =

RM $ return $ MFun $ λx → unRM $ f $ RM (return x)
f ̂ x = RM $ do f ′ ← unRM f

x ′ ← unRM x
unMFun f ′ x ′

x ⊗ y = RM $ do x ′ ← unRM x
y ′ ← unRM y
return (MProd (x ′, y ′))

letStar xy f = RM $ unRM xy >>= unRM ◦ f ′
where f ′ (MProd (x , y)) = f (RM $ return x)

(RM $ return y)

one = RM $ return MOne
letOne x y = RM (unRM x >>= const (unRM y))

The remainder of the cases are similarly routine; the details can be
found in the extended version online.

Our construction of a monadic interpretation of linear λ-
calculus is (unsurprisingly) similar to the construction Carette et

al. [3] for a CPS interpretations of their tagless embedding of λ-
calculus. The primary difference is in the details of our treatment
of functions. Our introduction of the Mon type family follows from
their observation that the treatment of functions and other values
of base type cannot be uniform. However, unlike Carette et al., we
do not limit the domain of types that can appear in our represen-
tations; in particular, we will later want to extend the grammar of
linear types with session types. Instead, we explicitly wrap values
of base type, and extend the linear calculus to permit application of
base functions to base values.

newtype Base a = Base {unBase :: a }
class LLC (repr :: Nat→ [Maybe Nat]→ [Maybe Nat]

→ ?→ ?) where
...
constant :: a → repr v i i (Base a)
($$$) :: repr v i h (Base (a → b))

→ repr v h o (Base a)
→ repr v i o (Base b)

The interpretation of these methods in the monadic representation
is straightforward.

newtype MBase a m = MBase {unMBase :: a }
type instance Mon (Base a) = MBase a

instance Monad m ⇒ LLC (RM m) where
...
constant x = RM (return (MBase x))
RM m $$$ RM n = RM $

do MBase f ← m
MBase x ← n
return $ MBase (f x)

4. The GV Calculus
GV [9, 10] draws on a line of research on session types in func-
tional languages. Vasconcelos et al. [19] and Gay and Vasconce-
los [5] initially explored the integration of session types and func-
tional programming. Building on work by Caires and Pfenning [2],
Wadler [20] presented a correspondence between classical linear
logic (CLL) and a session-typed process calculus; he also demon-
strated a type-preserving translation from a simple functional lan-
guage (inspired by the work of Gay and Vasconcelos) and his pro-
cess calculus. Drawing on its correspondence to CLL, Wadler’s cal-
culi guarantee deadlock freedom as well as session fidelity. GV
is based on Wadler’s functional calculus; in our work, we have
focused on distinguishing its functional and concurrent features,
have given it a direct semantics (with semantics-preserving transla-
tions to and from Wadler’s CLL-based process calculus), and have
shown extensions of GV that increase its expressivity without (nec-
essarily) giving up its metatheoretic properties. This section will
introduce GV’s types, show how they extend linear λ-calculus, and
present our tagless embedding of GV.

GV session types S are given by the following grammar, in
which T can range over arbitrary (Haskell) types:

S ::= T 〈?〉 S | S1 〈&&〉 S2 | End?

| T 〈!〉 S | S1 〈++〉 S2 | End!

A session type on a channel captures the expected communication
along that channel. Types T 〈?〉S and T 〈!〉S denote receiving and
sending values of type T , with the remaining communication cap-
tured by S. Types S1 〈&&〉 S2 and S1 〈++〉 S2 reflect offering and
making a choice between expectations S and S′. Finally, End? and
End! reflect closing a channel (where the End? endpoint will wait
for the End! endpoint to close). We introduce Haskell types corre-
sponding to each session type constructor; as we intend them to be
used as indices in the representation of GV, we do not introduce
data constructors for these types.

4 2016/6/11

data t 〈?〉 s; data s1 〈&&〉 s2; data End?

data t 〈!〉 s; data s1 〈++〉 s2; data End!

We have intentionally chosen not to define session types by
datatype promotion, so that the grammar of session types admits
further extensions. We will take advantage of this openness later
when we introduce a notion of polarized session types (§6); our
previous work [9, 10], discusses extending GV session types with
polymorphism, unrestricted channels, and recursion. A central fea-
ture of session types is duality: if the process on one end of a
channel expects to send a value of type T , the process on the other
end should expect to receive a value of type T . We write S to
denote the dual of session type S, defined as follows:

T 〈?〉 S = T 〈!〉 S T 〈!〉 S = T 〈?〉 S
S1 〈&&〉 S2 = S1 〈++〉 S2 S1 〈++〉 S2 = S1 〈&&〉 S2

End? = End! End! = End?

We realize duality directly in Haskell, using an indexed type family.

type family Dual s :: ?
type instance Dual (t 〈?〉 s) = t 〈!〉 Dual s
type instance Dual (t 〈!〉 s) = t 〈?〉 Dual s
type instance Dual (s1 〈&&〉 s2) = Dual s1 〈++〉 Dual s2
type instance Dual (s1 〈++〉 s2) = Dual s1 〈&&〉 Dual s2
type instance Dual End? = End!

type instance Dual End! = End?

We also introduce a type class characterizing session types, captur-
ing that duality for session types must be involutive.

class (Dual (Dual s)∼s)⇒ Session s
instance Session s ⇒ Session (t 〈?〉 s)
instance Session s ⇒ Session (t 〈!〉 s)
instance Session End?

instance Session End!

instance (Session s1,Session s2)⇒ Session (s1 〈&&〉 s2)
instance (Session s1,Session s2)⇒ Session (s1 〈++〉 s2)

type DualSession (s :: ?) = (Session s, Session (Dual s))

Our session types differ from Honda’s original specification [6]
only in the treatment of closed channels: he provides a single, self-
dual session type End which imposes no expectations on processes,
where we require an explicit channel-closing synchronization. This
change stems from Wadler’s identification of session types with
the propositions of CLL: linear logic has no self-dual proposition
to stand in for End.

The concurrent portion of GV is defined by a collection of poly-
morphic constants, corresponding to the introduction and elimina-
tion of session types:

fork :: (S (End!)(S
send :: T ((T 〈!〉 S)(S
recv :: (T 〈?〉 S)(T ⊗ S
wait :: End? (1

chooseLeft :: (S1 〈++〉 S2)(S1

chooseRight :: (S1 〈++〉 S2)(S2

offer :: (S1 〈&&〉 S2)((S1 (T)((S2 (T)(T

The only introduction form for session types is fork; the remain-
ing constructs eliminate session types (by performing the expected
communication). We define a class of GV representations, extend-
ing our class of linear λ-calculus representations.

class GV (ch :: ?→ ?)
(repr :: Nat→ [Maybe Nat]→ [Maybe Nat]

→ ?→ ?) | repr → ch where
send :: DualSession s

⇒ repr v i h t
→ repr v h o (ch (t 〈!〉 s))
→ repr v i o (ch s)

recv :: DualSession s
⇒ repr v i o (ch (t 〈?〉 s))
→ repr v i o (t ⊗ ch s)

An instance of GV fixes both a representation type repr and a
channel type constructor ch , parameterized by session types. We
require that the representation type determine the channel type. The
majority of the method signatures are straightforward translations
of their type signatures above. The DualSession constraint for the
continuation type s is sufficient to assure that the initial types (t 〈!〉s
and t 〈?〉 s) are session types as well.

fork :: DualSession s
⇒ repr v i o (ch s (ch End!)
→ repr v i o (ch (Dual s))

wait :: repr v i o (ch End?)
→ repr v i o One

The fork primitive both constructs a new channel (before calling its
argument function) and closes the End!-typed channel its argument
returns. The process holding the other endpoint must wait for the
channel to close. The signatures and interpretation of the choice
constants is unsurprising.

chooseLeft :: (DualSession s1,DualSession s2)
⇒ repr v i o (ch (s1 〈++〉 s2))
→ repr v i o (ch s1)

chooseRight :: (DualSession s1,DualSession s2)
⇒ repr v i o (ch (s1 〈++〉 s2))
→ repr v i o (ch s2)

offer :: (DualSession s1,DualSession s2)
⇒ repr v i h (ch (s1 〈&&〉 s2))
→ repr v h o (ch s1 (t)
→ repr v h o (ch s2 (t)
→ repr v i o t

We present a short example of a GV program embedded in
Haskell, implementing a simple concurrent calculator. First, we
define a process that receives two integers along a channel c, and
returns their product along the same channel:

multiplier = defnGV $ llam $ λc → recv c ‘bind‘ (llp $ λx c →
recv c ‘bind‘ (llp $ λy c →
send (times ̂ x ̂ y) c))

The times function lifts Haskell multiplication to apply to linear
terms; it has the following type signature.

times :: (Num b, LLC repr)⇒
repr v o o (Bang (Base b)(Bang (Base b)(Bang (Base b))

The Base constructors lift Haskell types to linear types (as dis-
cussed in the previous section), while the Bang constructors are
necessary because we have no guarantee that the Haskell function
(?) uses its arguments linearly. The implementation of times is en-
tirely unsurprising. The bind, llp, and llz functions allow us to write
GV code in a logical order and simplify the plumbing of channels.

bind e f = f ̂ e
ret e = e
llp f = llam (λp → letStar p f)
llz f = llam (λz → letOne z f)

The defnGV function assures that the term gives rise to no unsatis-
fiable constraints (which would indicate type errors), equivalently
to the defn function in Polakow’s embedding.

type DefnGV ch a = ∀repr i v .
(LLC repr ,GV ch repr)⇒ repr v i i a

defnGV :: DefnGV ch a → DefnGV ch a
defnGV x = x

We can use multiplier in the context of a larger process, which
offers both multiplication and negation behaviors:

5 2016/6/11

negater = defnGV $ llam $ λc →
recv c ‘bind‘ (llp $ λx c →
send (times ̂ (bang (constant (−1))) ̂ x) c)

calculator = defnGV $ llam $ λc → offer c multiplier negater

Finally, we can use the calculator to perform a simple arithmetic
operation.

answer =
defnGV $ fork calculator ‘bind‘ (llam $ λc →

chooseLeft c ‘bind‘ (llam $ λc →
send (bang (constant 6)) c

‘bind‘ (llam $ λc →
send (bang (constant 7)) c

‘bind‘ (llam $ λc →
recv c ‘bind‘ (llp $ λz c →
wait c ‘bind‘ (llz $
ret z

))))))

One concern with embeddings like ours is the legibility of error
messages. One of the strengths of Polakow’s technique is that it
yields relatively readable error messages resulting from misuse of
linear assumptions. The situation is even better for violations of
session types. For example, the following term fails to provide the
multiplier:

wrongAnswer =
defnGV $ fork calculator ‘bind‘ (llam $ λc →

chooseLeft c ‘bind‘ (llam $ λc →
send (bang (constant 6)) c

‘bind‘ (llam $ λc →
recv c ‘bind‘ (llp $ λz c →
wait c ‘bind‘ (llz $
ret z

)))))

The resulting error message correctly identifies that the type of
calculator, which requires two arguments, does not align with its
use in wrongAnswer, which only supplies one:

gvhs.lhs:921:17:
Couldn’t match type ‘a <?> EndIn’
with ‘Bang (Base Integer)

<!> (Bang (Base Integer)
<?> EndIn)’

...

4.1 A CPS semantics for GV
Before giving concrete implementations, we present a formal se-
mantics of GV through a CPS translation, following our previous
work [10]. This serves two purposes. First, it captures our intuitive
understanding of GV. Second, it motivates our CPS-based imple-
mentation of GV, and our introduction of polarized session types.

Our CPS translation KJ−K is a call-by-value CPS translation
into simply-typed lambda calculus. The translation on functional
types and terms is standard. For instance

KJT (UK = KJT K→ (KJUK→ R)→ R

where R is a fixed return type.
As observed by Kobayashi et al. [8] and Dardha et al. [4], choice

in session types can be encoded in terms of the input and output
session types and (linear) sums. We will take advantage of this
operation to simplify our CPS translation. We begin by defining a
translation QJ−K that implements the choice primitives. On types,
it is defined as the homomorphic extension of the equations:

QJS1 〈++〉 S2K = (QJS1K⊕QJS2K) 〈!〉 End!

QJS1 〈&&〉 S2K = (QJS1K⊕QJS2K) 〈?〉 End?

These translations preserve the expected duality requirement:
QJS1 〈++〉 S2K = QJS1 〈&&〉 S2K. The translation of terms is

directed by the type translation:

QJchooseLeftMK = fork (λx.send (inlx)QJMK)
QJchooseRightMK = fork (λx.send (inr x)QJMK)
QJofferM N1N2K = let (x, c) = recvQJMK in

let () = wait c in
casex of inlx 7→ QJNK1 x

| inr x 7→ QJNK2 x

We now define the CPS translation for session types on the
image of QJ−K. The intuition for translating session types is as
follows: communication between two endpoints of a channel is
modelled as function application in which the function represents
the input endpoint and the argument represents the output endpoint.
The translation on input and output types is as follows.

KJEnd!K = R
KJEnd?K = R→ R
KJT 〈!〉 SK = KJT K→ KJSK→ R
KJT 〈?〉 SK = (KJT K→ KJSK→ R)→ R

The central property that captures the notion of communication as
function application is that if S is an output type then KJSK =
KJSK → R (equivalently, if S is an input type then KJSK =
KJSK→ R).

Given the translation on types, there is little choice in the trans-
lation on terms. A subtlety is that for send and fork the translation
depends on the particular session type at which they are instanti-
ated. We write send! for send if the continuation is an output type
and send? if it is an input type. Similarly, we write fork! for fork if
the body of its argument takes an output type and fork? if it takes
an input type.

KJsend!Kx c k = (c x) k
KJsend?Kx c k = k (c x)

KJreceiveKc k = c (λx d.k (x, d))

KJfork!Kf k = k (λx.f x id)
KJfork?Kf k = (λx.f x id) k

KJwaitKc k = c (k ())

The reason for the non-uniformity in the translation is that
duality is symmetric whereas function application is asymmetric.
Notice that despite the non-uniformity the only difference between
the two translations of send and fork is the order in which the
outer application occurs (we deliberately introduce a β expansion
in translation of fork? in order to emphasize this point). One way
of avoiding the non-uniformity is to switch to a polarized variant
of GV. We implement polarization in Haskell (§6) and give a
translation from GV to polarized GV (§7).

In prior work [9], we give a direct concurrent semantics for GV,
and show that it corresponds to cut elimination in Wadler’s process
calculus CP [20]. The CPS translation agrees with the direct seman-
tics, but in order to simulate all possible reduction paths of GV in
the direct semantics, it is necessary to reduce under λ-abstractions.
Interpreting the translation under call-by-name reduction rules, as
in Haskell, amounts to choosing a canonical reduction strategy (in
which reduction is always driven by the continuation of a fork! or
the body of a fork?). Note that GV is confluent, so this restriction
does not affect the results of GV programs.

5. A Primitive Interpretation
One immediate approach to interpreting GV is to use the concur-
rency primitives provided in the IO monad, which include primi-
tives for thread creation and synchronization. The obstacle to doing
so is the typing of the synchronization primitives. For example, the
synchronous-channels package [18] provides a type Chan a of

6 2016/6/11

instance GV STC (RM IO) where
send (RM mv) (RM mc) = RM $

do v ← mv

IOChan c ← mc

writeChan c (unsafeCoerce v)
return (IOChan c)

recv (RM mc) = RM $

do IOChan c ← mc
v ← readChan c

return (MProd (unsafeCoerce v , IOChan c))

wait (RM mc) = RM $
do IOChan c ← mc

v ← readChan c
case unsafeCoerce v of ()→ return MOne

fork (RM mf) = RM $

do MFun f ← mf
c ← newChan

forkIO (do (IOChan c)← f (IOChan c)

writeChan c (unsafeCoerce ()))
return (IOChan c)

chooseLeft (RM mc) = RM $

do IOChan c ← mc
writeChan c (unsafeCoerce False)
return (IOChan c)

chooseRight (RM mc) = RM $
do IOChan c ← mc

writeChan c (unsafeCoerce True)
return (IOChan c)

offer (RM mc) (RM mleft) (RM mright) = RM $

do IOChan c ← mc
MFun left ← mleft

MFun right ← mright

v ← readChan c
if unsafeCoerce v then right (IOChan c)

else left (IOChan c)

Figure 2: IO Implementation of GV

synchronous channels between threads; but, all values communi-
cated on the channel must be of type a . This is exactly the restric-
tion that session types are designed to lift: a session typed channel
may by used to communicate values of arbitrary types safely. For
our implementation, we will rely on the boxing of Haskell values
giving them a uniform runtime representation, regardless of type.

First we define a dummy channel representation STC s and set
its monadic translation to be a synchronous channel.

data STC (s :: ?)
type instance Mon (STC s) = IOChan s
newtype IOChan s (m :: ?→ ?) = IOChan (Chan Int)

The use of Int in the definition of IOChan is essentially arbitrary:
any (boxed) Haskell type would do as well.

The instance of GV for the IO monad is shown in Figure 2.
GV’s primitives wrap the underlying Haskell primitives; we use
unsafeCoerce to make the types appear uniform. The final wait
synchronization is accomplished by transmitting a unit value,
while choice is implemented by transmitting booleans. Safety of
unsafeCoerce is guaranteed by type safety of GV, which we have
proved independently [9].

Our implementation of channels is quite similar to that of Pu-
cella and Tov [15]. In particular, they also rely on untyped channels
(defined using unsafeCoerce), and prove safety by appeal to the
safety of a core session-typed calculus λF‖F . Nevertheless, GV is

quite different from their embedding. A key difference is the treat-
ment of delegation, or transmitting channels along channels. Here
is a (slightly contrived) example of delegation.

sender n =
defnGV $ llam $
λc → recv c ‘bind‘ (llp $ λd c →

send (bang (constant n)) d
‘bind‘ (llam $ λd →

send d c
))

answer′ =
defnGV $ fork (sender 6) ‘bind‘ (llam $ λd →

fork multiplier ‘bind‘ (llam $ λc →
send c d ‘bind‘ (llam $ λd →
recv d ‘bind‘ (llp $ λc d →
send (bang (constant 7)) c

‘bind‘ (llam $ λc →
recv c ‘bind‘ (llp $ λx c →
wait c ‘bind‘ (llz $
wait d ‘bind‘ (llz $
ret x

))))))))

Evaluating answer′ yields 42, but relies on a subprocess to provide
the multiplicand to the calculator. Note that sending and receiving
channels c and d is handled identically to sending and receiving
values; in constrast, in Pucella and Tov’s system, capabilities to use
channels must be sent independently of the channels themselves,
and using special primitive operators. We believe that our approach
is more compositional; for example, arbitrary values containing
multiple channels can be sent without sending the corresponding
capabilities separately.

5.1 Access Points
GV has a close connection to classical linear logic: in our pre-
vious work [9], we showed semantics-preserving translations be-
tween GV and Wadler’s calculus CP, whose typing and evaluation
rules are precisely the proof formation and normalization rules of
CLL. This means that GV has strong metatheoretic properties, such
as deadlock freedom, but correspondingly limits its expressive-
ness. Previous work on session-typed functional languages [5, 19]
uses a more expressive session initiation mechanism, called access
points [17], that avoids these limitations, at the cost of allowing
deadlock. We can easily extend our embedding of GV with access
points.

class GVX (ap :: ?→ ?) (ch :: ?→ ?)
(repr :: Nat→ [Maybe Nat]→ [Maybe Nat]

→ ?→ ?)
| repr → ch ap where

spawn :: repr v i o (One(One)
→ repr v i o One

close :: repr v i o (ch End!)
→ repr v i o One

new :: DualSession s
⇒ repr v i o (ap s � t)
→ repr v i o t

accept :: DualSession s
⇒ repr v i o (ap s)
→ repr v i o (ch s)

request :: DualSession s
⇒ repr v i o (ap s)
→ repr v i o (ch (Dual s))

In addition to the repr and ch types, which serve the same roles
they did for the GV class, the GVX class includes a new type
constructor for access points, ap. Access points are introduced
by new; note that in the argument to new, the new access point

7 2016/6/11

does not have to be used linearly. Processes initiate communication
by calling accept or request on a given access point. Channels
are constructed for pairs of accepting and requesting processes,
with no guarantee as to which accepters will be paired with which
requesters. With this model of communication, we can present a
simplified model of process creation, spawn, and allow channels
of type EndOut to be closed explicitly with close. It is easy
to implement our previous model in terms of this model; fork is
defined by

fork′ f =
new (ilam $ λap →

spawn (llam $ λz → f (accept ap) ‘bind‘ (llam $ λc →
close c ‘bind‘ (llz $
ret z))) ‘bind‘ (llz $

request ap))

We can also see that this model of communication is more
expressive than that of pure GV; for example, here is a simple
deadlocked term:

stuck = new (ilam $ λap → close (accept ap))

There can clearly never be a requester for ap, so this code must be
stuck. Despite the loss of deadlock freedom, and the non-logical
character of this extension, we do not lose session fidelity. This il-
lustrates the modularity of GV. It is straightforward to define an in-
stance of GVX in terms of existing Haskell concurrency constructs
in a similar manner to the instance of GV in Figure 2. Due to lack
of space we omit the code.

6. A Polarizing Development
The previous sections develop an implementation of GV based on
GHC’s concurrency primitives. However, these primitives are more
expressive than GV’s concurrency. In particular, as we have shown
previously [9], GV is terminating and confluent. We now take
advantage of that observation to give another, purely functional,
implementation of GV.

Our starting point is the CPS interpretation of GV given ear-
lier (§4.1). However, that definition is type directed: negative (or
input-like) session types get different translations from positive (or
output-like) session types. To reflect this distinction, we begin by
considering a polarized variant of session types, making explicit
the distinction between input and output types and requiring coer-
cions (or shifts) between them. We give a polarized version of GV
and an implementation using continuations (via the Cont monad).
In the next section, we show how to interpret our tagless embed-
ding of GV as the tagless embedding of polarized GV in Haskell.
Composing the continuation with this interpretation we obtain an
implementation of GV in terms of continuations.

We define polarized session types as follows.

S? ::= Shift? S! | T 〈?〉 S? | S? 〈&&〉 S′
? | End?

S! ::= Shift! S? | T 〈!〉 S! | S! 〈++〉 S′
! | End!

The existing types for input, output, choice, and closed channels
are classified as expected. We add two session types, Shift?S! and
Shift! S?, to explicitly shift output to input session types and vice
versa. These constructors have the expected duality relationship:

Shift? S! = Shift! S! Shift! S? = Shift?S?

We can add these type to our embedding following the pattern of
the other session type constructors:

data Shift? s
data Shift! s

type instance Dual (Shift! s) = Shift? (Dual s)
type instance Dual (Shift? s) = Shift! (Dual s)

We must also introduce new constants to our polarized GV lan-
guage that inhabit the shift types, typed as follows.

Γ `M : Shift? S!

Γ ` oshM : S!

Γ `M : Shift! S?

Γ ` ishM : S?

As with our other communication primitives, these serve as elimi-
nators; fork remains the only term to introduce session types. The
naming of these constants follows from their role as eliminators
of the corresponding session types; for example, osh eliminates a
shift to input, yielding a channel of output type. We now present
the embedding of polarized GV.

class PGV
(os :: ?→ ?) (is :: ?→ ?)
(repr :: Nat→ [Maybe Nat]→ [Maybe Nat]→ ?→ ?)
| repr → os is where

sendp :: repr v i h t
→ repr v h o (os (t 〈!〉 s))
→ repr v i o (os s)

recvp :: repr v i o (is (t 〈?〉 s))
→ repr v i o (t ⊗ is s)

waitp :: repr v i o (is End?)
→ repr v i o One

forkp :: Dual (Dual s)∼s
⇒ repr v i o (os s (os End!)
→ repr v i o (is (Dual s))

osh :: repr v i o (is (Shift? s))
→ repr v i o (os s)

ish :: repr v i o (os (Shift! s))
→ repr v i o (is s)

chooseLeftp :: repr v i o (os (s1 〈++〉 s2))
→ repr v i o (os s1)

chooseRightp :: repr v i o (os (s1 〈++〉 s2))
→ repr v i o (os s2)

offerp :: (Dual (Dual s1)∼s1,Dual (Dual s2)∼s2)
⇒ repr v i h (is (s1 〈&&〉 s2))
→ repr v h o (is s1 (t)
→ repr v h o (is s2 (t)
→ repr v i o t

type DefnPGV os is a = ∀repr i v .
(LLC repr ,PGV os is repr)⇒ repr v i i a

defnPGV :: DefnPGV os is a → DefnPGV os is a
defnPGV x = x

The key difference from GV is that PGV is parameterized by two
channel constructors, one (os) for channels of output session type
and the other (is) for channels of input session type. The types
of the familiar primitives reflect this distinction: sendp acts on
and reutrns output channels, for instance, while recvp acts on and
returns input channels.

Programs in polarized GV closely resemble those in GV, but
with the addition of explicit shift operations each time a channel
switches from being used for input to being used for output or vice
versa. As example, here is a simplified adaptation of the calculator
example (§4) in which only multiplication is supported.

multiplierp =
defnPGV $ llam $
λc → ish c ‘bind‘ (llam $ λc →

recvp c ‘bind‘ (llp $ λx c →
recvp c ‘bind‘ (llp $ λy c →
osh c ‘bind‘ (llam $ λc →
sendp (times ̂ x ̂ y) c

))))

answerp =
defnPGV $

forkp multiplierp ‘bind‘ (llam $ λc →
osh c ‘bind‘ (llam $ λc →
sendp (bang (constant 6)) c ‘bind‘ (llam $ λc →

8 2016/6/11

sendp (bang (constant 7)) c ‘bind‘ (llam $ λc →
ish c ‘bind‘ (llam $ λc →
recvp c ‘bind‘ (llp $ λz c →
waitp c ‘bind‘ (llz $
ret z

)))))))

In this case, the explicit shifts may seem to only add adminis-
trative overhead. However, Pfenning and Griffith [13] and Paykin
and Zdancewic [12] observe that polarized calculi provide precise
control over execution strategy that is left either undetermined, in
purely concurrent presentations, or is fixed a priori, as in our CPS
translation (§4.1).

We now give a CPS implementation of polarized GV, derived
from the CPS semantics of (unpolarized) GV (§4.1). Our imple-
mentation relies on two features of the CPS interpretation. First,
while the CPS interpretations of output session types vary, the CPS
interpretations of input session types are uniform in terms of the
interpretation of the output types. Second, because of polarization,
we now know whether the continuation of a channel has input or
output type statically, even if we do not know its exact session type.

We begin by introducing type families CPSO and CPSI for the
CPS translations of input and output session types, respectively. We
define types COutput t s r and CEndOut r , the CPS translations
of t 〈!〉 s and End! respectively. Note that those translations refer
to the result type r explicitly, and so it appears as a parameter of
their translations. We also define a type for the translation of all of
the input session types, CInput s r , defined in terms of the output
translation CPSO.

type family CPSO (s :: ?) :: ?→ ?
type family CPSI (s :: ?) :: ?→ ?

newtype COutput t s r =
COutput {unCOutput :: t (Cont r)→ s r → r }

newtype CEndOut r = CEndOut {unCEndOut :: r }
type instance CPSO (t 〈!〉 s) = COutput (Mon t) (CPSI (Dual s))
type instance CPSO End! = CEndOut

newtype CInput s r = CIn {unCIn :: CPSO (Dual s) r → r }
type instance CPSI s = CInput s

We define wrapper types for input and output session types, as
targets of the Mon type family. The dummy types ICH and OCH
represent input and output channels, and are implemented by InC
and OutC. We introduce type family Ret to give us access to the
result type of the continuation monad.

type family Ret (m :: ?→ ?) where
Ret (Cont r) = r

data OutC (s :: ?) (m :: ?→ ?) where
OutC :: Dual (Dual s)∼s ⇒ CPSO s (Ret m)→ OutC s m

data InC (s :: ?) (m :: ?→ ?) where
InC :: Dual (Dual s)∼s ⇒ CPSI s (Ret m)→ InC s m

data ICH (s :: ?)
data OCH (s :: ?)

type instance Mon (ICH s) = InC s
type instance Mon (OCH s) = OutC s

type instance CPSO (s1 〈++〉 s2) =
CPSO ((ICH (Dual s1)⊕ ICH (Dual s2)) 〈!〉 End!)

type instance CPSO (Shift! s) =
CPSO (OCH (Dual s) 〈!〉 End!)

We have not provided implementations of the choice or shift types.
To do so, we rely on an extension of the QJ−K translation (§4.1),
as follows:

QJShift! S?K = S? 〈!〉 End!

QJShift? S!K = S! 〈?〉 End?

We capture these by giving instances of CPSO for 〈++〉 and Shift!
in terms of the interpretation of 〈!〉 and End!; the translations of
〈&&〉 and Shift? are obtained generically as for the other input
session types.

We can now implement the polarized communication primi-
tives. We begin with a helper routine comm that implements com-
munication; that we can do so parametrically in s is the core imple-
mentation benefit of the polarized presentation.

comm :: (CInput s r → r)→ (CPSO (Dual s) r → r)→ r
comm c d = c (CIn d)

We also define another simple helper routine rid for unwrapping
boxed return values.

rid :: OutC End! (Cont r)→ r
rid (OutC (CEndOut x)) = x

The CPS interpretation of polarized GV is given in Figure 3.
We can implement sendp, recvp, waitp and forkp following the
CPS interpretation of GV (§4.1); our implementation differs from
the formal presentation only in the introduction and elimination
of wrapper types. The implementations of the shift primitives
ish and osh echo the implementations of recvp and sendp. The
implementation of choice is somewhat more complicated. Fol-
lowing the QJ−K translation, we expect the implementation of
chooseLeftp m to be (the expansion of) the term:

osh $ forkp $ llam (λx → sendp (inl (ish x)) m)

The shifts are necessary because the result of chooseLeftp should
be an output session, but the result of forkp is always an input
session. The difficulty we encounter in implementing this is that
CPSO is not injective, and thus the type of an application of comm
may not be uniquely determined by its arguments. Nevertheless,
other than specifying the type of comm, the remainder of the
implementation follows the expansion of the term above.

7. A Polarizing Interpretation
In this section we define a representation that allows us to interpret
(unpolarized) GV as polarized GV in GHC. In doing so we learn
more general lessons about what is needed in order to translate one
tagless embedding into another.

Our key observation is that for any unpolarized session type,
we can compute a minimal set of shifts to produce a correspond-
ing polarized session type, and can introduce corresponding shifts
to interpret communication on the unpolarized channel as commu-
nication on the polarized channel. We begin by introducing a data
type to represent polarity explicitly.

data Polarity = O | I

We can now define two translation from unpolarized session types
to input and output polarized session types. To avoid repetition, we
begin with a type family Pol that classifies session types according
to their polarity.

type family Pol s :: Polarity
type instance Pol (t 〈!〉 s) = O
type instance Pol End! = O
type instance Pol (t 〈?〉 s) = I
type instance Pol End? = I
type instance Pol (s1 〈++〉 s2) = O
type instance Pol (s1 〈&&〉 s2) = I

We can now define the translations, relying Pol to avoid duplicating
cases.

type family SToO (s :: ?) :: ?
type instance SToO s = SToOShift (Pol s) s

type family SToI (s :: ?) :: ?
type instance SToI s = SToIShift (Pol s) s

9 2016/6/11

instance PGV OCH ICH (RM (Cont r)) where
sendp (RM m) (RM n) = RM $ cont $ λk → runCont m $ λx → runCont n $ λ(OutC (COutput f))→ comm (f x) (k ◦ OutC)
recvp (RM m) = RM $ cont $ λk → runCont m $ λ(InC (CIn f))→ f (COutput (λx y → k (MProd (x , InC y))))

waitp (RM m) = RM $ cont $ λk → runCont m $ λ(InC (CIn f))→ f (CEndOut (k MOne))
forkp (RM m) = RM $ cont $ λk → runCont m $ λ(MFun f)→ comm (k ◦ InC) (λx → runCont (f (OutC x)) rid)
osh (RM m) = RM $ cont $ λk → runCont m $ λ(InC (CIn f))→ f (COutput (λx (CIn g)→ g (CEndOut (k x))))

ish (RM m) = RM $ cont $ λk → runCont m $ λ(OutC (COutput f))→ comm (k ◦ InC) (λz → comm (f (OutC z)) (rid ◦ OutC))

chooseLeftp (RM m) =

RM $ cont $ λ(k :: OutC s1 (Cont r)→ r)→ runCont m $ λ(OutC (COutput f))→
(comm :: (CInput (Shift? s1) r → r)→ (CPSO (Shift! (Dual s1)) r → r)→ r)

(λ(CIn y)→ y (COutput (λx (CIn g)→ g (CEndOut (k x)))))

(λ(COutput g)→ comm (λx ′ → f (MSum (Left (InC x ′))) (CIn (λ(CEndOut x)→ x)))
(λz → comm (g (OutC z)) (λx → rid (OutC x))))

chooseRightp (RM m) =

RM $ cont $ λ(k :: OutC s2 (Cont r)→ r)→ runCont m $ λ(OutC (COutput f))→
(comm :: (CInput (Shift? s2) r → r)→ (CPSO (Shift! (Dual s2)) r → r)→ r)

(λ(CIn y)→ y (COutput (λx (CIn g)→ g (CEndOut (k x)))))

(λ(COutput g)→ comm (λx ′ → f (MSum (Right (InC x ′))) (CIn (λ(CEndOut x)→ x)))
(λz → comm (g (OutC z)) (λx → rid (OutC x))))

offerp (RM m) (RM n1) (RM n2) =
RM $ cont $ λk → runCont m $ λ(InC (CIn f))→

f (COutput (λx y → case x of
MSum (Left x1)→ runCont n1 (λ(MFun f1)→ runCont (f1 x1) k)
MSum (Right x2)→ runCont n2 (λ(MFun f2)→ runCont (f2 x2) k)))

Figure 3: CPS Interpretation of Polarized GV

type family SToOShift (p :: Polarity) (s :: ?) :: ?
type instance SToOShift O s = OSToO s
type instance SToOShift I s = Shift! (ISToI s)

type family OSToO (s :: ?) :: ?
type instance OSToO (t 〈!〉 s) = t 〈!〉 SToO s
type instance OSToO End! = End!

type instance OSToO (s1 〈++〉 s2) = SToO s1 〈++〉 SToO s2

type family SToIShift (p :: Polarity) (s :: ?) :: ?
type instance SToIShift I s = ISToI s
type instance SToIShift O s = Shift? (OSToO s)

type family ISToI (s :: ?) :: ?
type instance ISToI (t 〈?〉 s) = t 〈?〉 SToI s
type instance ISToI End? = End?

type instance ISToI (s1 〈&&〉 s2) = SToI s1 〈&&〉 SToI s2

These type families simply insert shifts where appropriate.
Next, we define a similar translation on terms. We do so by

introducing a new representation type, RP, which will define a GV
representation in terms of the PGV class.

newtype RP (os :: ?→ ?) (is :: ?→ ?)
(repr :: Nat→ [Maybe Nat]→ [Maybe Nat]→ ?→ ?)
(v :: Nat) (hi :: [Maybe Nat]) (ho :: [Maybe Nat]) a =

RP {unRP :: (LLC repr ,PGV os is repr ,Conv repr)⇒
repr v hi ho a }

evalPolCont :: RP OCH ICH (RM (Cont r)) v ′[] ′[] a →
RM (Cont r) v ′[] ′[] a

evalPolCont = unRP

It is parameterised by type constructors for output and input
session types, the underlying representation type, and the usual
parameters of an LLC representation. The LLC instance for RP is
straightforwardly defined in terms of that for RM. We also define
a dummy type for representing unpolarized channels in terms of a
pair of polarized channel representations:

data STP (os :: ?→ ?) (is :: ?→ ?) (s :: ?)

We introduce an monadic interpretation of STP channels, relying
on the Pol class to choose the underlying channel representation.

type instance Mon (STP os is s) = Mon′ (Pol s) (STP os is s)

type family Mon′ (p :: Polarity) (a :: ?) :: (?→ ?)→ ?
type instance Mon′ O (STP os is s) = Mon (os (SToO s))
type instance Mon′ I (STP os is s) = Mon (is (SToI s))

The Conv type class Figure 4 is used to mediate between polarized
and unpolarized representations of channels, relying on type fami-
lies SToO and SToI for translating between unpolarized and polar-
ized session types. For the RM type, this translation is straightfor-
ward, as the channel representations are all dummy types.

instance Conv (RM m) where
stoo = RM ◦ unRM
stoi = RM ◦ unRM
otos = RM ◦ unRM
itos = RM ◦ unRM

In order to obtain the constraints we need for polarized GV we
will need to generate equations that state that dualization commutes
with the transformations on types. We reify these equations using a
GADT:

data DualTrans (s :: ?) where
DualTrans :: (Dual (SToI s)∼SToO (Dual s),

Dual (SToO s)∼SToI (Dual s),
Dual (SToI (Dual s))∼SToO s,
Dual (SToO (Dual s))∼SToI s)⇒ DualTrans s

Alas, the proof of these equations in general is by induction over the
structure of session types. One way of capturing such an inductive
proof is to build the constraints into the Session type class. This
has the advantage that session types can remain open, but it has
the disadvantage that it requires us to change Session to talk about
additional type families that have nothing to do with unpolarized
GV. Instead, we will augment the Session class to compute a
closed singleton type representation of session types, which we

10 2016/6/11

class Conv (repr :: Nat→ [Maybe Nat]→ [Maybe Nat]→ ?→ ?) where
stoo :: Pol s∼O⇒ repr v hi ho (STP os is s) → repr v hi ho (os (SToO s))
stoi :: Pol s∼I ⇒ repr v hi ho (STP os is s) → repr v hi ho (is (SToI s))
otos :: Pol s∼O⇒ repr v hi ho (os (SToO s))→ repr v hi ho (STP os is s)

itos :: Pol s∼I ⇒ repr v hi ho (is (SToI s)) → repr v hi ho (STP os is s)

Figure 4: Interface for Converting between Polarized and Unpolarized Representations

can subsequently use to define proofs by induction. This has the
disadvantage of being closed, but the advantage of not needing to
hard-wire information which is not relevant to unpolarized GV.

We define a singleton representation ST s for session types s as
follows.

data ST (s :: ?) where
SOutput :: Session s ⇒ Proxy t → ST s → ST (t 〈!〉 s)
SEndOut :: ST End!

SInput :: Session s ⇒ Proxy t → ST s → ST (t 〈?〉 s)
SEndIn :: ST End?

SChoose :: (Session s1, Session s2)⇒
ST s1 → ST s2 → ST (s1 〈++〉 s2)

SOffer :: (Session s1, Session s2)⇒
ST s1 → ST s2 → ST (s1 〈&&〉 s2)

We define a singleton type that reifies the polarity of a session type
in terms of the Pol type family.

data SPolarity s where
SO :: Pol s∼O⇒ SPolarity s
SI :: Pol s∼I ⇒ SPolarity s

We can now augment the Session class to compute singleton ses-
sion type and polarity witnesses.

class (Dual (Dual s)∼s,Flip (Pol s)∼Pol (Dual s))⇒
Session (s :: ?) where

polarity :: SPolarity s
sing :: ST s

instance Session s ⇒ Session (t 〈!〉 s) where
polarity = SO
sing = SOutput Proxy sing

instance Session End! where
polarity = SO
sing = SEndOut

instance Session s ⇒ Session (t 〈?〉 s) where
polarity = SI
sing = SInput Proxy sing

instance Session End? where
polarity = SI
sing = SEndIn

instance (Session s1, Session s2)⇒ Session (s1 〈++〉 s2) where
polarity = SO
sing = SChoose sing sing

instance (Session s1, Session s2)⇒ Session (s1 〈&&〉 s2) where
polarity = SI
sing = SOffer sing sing

The second superclass expresses the relationship between polarity
and duality, and relies on a type family to negate polarities.

type family Flip (p :: Polarity) :: Polarity where
Flip O = I
Flip I = O

Now we can build a proof of the commutation equations for any
session type. The witnesses are unsurprisingly trivial.

dualTrans :: ST s → DualTrans s
dualTrans (SOutput s) = case dualTrans s of

DualTrans→ DualTrans

dualTrans SEndOut = DualTrans
dualTrans (SInput s) = case dualTrans s of

DualTrans→ DualTrans
dualTrans SEndIn = DualTrans
dualTrans (SChoose s1 s2) =

case (dualTrans s1, dualTrans s2) of
(DualTrans,DualTrans)→ DualTrans

dualTrans (SOffer s1 s2) =
case (dualTrans s1, dualTrans s2) of
(DualTrans,DualTrans)→ DualTrans

As a convenience, we define functions for converting from polar-
ized to unpolarized session types of a specified polarity. This al-
lows us to invert a translation in the other direction which may have
flipped the polarity by inserting a shift.

otosShift :: (PGV os is repr ,Conv repr)⇒ SPolarity s →
repr v hi ho (os (SToO s))→ repr v hi ho (STP os is s)

otosShift SO = otos
otosShift SI = itos ◦ ish

itosShift :: (PGV os is repr ,Conv repr)⇒ SPolarity s →
repr v hi ho (is (SToI s))→ repr v hi ho (STP os is s)

itosShift SO = otos ◦ osh
itosShift SI = itos

We now have all of the ingredients in place to define the full inter-
pretation of GV as polarized GV, which is given in Figure 5. Each
case amounts to calling the underlying polarized operator, incorpo-
rating shifts as necessary. We make use of a compose operator for
linear lambdas in order to perform coercions in the object language.

8. Discussion
We have presented a tagless embedding of GV, a session-typed
functional calculus, in Haskell. We have presented two interpre-
tations of our embedding, a concurrent one in terms of the prim-
itives of the IO monad and a purely functional one in terms of
continuation-passing style. We have also presented extensions to
the core calculus: namely access points and polarization.

There have been several recent embedding of session types in
mainstream programming languages, including Pucella and Tov’s
embedding of session types in Haskell [15], Scalas and Yoshida’s
lsessions library for Scala [16], and Padovani’s FuSe library for
OCaml [11]. We will briefly compare their approaches to ours.

Pucella and Tov [15] also target Haskell, and use similar mecha-
nisms to ours to introduce linearity and to account for duality. Their
implementation also relies on (potentially unsafe) use of channels
in the IO monad. However, where we rely on an embedding of lin-
ear λ-calculus to capture the linearity of channels, they track chan-
nel capabilities using a parameterized monad. On the one hand,
this means that their approach requires less wrapping when inter-
acting with other Haskell code; for example, they do not require
a wrapper like our Base class, or introduction and elimination of
the Bang modality. On the other hand, this makes manipulation of
channels themselves more complicated in their approach; for ex-
ample, they cannot simply send or receive channels, but require

11 2016/6/11

instance (LLC repr ,PGV os is repr ,Conv repr)⇒ GV (STP os is) (RP os is repr) where
send (RP m) (RP n) = RP (otosShift polarity (sendp m (stoo n)))
recv (RP m) = RP (letStar (recvp (stoi m)) (λx y → x ⊗ itosShift polarity y))

wait (RP m) = RP (waitp (stoi m))

fork (RP (m :: (PGV os is repr ,Conv repr)⇒ repr v i o (STP os is s (STP os is End!))) =
case (dualTrans (sing :: ST s), dualTrans (sing :: ST (Dual s))) of

(DualTrans,DualTrans)→ RP (itosShift polarity (forkp m ′))
where m ′ = compose ̂ llam stoo ̂ (compose ̂ m ̂ (llam (λx → otosShift polarity x)))

chooseLeft (RP m) = RP (otosShift polarity (chooseLeftp (stoo m)))

chooseRight (RP m) = RP (otosShift polarity (chooseRightp (stoo m)))

offer (RP (m :: (PGV os is repr ,Conv repr)⇒ repr v i h (STP os is (s1 〈&&〉 s2)))) (RP n1) (RP n2) =
case (dualTrans (sing :: ST s1), dualTrans (sing :: ST s2)) of

(DualTrans,DualTrans)→ RP (offerp (stoi m) n1 n2)
where n1 = compose ̂ n1 ̂ llam (λx1 → itosShift polarity x1)

n2 = compose ̂ n2 ̂ llam (λx2 → itosShift polarity x2)

Figure 5: Unpolarized GV as Polarized GV

additional primitives (and some impressive type-level machinery)
to transfer channel capabilities.

Scalas and Yoshida [16] provide a library implementing session
types in Scala. They rely on a CPS-like interpretation of session-
types in terms of one-shot (or linear) channels, which they can im-
plement using Scala’s Future type. Consequently, their channels
do not rely on underlying unsafe operations, but still benefit from
using primitive concurrency mechanisms. However, they do not at-
tempt to express linearity in the Scala type system, instead relying
on the run-time behavior of the Promise and Future types to pre-
vent reuse of channels. As a result, erroneous programs may not
be detected until run-time, where our approach would reject them
statically.

Padovani [11] implements session types in OCaml. As in Pu-
cella and Tov’s implementation, he uses an underlying implemen-
tation of simply-typed channels and potentially unsafe conversions;
as in Scalas and Yoshida’s approach, he defers linearity checking to
runtime. This means that his approach is more smoothly integrated
with other OCaml code, but that it may not detect until execution
errors our approach would have rejected at compilation.

References
[1] R. Atkey, S. Lindley, and J. Yallop. Unembedding domain-specific

languages. In S. Weirich, editor, Haskell 2009, pages 37–48. ACM,
2009.

[2] L. Caires and F. Pfenning. Session types as intuitionistic linear propo-
sitions. In CONCUR. Springer, 2010.

[3] J. Carette, O. Kiselyov, and C. Shan. Finally tagless, partially evalu-
ated: Tagless staged interpreters for simpler typed languages. J. Funct.
Program., 19(5):509–543, 2009.

[4] O. Dardha, E. Giachino, and D. Sangiorgi. Session types revisited. In
PPDP. Springer, 2012.

[5] S. J. Gay and V. T. Vasconcelos. Linear type theory for asynchronous
session types. Journal of Functional Programming, 20(01):19–50,
2010.

[6] K. Honda. Types for dyadic interaction. In CONCUR. Springer, 1993.

[7] K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and
type discipline for structured communication-based programming. In
ESOP. Springer, 1998.

[8] N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the π-
calculus. In POPL. ACM, 1996.

[9] S. Lindley and J. G. Morris. A semantics for propositions as ses-
sions. In Programming Languages and Systems - 24th European Sym-
posium on Programming, ESOP 2015, Held as Part of the European

Joint Conferences on Theory and Practice of Software, ETAPS 2015,
London, UK, April 11-18, 2015. Proceedings, pages 560–584, 2015.

[10] S. Lindley and J. G. Morris. Talking bananas: Structural recursion for
session types. In Proceedings of the 21st ACM SIGPLAN International
Conference on Functional Programming, ICFP 2016, Nara, Japan,
September 19-21, 2016. ACM, 2016.

[11] L. Padovani. Fuse - a simple library implementation of binary ses-
sions. http://www.di.unito.it/~padovani/Software/FuSe/
FuSe.html, 2016.

[12] J. Paykin and S. Zdancewic. Linear λµ is CP (more or less). In
S. Lindley, C. McBride, P. W. Trinder, and D. Sannella, editors, A List
of Successes That Can Change the World - Essays Dedicated to Philip
Wadler on the Occasion of His 60th Birthday, volume 9600 of Lecture
Notes in Computer Science, pages 273–291. Springer, 2016.

[13] F. Pfenning and D. Griffith. Polarized substructural session types.
In A. M. Pitts, editor, FOSSACS, volume 9034 of Lecture Notes in
Computer Science, pages 3–22. Springer, 2015.

[14] J. Polakow. Embedding a full linear lambda calculus in Haskell. In
B. Lippmeier, editor, Proceedings of the 8th ACM SIGPLAN Sympo-
sium on Haskell, Haskell 2015, Vancouver, BC, Canada, September
3-4, 2015, pages 177–188. ACM, 2015.

[15] R. Pucella and J. A. Tov. Haskell session types with (almost) no class.
In A. Gill, editor, Proceedings of the 1st ACM SIGPLAN Symposium
on Haskell, Haskell 2008, Victoria, BC, Canada, 25 September 2008,
pages 25–36. ACM, 2008.

[16] A. Scalas and N. Yoshida. Lightweight session programming in scala.
In ECOOP 2016, LIPIcs. Dagstuhl, 2016.

[17] K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language
and its typing system. In PARLE. Springer, 1994.

[18] J. Tov. The synchronous-channels package. https://hackage.
haskell.org/package/synchronous-channels, 2015.

[19] V. T. Vasconcelos, S. J. Gay, and A. Ravara. Type checking a multi-
threaded functional language with session types. Theor. Comput. Sci.,
368(1-2):64–87, 2006.

[20] P. Wadler. Propositions as sessions. J. Funct. Program., 24(2-3):384–
418, 2014.

12 2016/6/11

http://www.di.unito.it/~padovani/Software/FuSe/FuSe.html
http://www.di.unito.it/~padovani/Software/FuSe/FuSe.html
https://hackage.haskell.org/package/synchronous-channels
https://hackage.haskell.org/package/synchronous-channels

	Introduction
	Session Types and Linearity
	Linear -Calculus, Monadically
	The GV Calculus
	A CPS semantics for GV

	A Primitive Interpretation
	Access Points

	A Polarizing Development
	A Polarizing Interpretation
	Discussion

