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Abstract. Plotkin and Pretnar’s effect handlers offer a versatile ab-
straction for modular programming with user-defined effects. Alas, many
implementations are not as modular as they may at first seem. Naive
composition of a pair of effect handlers, one a producer, and the other
a consumer of an intermediate effect, leads to effect pollution: the inter-
mediate effect leaks and external instances are accidentally captured.
We extend the Frank programming language with adaptors, which pro-
vide general remapping, and in particular hiding, of effect names in order
to support effect encapsulation. Frank is a strict bidirectionally typed ef-
fect handler oriented programming language with a parsimonious effect
type system in which effect polymorphism is almost always invisible.
As a case study, we compose a concurrent actor handler from a collection
of more primitive effect handlers using Frank. The naive implementation
without adaptors yields an actor handler that suffers from effect pollu-
tion. Using adaptors we define an unpolluted actor handler whose type
is also five times shorter than that of the naive version.
As well as formalising adaptors, we also extend the formalism with other
features necessary for the case study including polymorphic commands
and a built-in top-level reference effect. We give a type system and an
operational semantics and prove type soundness.

1 Introduction

Since Moggi’s seminal work on monads [17] and Wadler’s remarkably successful
initiative to apply them in practice in the Haskell programming language [24], it
has been apparent that programming abstractions for interpreting user-defined
effects have much to offer. Algebraic effects were introduced by Plotkin and
Power [20,21,22] as a refinement of monadic effects. A monadic effect is specified
as a concrete implementation. An algebraic effect, on the other hand, is specified
as an abstract interface of effectful operations along with a collection of laws that
these operations should satisfy. Thus, algebraic effects support the fundamental
encapsulation principle: program to an interface, not to an implementation [12].

Effect handlers were introduced by Plotkin and Pretnar [23] as a means for
defining the implementation of a computation that makes use of algebraic effects.
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They offer a versatile abstraction for modular programming with user-defined
effects. Alas, many implementations are not as modular as they may at first seem.
Naive composition of a pair of effect handlers, one a producer, and the other a
consumer of an intermediate effect, leads to effect pollution: the intermediate
effect leaks and external instances are accidentally captured.

In this paper we extend the Frank programming language with adaptors,
which provide general remapping, and in particular hiding, of effect names in
order to support effect encapsulation. Frank is a strict bidirectionally typed effect
handler oriented programming language with a parsimonious effect type system
in which effect polymorphism is almost always invisible.

Remark. We choose to emphasise effect handlers and de-emphasise algebraic
effects because our effect handlers (in common with most implementations) do
not enforce algebraicity. Standard deep handlers are guaranteed to implement
algebraic effects if the effect interfaces are first-order, but many useful instances
are higher-order [19]. Our handlers are shallow [12,10], so even first-order effect
interfaces need not be given an algebraic interpretation.

We now outline a small example in order to illustrate the problem of com-
posing two effect handlers. First, let us define two effect interfaces.

interface Reader S = ask : S

interface Abort = abort X : X

The Reader S effect is parameterised by a state type S and supports a single
command ask that offers to return a value of type S. The Abort effect supports
an infinite family of abort commands, one for every type X, each offering to
return a value of type X (abort never returns a value so can take any type).

An effect handler interprets computations over the commands supported by
its effect interfaces. Let us consider two handlers:

– a reads handler parameterised by a list of state values, which interprets
values as themselves and ask by returning the next value from the list if it
exists or by invoking abort if the list is empty; and

– a maybe handler that yields results in an option type, and which interprets a
value u as just u and an abort command as nothing.

The reads handler transforms a Reader S computation into an Abort computa-
tion. The maybe handler transforms an Abort computation into a pure compu-
tation. It is natural to expect to be able to precompose maybe ([Abort] ⇒ [ ])
with reads ([Reader S] ⇒ [Abort]) to obtain an interpretation of the Reader S

effect as a pure computation.
However, much of the power of effect handlers as a programming abstraction

arises from the ability to forward any additional effects that are not explicitly
handled. For instance, we may apply the composed transformation to a compu-
tation that has the Abort effect and so may perform abort commands. Although
reads does not handle abort itself, it will forward abort to the surrounding con-
text. Effects are therefore transformed as follows.
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reads [Abort, Reader S] ⇒ [Abort]

maybe [Abort] ⇒ [ ]

The composition maybe ◦ reads yields an effect transformation [Abort, Reader S]

⇒ [ ] (rather than [Abort, Reader S]⇒ [Abort]) which consumes the external
Abort effect. The computation passed to maybe ◦ reads may perform an abort

command that is intended for an outer handler but is intercepted by maybe. The
Abort effect has leaked out and polluted the effects of the composition.

To prevent such effect pollution we need a way of hiding intermediate effects
so that external effects with the same name are not accidentally handled. There
are a multiple ways to achieve this, which we discuss in more detail in Sect. 6 and
Sect. 7. The approach we adopt in this paper is a generalisation and adaptation
of a construct variously called inject [13,15] and lift [3] in the literature, which
in this paper we call mask. The mask construct allows an intermediate effect
to be hidden by explicitly shadowing it. Our generalisation, adaptors, support
arbitrary remapping of effect names and may appear in types or in terms.

The paper makes the following contributions:

– We identify the effect pollution problem and how it manifests in various
different approaches to implementing effect handlers (Sect. 1 and Sect. 3).

– We implement [7] a range of extensions to Frank including polymorphic
commands (Sect. 2), ML-style references (Sect. 2) and adaptors (Sect. 3).

– We present adaptors as a solution to the effect pollution problem and hence
a means for obtaining effect encapsulation (Sect. 3).

– As a case study, we compose a concurrent actor handler from a collection
of more primitive effect handlers using Frank. The naive implementation
without adaptors yields an actor handler that suffers from effect pollution.
Using adaptors we define an unpolluted actor handler whose type is also five
times shorter than that of the naive version (Sect. 4).

– We formalise the semantics of Frank extended with adaptors and polymor-
phic commands. We present the first direct semantics for Frank (previous
work gave a semantics via translation to a simpler language [16]) and prove
type soundness (Sect. 5).

Section 6 discusses variations and extensions of adaptors. Section 7 discusses
related work. Section 8 concludes.

The effect pollution problem was originally identified by the first author
in his master’s dissertation [6] when attempting to compose handlers in order
to implement rich concurrency abstractions. Many of the ingredients of this
paper (polymorphic commands, direct semantics, and ML-style references) were
also introduced there. This paper additionally provides a solution to the effect
pollution problem and a case study illustrating the power of effect encapsulation.

2 The Frank Programming Language

Frank [16] is a strict bidirectionally typed effect handler oriented programming
language. If we disregard effects, then Frank looks quite like a standard typed
functional programming language such as ML or Haskell.
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Data. Primitive data types include integers (Int) and characters (Char). Alge-
braic data types are defined in the standard way.

data Zero =

data Unit = unit

data Bool = false | true

data List X = nil | cons X (List X)

data Maybe X = nothing | just X

data Pair X Y = pair x y

Syntactic sugar for lists is built in. For instance:

[] ≡ nil x::xs ≡ cons xs xs [1,2] ≡ 1::2::[]

The String type is an alias for List Char.

Operators. In place of plain functions, Frank provides operators, which generalise
both functions and effect handlers. Consider the map function in Frank:

map : {{X -> Y} -> List X -> List Y}

map f [] = []

map f (x :: xs) = f x :: map f xs

Other than the type signature, the definition looks like the equivalent definition
in ML defined by pattern matching. Moreover, we can apply it in the usual way

map {n -> n+1} [1, 2, 3] =⇒ [2, 3, 4]

where =⇒ denotes evaluation. However, operators in Frank are n-ary, not curried
(despite the syntax). Thus, map is a binary function that takes a unary function
as its first argument and a list as its second argument.

More interestingly, map is implicitly effect-polymorphic. The type

{{X -> Y} -> List X -> List Y}

is really syntactic sugar for:

{{X -> [ε| ]Y} -> List X -> [ε| ]List Y}

where ε is an effect variable which is fresh for this particular type signature. The
effects performed by map are the same as those performed by its first argument.
Frank implicitly inserts ε on every function return type.

The general form of an operator type is as follows

{<∆1>A1 -> . . . -> <∆k>Ak -> [Σ]B}

having k argument types <∆1>A1, . . . , <∆k>Ak and one return type [Σ]B. If
we ignore the ∆is and Σ, then we can view an operator type as a pure k-ary
function type. The value types A1 to Ak are the types of the arguments, and the
value type B is the return type of the function.

The ability Σ describes the effects that the operator may perform. It includes
at most one (possibly implicit) effect variable and a collection of effect instances.
As operators generalise effect handlers (as well as functions), the arguments to
an operator are themselves computations rather than values. The adjustments
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∆1, ...,∆k describe which effects may be handled in each argument computation.
All of the effects in the ambient ability of the result type may also occur in
argument computations; these will be forwarded to an outer handler.

Recall the two effect interfaces we defined in the introduction.

interface Reader S = ask : S

interface Abort = abort X : X

The maybe handler is defined as follows.

maybe : {<Abort >X -> Maybe X}

maybe <abort -> _> = nothing

maybe x = just x

It takes a computation which may abort and returns an optional value. The com-
mand pattern <abort -> _> matches any instance of the abort command invoked
by the argument computation. The wildcard pattern _ binds the continuation at
the point in which abort is invoked, but as this handler is implementing abort-
ing, the continuation is ignored. The variable pattern x matches a final return
value. We can also define other handlers for the Abort effect.

catch : {<Abort >X -> {X} -> X}

catch x _ = x

catch <abort -> _> h = h!

The catch handler takes a suspended computation h as a second argument. The
abort command is interpreted by invoking h (! denotes nullary application). Here
are some examples of applying maybe and catch.

Type Program Result
Maybe Int maybe 42 just 42

Maybe Int maybe (let x = abort! in 42) nothing

Int catch 42 {0} 42

Int catch (let x = abort! in 42) {0} 0

The reads handler is defined as follows.

reads : {List S -> <Reader S>X -> [Abort]X}

reads [] <ask -> k> = abort!

reads (s :: ss) <ask -> k> = reads ss (k s)

reads _ x = x

It takes a list and a reader computation and it may abort. The command pattern
<ask -> k> binds k to the continuation. Here are some example of applying reads

and combining it with maybe.

Type Program Result
[Abort]X reads [1,2] (ask! + ask!) 3

[Abort]X reads [1,2] (ask! + ask! + ask!) abort!

Maybe X maybe (reads [1,2] (ask! + ask! + ask!)) nothing

Maybe X maybe (reads [1,2] abort!) nothing

The final program suffers from effect pollution. The goal is for Abort to be
an intermediate effect that is encapsulated; not one that is available for the
argument computation to perform. We return to this example in the next section.
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Operators as Functions, Handlers, and Multihandlers. We say that an operator
is a function if none of its argument types includes a non-trivial adjustment.
Conversely we say that it is an effect handler if at least one of its argument types
includes a non-trivial adjustment. We say that an operator is a multihandler [16]
if more than one of its argument types includes a non-trivial adjustment. (In this
paper we do not consider multihandlers, but they are a useful feature of Frank.)

The Case Operator. In Frank pattern matching is built-in to operation defini-
tions, but there is also a case operator, which is defined as reverse application.

case : {X -> {X -> Y} -> Y}

case x f = f x

For instance, we can rewrite the map function as follows.

map ’ : {{X -> Y} -> List X -> List Y}

map ’ f xs = case xs { [] -> []

| (x :: xs) -> f x :: map ’ f xs }

The second argument to case here is an anonymous operator. Anonymous oper-
ators support the same patterns as named operator definitions. An anonymous
operator definition is enclosed in braces and its (zero or more) clauses are sepa-
rated by the vertical bar symbol.

Implicit Effect Polymorphism. As with map, each of our other operators exhibit
some implicit effect polymorphism. Here are the full type signatures for each of
the handlers we have seen so far.

maybe : {<Abort >X -> [ε| ]Maybe X}

catch : {<Abort >X -> {[ε| ]X} -> [ε| ]X}

reads : {List S -> <Reader S>X -> [ε|Abort]X}

In each type signature, the implicit polymorphic type variable ε is attached to
each return type. We can explicitly name effect variables. For instance, we could
have given catch the following α-equivalent type signature.

{<Abort >X -> {[E| ]X} -> [E| ]X}

Effect Shadowing. An ability may contain multiple instances of the same effect
interface. In this case, the rightmost one is the one that is active. The others
come into play once the rightmost one has been handled. Effect shadowing allows
us to instantiate ε in the signature of catch in order to re-raise an exception [13].

maybe (catch abort! {print "oops"; abort !}) =⇒ nothing

Specifically, ε is instantiated to include an Abort instance in order to match the
argument type of maybe and thus the argument abort! passed to catch must be
typechecked against an ability containing two instances of Abort.

The order of instances of the same effect interface is important. The order
of instances of different effect interfaces relative to one another is not. Thus, an
ability denotes a finite map from interface names to lists of instances (possibly
extended through an effect variable).
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Monomorphic Effects. We can give operators monomorphic effects. For instance,
we can define a restricted version of catch whose handler argument is pure.

pureCatch : {<Abort >X -> {[0| ]X} -> [0| ]X}

pureCatch x _ = x

pureCatch <abort -> _> h = h!

Here 0 indicates that the ambient ability and hence also the exception han-
dler argument is pure. This prevents pureCatch from being able to re-raise an
exception, for instance.

Polymorphic Commands. The original version of Frank [16] supports only monomor-
phic commands. We have now extended it with polymorphic commands [12] like
abort which can be invoked at any type. Previously we had to do some gymnas-
tics to get the same effect.

interface Abort ’ = aborting : Zero

abort ’ : {[Abort]X}

abort ’! = case aborting! {}

Polymorphic commands are necessary for more interesting examples like ML-
style dynamically allocated references.

ML-style References. The Frank implementation now supports a special top-level
effect for ML-style dynamically allocated references.

interface RefState = new X : X -> Ref X

| read X : Ref X -> X

| write X : Ref X -> X -> Unit

Both the data type Ref X and the interface RefState are built-in, as Frank is not
expressive enough to define them internally.

Console. Similarly to RefState, Frank supports another special built-in effect
for console I/O.

interface Console = inch : Char

| ouch : Char -> Unit

The print operator takes a string and outputs it to the console.

print : {String -> [Console]Unit}

print s = map ouch s; unit

The RefState and Console effects in Frank have a status similar to the IO
monad in Haskell.

Program Entry Point. The default entry-point for a Frank program is the main

operator, which may perform top-level effects and return a value.

main : {[0| Console]Unit}

main! = print "do be do be do"
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The above program prints out the string “do be do be do” to the console
and returns the unit value. The ability of its return type ensures that it may use
the top-level Console effect but no others.

3 Adapting Effects

In this section we discuss the effect pollution problem and how to resolve it,
obtaining effect encapsulation via adaptors.

Mask. Let us return to our running example of precomposing maybe with reads.
We can do so as follows.

bad : {List S -> <Reader S, Abort >X -> Maybe X}

bad ss <m> = maybe (reads ss m!)

Both Reader S and Abort are handled. The catch-all pattern <m> binds the second
argument to a suspended computation m of type {[Reader S, Abort]X}. The ask

command is handled by yielding just v for some value v if the input is non-empty

bad [1,2] (ask! + ask!) =⇒ just 3

and nothing if the input is exhausted:

bad [1] (ask! + ask!) =⇒ nothing

Alas, as indicated by its type, bad also exhibits additional behaviour. As well
as handling any abort command raised by the reads handler, it also handles uses
of abort within the argument computation.

bad [1,2] (ask! + abort!) =⇒ nothing

This breaks abstraction as an invocation of abort never reaches the outer context
(in order to be handled there) but is instead intercepted by bad. Using an adaptor
prohibits the unintentional interception of such external effects.

good : {List S -> <Reader S>X -> Maybe X}

good ss <m> = maybe (reads ss (<Abort > m!))

The term <Abort> m! is executed under ambient [ε|Abort,Reader S]. The adap-
tor <Abort> adapts the ambient in which m! is executed by hiding the Abort effect,
resulting in the ambient [ε|Reader S]. This ambient matches exactly the ability
of m. Consequently, adaptors have computational content. Hiding an effect in-
stance skips the nearest dynamically enclosing handler for the effect. The Abort

adaptor ensures that the maybe handler cannot capture abort commands raised
by the argument computation. So

good [1,2] (ask! + abort !) =⇒ abort!

whereas:

bad [1,2] (ask! + abort!) =⇒ nothing

The plain Abort adaptor above is an instance of mask, which transforms the
ambient ability to obtain the ability for m! by masking out the rightmost in-
stance of Abort providing a means for hiding effects reminiscent of de Bruijn
representations for bound names.
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Remark. Computing the local ability by restricting the ambient ability is natural
for a bidirectionally typed language such as Frank, where effect types always flow
inwards. An alternative but equivalent view that is arguably more natural for a
language with Hindley-Milner type inference, where effect types flow outwards,
is of extending the ability of m! to include a fresh instance of Abort. In this sense
one is injecting [13] or lifting [3] the local ability into the ambient ability.

Adaptors as Finite Maps. Frank’s adaptors generalise mask to an arbitrary finite
map from the effects of the ambient ability to the effects of the supplied compu-
tation. Effect instances can be masked (as in good), re-ordered, and duplicated.

In general an adaptor is given by a sequence of adaptor components of the
form I(S -> S′) such that each I must be distinct and S ranges over patterns
that bind the instances of I. Examples:

I(s x -> s) erase the first instance of I (mask)
I(s x y -> s y) erase the second instance of I
I(s x y -> s y x) swap the first two instances of I
I(s x -> s x x) duplicate the first instance of I
I(s -> s) identity at I

For the common case of mask we omit the map entirely: I is syntactic sugar
for I(s x -> s). Technically, mask in combination with handlers is sufficient to
express general adaptors, but only through a global transformation. For instance,
Biernacki et al. [3] express swapping of effects using mask (which they call “lift”).

Adaptor Adjustments. A distinctive feature of Frank is that the effects associated
with an operator argument describe an adjustment to the ambient ability. This
has two clear benefits over a more conventional type system. First, it is often
more parsimonious, as the programmer need only specify the change to the
ambient ability rather than the entire ability. Second, it explicitly distinguishes
those effects that are handled from those that are forwarded. An unfortunate
side-effect of this scheme is that if an interface appears both in the return type
and in the argument type then the actual type of an argument computation will
include two instances of the interface, which is usually not desirable.

Let us suppose we wish to define an operator that acts as a Reader Int

transformer adding one to each integer that is read. We might write the following

inc ’ : {<Reader Int >X -> [Reader Int]X}

inc ’ <ask -> k> = let n = ask! in inc ’ (k (n + 1))

inc ’ x = x

which may be combined with another Reader handler without ado:

reads [1,2] (inc ’ (ask! + ask!)) =⇒ 5

However, suppose we run inc’ twice.

incinc ’ : {<Reader Int , Reader Int >X -> [Reader Int]X}

incinc ’ <m> = inc ’ (inc ’ m!)
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For this function to type check we have had to insert an extra copy of Reader Int

in the argument adjustment. Using an adaptor we can obtain a type with just
one instance of Reader in the adjustment.

incinc ’’ : {<Reader Int >X -> [Reader Int]X}

incinc ’’ <m> = inc ’ (inc ’ (<Reader(s x y -> s y)> m!))

However, the root cause of the problem is in inc’ which still accepts an argument
with two copies of Reader Int. Adaptor adjustments are a means for wiring an
adaptor into an operator and its type. Consider the following variation.

inc : {<Reader|Reader Int >X -> [Reader Int]X}

inc <ask -> k> = let n = ask! in inc (k (n + 1))

inc x = x

The difference between inc and inc’ is that the former applies the Reader adaptor
to the ambient ability before applying the rest of the extension Reader Int. As a
consequence, the type of an argument includes only one copy of Reader Int and
we can compose inc with itself without need for any further inline adapters.

incinc : {<Reader|Reader Int >X -> [Reader Int]X}

incinc <m> = inc ’ (inc ’ m!)

The general form for an adjustment is Θ|Ξ where Θ is an adaptor and Ξ
is an extension (the part of an adjustment we have seen up to now, which is
added to the ambient ability). The action of an adjustment on an ability is to
first apply the adaptor and to then apply the extension. By default we assume
the adaptor is the identity and write <Ξ> as syntactic sugar for < |Ξ>.

When generalising incinc to an operator that composes an arbitrary number
of inc operators, the problem of effect pollution becomes even more apparent.
Without adaptors, it would require an unbounded number of effect instances.
With adaptors, we can define such a composed operator as follows.

incN : {Int -> <IChoice|IChoice >X -> [IChoice]X}

incN 0 <m> = m!

incN n <m> = inc (incN (n-1) m!)

4 Concurrency in Frank

In this section we implement concurrent actors with mailboxes in Frank. We do
so in stages, by composing together several handlers.

Effect Interfaces. Let us begin with the high-level actor effect interface Actor M

for an actor computation whose mailbox stores messages of type M.

interface Actor M = spawn N : {[ Actor N]Unit} -> Pid N

| self : Pid M

| send N : N -> Pid N -> Unit

| recv : M
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The Pid M data type represents a process ID for a process with a mailbox of
type M. We define it later in this section. The Actor M interface supports four
commands: spawn runs the supplied thunk as a new process for which a fresh
process ID is generated and returned, self returns the process ID of the current
process, send places a message in the mailbox of the specified process, and recv

removes and returns a message from the mailbox of the current process.
As a first step we define a cooperative concurrency effect interface Co.

interface Co = fork : {[Co]Unit} -> Unit

| yield : Unit

It supports two commands: fork runs the supplied thunk as a new process and
yield allows control to switch to another process. A suspended computation
passed to fork may itself fork and yield, hence the interface is recursive.

In order to implement cooperative concurrency we store suspended processes
in a queue via the effect interface Queue S for a queue with elements of type S.

interface Queue S = enqueue : S -> Unit

| dequeue : Maybe S

It supports two commands: enqueue pushes a value onto the queue and dequeue

pops a value x from the queue and returns just x if the queue is non-empty and
returns nothing if the queue is empty.

Now we provide implementations for each of our three interfaces in turn from
low-level to high-level.

Queues. One might imagine various different implementations for queues; here
we focus on one based on a zipper [11] structure.

data ZipQ S = zipq (List S) (List S)

A queue is represented as a pair of lists: the first is the front of the queue,
supporting amortised constant time popping from the front of the queue; the
second is the back of the queue in reverse, supporting constant time pushing to
the back of the queue.

An empty queue is a pair of empty lists.

emptyZipQ : {ZipQ S}

emptyZipQ! = zipq [] []

In order to implement the queue commands we define a handler.

runFifo : {ZipQ S -> <Queue S>X -> Pair X (ZipQ S)}

runFifo (zipq front back) <enqueue x -> k> =

runFifo (zipq front (x :: back)) (k unit)

runFifo (zipq [] []) <dequeue -> k> =

runFifo emptyZipQ! (k nothing)

runFifo (zipq [] back) <dequeue -> k> =

runFifo (zipq (rev back) []) (k dequeue !)

runFifo (zipq (x :: front) back) <dequeue -> k> =

runFifo (zipq front back) (k (just x))

runFifo queue x =

pair x queue
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The runFifo handler takes an initial queue as a parameter before interpreting a
Queue computation as a FIFO queue, returning a pair of the final return value
and the final contents of the queue.

Schedulers. Using our queue interface we can define schedulers for concurrent
processes. The processes we store in the queue will themselves need to be able
to manipulate the queue, so we represent them through a recursive data type.

data Proc = proc {[Queue Proc]Unit}

We now define two helper functions for enqueueing a process and waking the
process at the head of the queue if it exists.

enqProc : {[ Queue Proc]Unit} -> [Queue Proc]Unit

enqProc p = enqueue (proc p)

wakeProc : {[Queue Proc]Unit}

wakeProc! = case dequeue! { (just (proc x)) -> x!

| nothing -> unit }

Two canonical schedulers are breadth-first (forked processes are deferred)
and depth-first (forked processes are run eagerly). We use the former for our
actor implementation, but we could easily swap in an alternative if desired.

runBF : {<Co >Unit -> [Queue Proc]Unit}

runBF <yield -> k> = enqProc {runBF (k unit )};

wakeProc!

runBF <fork p -> k> = enqProc {runBF (<Queue > p!)};

runBF (k unit)

runBF unit = wakeProc!

An adaptor is required in order to allow a forked process to have the right type.
Without the adapter, the argument type to the scheduler would be polluted and
have to become <Co [Queue Proc]>. Allowing processes to do their own low-level
manipulation of the process queue breaks abstraction.

Actors. We now define actors on top of cooperative concurrency, queues, and
references. Let us first define a data type for process IDs.

data Pid X = pid (Ref (ZipQ X))

A process ID stores its associated mailbox as a mutable reference to a queue.
The core of the actor implementation is given by the runActor handler.

runActor : {Pid X -> <Actor X>Unit ->

[Co [RefState], RefState]Unit}

runActor mine <self -> k> = runActor mine (k mine)

runActor mine <spawn you -> k> =

let yours = pid (new (emptyZipQ !)) in

fork {runActor yours (<RefState , Co> you !)};

runActor mine (k yours)

runActor (pid m) <recv -> k> =
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case (runFifo (read m) dequeue !)

{ (pair nothing _) -> yield!;

runActor (pid m) (k recv!)

| (pair (just x) q) -> write m q;

runActor (pid m) (k x) }

runActor mine <send (pid m) x -> k> =

case (runFifo (read m) (enqueue x))

{ (pair _ q) -> write m q;

runActor mine (k unit) }

runActor mine unit = unit

It interprets an actor communication using the concurrency interface and refer-
ences. An adaptor masks the RefState and Co effects for the spawned process.

Now we compose all of our handlers together to obtain a handler that imple-
ments computations.

act : {<Actor X>Unit -> [RefState]Unit}

act <m> = case (runFifo emptyZipQ!

(runBF (<Queue >

(runActor (pid (new (emptyZipQ !)))

(<Co > m!)))))

{ (pair x _) -> x }

We use adaptors to make the argument computation compatible with the concur-
rency interface and the output of runActor compatible with the queue interface.

To test the actor implementation we implement a classic example that spawns
a chain of processes and passes a message along the chain.

spawnMany : {Pid String -> Int ->

[Actor String [Console], Console]Unit}

spawnMany p 0 = send "do be do be do" p

spawnMany p n = spawnMany (spawn {let x = recv! in

print ".";

send x p}) (n-1)

chain : {[ Actor String [Console], Console]Unit}

chain! = spawnMany self! 640; let msg = recv! in

print "\n"; print msg; print "\n"

Now if we run

main : {[0| Console , RefState]Unit}

main! = act (<RefState > chain !)

each spawned process prints out a dot as the message is passed along and the
message received by the top-level process ("do be do be do") is printed out after
having been transmitted all the way along the chain.

Actors without Adaptors. To illustrate how bad things get without adaptors, let
us contrast the type signature we gave for act

{<Actor X>Unit -> [RefState]Unit}
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with the one we obtain by removing all of the adaptors and adjusting type
signatures of constituent handlers accordingly [6]:

{<Queue (Proc [RefState]),

Co [Queue (Proc [RefState]), RefState],

Actor X [RefState , Queue (Proc [RefState]),

Co [Queue (Proc [RefState]),

RefState]]>Unit -> [RefState]Unit}

The implementation details have leaked into the type signature. Worse, the dy-
namic behaviour is incorrect as the low-level handlers will handle Queue and Co

effects in the argument computation.

State Actors. Because act uses RefState internally, we need to use an addi-
tional adaptor if we wish to run an actor that itself uses RefState. For instance,
suppose we replace the counter in spawnMany with an integer reference cell and
correspondingly change the signature of chain to

{[Actor String [Console , RefState], Console , RefState]Unit}

then we must adapt the call to chain as follows:

main : {[0| Console , RefState]Unit}

main! = <RefState(s x -> s x x)> (act (<RefState > chain ’!))

The outer adapter ensures that the two instances of RefState are mapped to the
same built-in RefState effect.

5 Frank Formalised

In this section we formalise the syntax, typing rules, and operational semantics
for Frank including adaptor and polymorphic command extensions. (For sim-
plicity we do not account for built-in effects such as Console and RefState.) The
syntax and typing rules extend those of Lindley et al. [16]. Whereas they give
an operational semantics via a translation into a core language, our operational
semantics is direct (following the first author’s master’s dissertation [6]). We
prove a type soundness property for the extended system.

Notation. We write either overlines (M) or explicit indexing ((M)i) for a list of
zero or more copies of M indexed by i.

5.1 Syntax

Types. The types (Fig. 1) are divided into value types (A) and computation
types (C). Value types are data types (D R), suspended computation types
({C}), or value type variables (X). Computation types are built from zero or
more argument types (T ) and one return type (G). A computation type

C = 〈Θ1|Ξ1〉A1 → · · · → 〈Θk|Ξk〉Ak → [Σ]B
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(value types) A,B ::= D R
| {C} | X

(computation types) C ::= T → G
(argument types) T ::= 〈∆〉A
(return types) G ::= [Σ]A
(type binders) Z ::= X | [E]
(type arguments) R ::= A | [Σ]

(polytypes) P ::= ∀Z.A

(seeds) σ ::= ∅ | E
(abilities) Σ ::= σ|Ξ
(extensions) Ξ ::= · | Ξ, I R
(adaptors) Θ ::= · | Θ, I(S → S′)
(adjustments) ∆ ::= Θ|Ξ
(interface patterns) S ::= s | S x
(type environments) Γ ::= · | Γ, x : A

| Γ, f : P

Fig. 1. Types

(uses) m ::= x | f R | m n | ↑(n : A)

(constructions) n ::= ↓m | k n | c R n | {e}
| let f : P = n in n′ | letrec f : P = e in n
| 〈Θ〉 n

(computations) e ::= r 7→ n
(computation patterns) r ::= p | 〈c p → z〉 | 〈x〉
(value patterns) p ::= k p | x

Fig. 2. Terms

has argument types 〈Θ1|Ξ1〉A1, . . . , 〈Θk|Ξk〉Ak and return type [Σ]B. A com-
putation of type C must handle effects in Ξi on its i-th argument; all arguments
are handled simultaneously. As a result it returns a value of type B and may
perform effects in ambient ability Σ. The i-th argument may perform effects in
ambient ability Σ remapped by adaptor Θi and augmented by extension Ξi.

Effect Polymorphism with an Invisible Effect Variable. Consider the type of map:

{{X → Y } → List X → List Y }

Modulo the braces around the function types, this is the same type a functional
programmer might expect to write in a language without support for effect
typing. In fact, this type desugars into:

{〈·|·〉{〈·|·〉X → [ε|·]Y } → 〈·|·〉(List X)→ [ε|·](List Y )}

We adopt the convention that the identity adaptor/extension · may be omitted
from adaptors/extensions and argument types.

〈Ξ〉A ≡ 〈·|Ξ〉A A ≡ 〈·|·〉A

Similarly, we adopt the convention that effect variables may be omitted from
abilities and return types.

I1 R1, . . . , Ik Rk ≡ ε|I1 R1, . . . , Ik Rk A ≡ [ε|·]A
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Here ε is a distinguished effect variable, the implicit effect variable that is fresh
for every type signature in a program. This syntactic sugar ensures that we need
never write the implicit effect variable ε in a Frank program. In adaptors we
write I as syntactic sugar for the common case of mask, i.e., I(s x→ s).

Type binders may be value binders (X) or effect binders ([E]); polytypes
may be polymorphic in both. Though we avoid effect variables in source code,
we are entirely explicit about them in the abstract syntax and type system.

Data Types and effect interfaces are defined globally. A definition for data
type D(Z) is a collection of data constructor signatures of the form k : A, where
A may depend on Z. Each data constructor belongs to a single data type. A
definition for effect interface I(Z) consists of a collection of command signatures
of the form c : ∀Z ′.A→B, denoting that c is polymorphic in type variables Z ′,
takes arguments of types A, and returns a value of type B. The types A and B
may depend on Z and Z ′. Each command belongs to a single interface.

Type environments distinguish monomorphic and polymorphic variables.

Effect Parameters with an Invisible Effect Variable. In the case that the first
parameter of a data type or effect interface definition is its only effect variable
ε, we may omit it from the definition.

An ability is a collection of effect instances initiated either with the empty
ability ∅ (yielding a closed ability) or an effect variable E (yielding an open
ability). For each interface, the order of its instances in an ability is important,
as duplicates are permitted, in which case the rightmost instance is the one that
will be handled first. Closed abilities can be used to enforce purity. In source
code we write ∅ as 0. An adjustment modifies the ambient ability. The action of
an adjustment ∆ = Θ|Ξ on an ability Σ is as follows.

(Θ|Ξ)(Σ) = Ξ(Θ(Σ))

First the adapter Θ is applied to Σ and then the extension Ξ is applied to
the result. The action of an extension on an ability is quite direct: each effect
instance is added to the ability.

·(Σ) = Σ (Ξ, I R)(Σ) = (Ξ(Σ)), I R

The action of an adaptor on an ability is pointwise.

·(Σ) = Σ (Θ, I(S → S′))(Σ) = I(S → S′)(Θ(Σ))

The adaptor component for each interface is used to transform the ability.

I(S → S′)(Σ) = (remap S′ (inst S (Σ @ I) ∅))(Σ − I)

We express this transformation in terms of four auxiliary functions.

– Σ − I returns Σ with all instances of I removed:

σ|·− I = σ|· Σ, I R− I = Σ− I Σ, I ′ R− I = Σ− I, I ′ R, if I 6= I ′
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– Σ @ I returns the extension Ξ such that Ξ(Σ − I) = Σ:

σ| ·@I = · Σ, I R@ I = Σ @ I, I R Σ, I ′ R@ I = Σ @ I, if I 6= I ′

– inst S Ξ ρ pattern matches S against the interfaces in Ξ and extends envi-
ronment ρ with the resulting bindings:

inst(s,Ξ, ρ) = ρ[s 7→ Ξ]
inst(S x, (Ξ, I R), ρ) = inst(S,Ξ, ρ[x 7→ I R])

– remap S ρ yields the extension obtained by instantiating S with ρ:

remap(s, ρ) = ρ(s)
remap(S x, ρ) = remap(S, ρ), ρ(x)

The action of adaptors on abilities is partial. We rely on the typing rules
to ensure that adaptor components I(S → S′) are well-formed in that S′ only
mentions variables that are bound in S, and that the length of S is no longer
than the length of the list of instances for I in the ambient ability.

Whereas, abilities may contain duplicate effect instances, both the adaptor
and extension components of an adjustment must not.

Terms. Frank follows a bidirectional typing discipline [18]. Thus terms (Fig. 2)
are subdivided into uses (ranged over by m) whose types are inferred, and con-
structions (ranged over by n) which are checked against a type. Uses comprise
monomorphic variables (x), polymorphic variable instantiations (f R), appli-
cations (m n) and type ascriptions (↑(n : A)). Constructions comprise uses
(↓m), data constructor instances (k n), command invocations (c R n), sus-
pended computations ({e}), polymorphic let (let f : P = n in n′), mutual
recursion (letrec f : P = e in n), and adaptors (〈Θ〉 n). For clarity in the for-
malism we explicitly mark the injections of a use into a construction (↓m) and
a construction into a use (↑(n : A)); in actual Frank code we always omit ↓ and
↑. We write ! as syntactic sugar for an empty sequence of constructions.

A computation is defined by a sequence of pattern matching clauses (r 7→ n).
Each pattern matching clause takes a sequence of computation patterns (r). A
computation pattern is either a standard value pattern (p), a request pattern
(〈c p → z〉), which matches command c if its arguments match p and binds the
continuation to z, or a catch-all pattern 〈x〉, which matches any value or handled
command, binding it to x. A value pattern is either a data constructor pattern
(k p) or a variable pattern (x).

5.2 Typing Rules

The typing rules are given in Fig. 3. The inference judgement Γ [Σ]-- m⇒ A
states that in type environment Γ with ambient abilityΣ, we can infer that usem
has type A. The checking judgement Γ [Σ]-- n :A states that in type environment
Γ with ambient ability Σ, construction n has type A. The auxiliary judgement
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Γ [Σ]-- m⇒ A T-Var
x : A ∈ Γ

Γ [Σ]-- x⇒ A

T-PolyVar
f : ∀Z.A ∈ Γ

Γ [Σ]-- f R⇒ A[R/Z]

T-App
Σ′ = Σ ∆i(Σ

′) = Σi

Γ [Σ]-- m⇒ {〈∆〉A→ [Σ′]B} (Γ [Σi]-- ni :Ai)i

Γ [Σ]-- m n⇒ B

T-Ascribe
Γ [Σ]-- n :A

Γ [Σ]-- ↑(n : A)⇒ A

Γ [Σ]-- n :A

T-Switch
Γ [Σ]-- m⇒ A A = B

Γ [Σ]-- ↓m :B

T-Data
k A ∈ D R (Γ [Σ]-- ni :Ai)i

Γ [Σ]-- k n :D R

T-Command
c : ∀Z.A→ B ∈ Σ (Γ [Σ]-- ni :Ai[R/Z])i

Γ [Σ]-- c R n :B[R/Z]

T-Thunk
Γ ` e : C

Γ [Σ]-- {e} : {C}

T-Let
P = ∀Z.A

Γ [∅]-- n :A Γ, f : P [Σ]-- n′ :B

Γ [Σ]-- let f : P = n in n′ :B

T-LetRec

P = ∀Z.{C}
Γ, f : P ` e : C Γ, f : P [Σ]-- n :B

Γ [Σ]-- letrec f : P = e in n :B

T-Adapt
Θ(Σ) = Σ′ Γ [Σ′]-- n :A

Γ [Σ]-- 〈Θ〉 n :AΓ ` e : C

T-Comp
(ri,j : Tj --[Σ] Γ ′

i,j)i,j (Γ, (Γ ′
i,j)j [Σ]-- ni :B)i (ri,j)i,j covers (Tj)j

Γ ` ((ri,j)j 7→ ni)i : (Tj →)j [Σ]B

r : T --[Σ] Γ P-Value
∆(Σ) defined
p :A a Γ

p : 〈∆〉A --[Σ] Γ

P-CatchAll
∆(Σ) = Σ′

〈x〉 : 〈∆〉A --[Σ] x : {[Σ′]A}

P-Command
∆(Σ) = Σ′ ∆ = Θ|Ξ c : ∀Z.A→ B ∈ Ξ (pi :Ai a Γi)i

〈c p→ z〉 : 〈∆〉B′ --[Σ] Γ , z : 〈·|·〉B → [Σ′]B′

p :A a Γ
P-Var

x :A a x : A

P-Data
k A ∈ D R (pi :Ai a Γ )i

k p :D R a Γ

Fig. 3. Typing Rules
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Γ ` e : C states that in type environment Γ , computation e has type C. The
judgement r : T --[Σ] Γ states that computation pattern r of argument type T
with ambient ability Σ binds type environment Γ . The judgement p :A a Γ
states that value pattern p of type A binds type environment Γ .

The T-Var rule infers the type of a monomorphic variable x by looking it
up in the environment; T-PolyVar does the same for a polymorphic variable
instantiation f R, but also substitutes R for Z in its type. The T-App rule infers
the type of an application m n under ambient ability Σ. First it infers the type
of m of the form {〈∆〉A→ [Σ′]B}. Then it checks that Σ′ = Σ and that each
argument ni matches the inferred type in the ambient ability Σ extended with
adjustment ∆i. If these checks succeed, then the inferred type for the application
is B. The T-Ascribe rule ascribes a type to a construction allowing it to be
treated as a use. Conversely, the T-Switch rule allows us to treat a use as
a construction. The checking rules for data types (T-Data), commands (T-
Command), suspended computations (T-Thunk), polymorphic let (T-Let),
mutual recursion (T-LetRec), and adaptors (T-Adapt) recursively check the
subterms. The T-Command rule looks up the type of the command c in the
ambient ability. The T-App and T-Adapt rules have side-conditions on the
computed abilities to ensure that they are well-defined (recall that the action of
an adaptor / adjustment on an ability is a partial operation).

A computation of type T →G is built by composing pattern matching clauses
of the form r 7→ n (Comp), where r is a sequence of computation patterns whose
variables are bound in n. The side condition in the Comp rule requires that the
patterns in the clauses cover all possible values inhabiting the argument types.

Value patterns match variables (P-Var) and data type constructor appli-
cations (P-Data). Value patterns can be typed as computation patterns (P-
Value). To check a computation pattern 〈x〉 we apply the adjustment to the
ambient ability (P-CatchAll). A command pattern 〈c p→ z〉 may be checked
at type 〈∆〉B′ with ambient ability Σ (P-Command). The command c must
appear in the extension of ∆. The continuation is a plain function so its argu-
ment type has the identity adjustment. The continuation’s return type has the
ambient ability with ∆ applied.

5.3 Operational Semantics

Runtime syntax. The operational semantics relies on the runtime syntax defined
in Fig. 4. We distinguish between use values and construction values. Moreover,
we also distinguish those construction values which are not uses, as these are the
ones that can appear in type ascriptions in use values. We define a special class
of normal forms, which are either construction values (w) or frozen evaluation
contexts plugged with commands (dE [c R w]e), described below. Normal forms
can be regarded as generalised values that may be passed to operators.

Evaluation contexts are defined as sequences of evaluation frames. Evalu-
ation frames are mostly unsurprising. The interesting case is u (t, [ ], n) which
enables evaluation to proceed on arguments left-to-right until each argument be-
comes a normal form. Following the separation between uses and constructions,
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(use values) u ::= x | f R | ↑(v : A)
(non-use values) v ::= k w | {e}
(construction values) w ::= ↓u | v
(normal forms) t ::= w | dE [c R w]e
(evaluation frames) F ::= [ ] n | u (t, [ ], n) | ↑([ ] : A)

| ↓[ ] | k (w, [ ], n) | c R (w, [ ], n)
| let f : P = [ ] in n | 〈Θ〉 [ ]

(evaluation contexts) E ::= [ ] | F [E ]

Fig. 4. Runtime Syntax

Γ [Σ]-- m⇒ A Γ [Σ]-- n :A

T-Freeze-Use
level(c, E) > ⊥ Γ [Σ]-- E [c R w]⇒ A

Γ [Σ]-- dE [c R w]e ⇒ A

T-Freeze-Cons
level(c, E) > ⊥ Γ [Σ]-- E [c R w] :A

Γ [Σ]-- dE [c R w]e :A

Fig. 5. Frozen Terms

evaluation contexts also ramify as such, leading to four distinct classes; for each
possible combination of hole and body (see the R-Lift-? rules in Fig. 6). How-
ever, we do not explicitly distinguish the four kinds of evaluation context in the
syntax but instead rely on the type system to do so.

Freezing commands. In order to handle a command we need to capture its
delimited continuation, that is, the largest enclosing evaluation context that does
not handle it. A frozen command dE [c R w]e is a command application c R w
plugged inside an evaluation context E that does not handle c. Commands may
only be frozen at runtime. The typing rules for frozen commands are given in
Fig. 5. Evaluation contexts can either be uses or constructions; hence we need
two typing rules. The side-conditions depend on an auxiliary function: level(c, E),
which is equal to the bottom element ⊥, if c is handled by E ; or the required
nesting depth of c handlers outside E to handle c, otherwise. The bottom element
⊥ satisfies the following equations: ∀i 6= ⊥.⊥ < i and ∀i.⊥+ i = ⊥.

Levels. The level of a command in an evaluation context is defined in terms of
the level of a command in an evaluation frame.

level(c, [ ]) = 0 level(c,F [E ]) = level(c,F) + level(c, E)

The level of a command in an evaluation frame is 0 for all frames except argument
frames and adaptor frames for which it is defined as follows.

level(c, u (t, [ ], n)) =

{
⊥, if c ∈ Ξ
level(c,Θl), if c /∈ Ξ
where |t| = l ∧ u = ↑(v : {〈Θ|Ξ〉A→ [Σ]B})

level(c, 〈Θ〉 [ ]) = level(c,Θ)
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m u m
′ n c n

′ m −→u m
′ n −→c n

′

R-Handle
k = min

i
{i | (ri,j : 〈∆j〉Aj ← tj --[Σ] θj)j} (rk,j : 〈∆j〉Aj ← tj --[Σ] θj)j

({((ri,j)j → ni)i} : {〈∆〉A→ [Σ]B}) t u njθ

R-Ascribe-Use

↑(↓u : A) u u

R-Ascribe-Cons

↓↑(w : A) c w

R-Let

let f : P = w in n c n[↑(w : P )/f ]

R-LetRec

e = r → n

letrec f : P = e in n′  c n
′[({r → letrec f : P = e in n} : P )/f ]

R-Adapt

〈Θ〉 w  c w

R-Freeze-Comm

c R w  c dc R we

R-Freeze-Frame
level(c,F) > ⊥ ∨ level(c, E) > 0

F [dE [c R w]e] c dF [E [c R w]]e

R-Lift-UU
m u m

′

E [m] −→u E [m′]

R-Lift-UC
m u m

′

E [m] −→c E [m′]

R-Lift-CU
n c n

′

E [n] −→u E [n′]

R-Lift-CC
n c n

′

E [n] −→c E [n′]

Fig. 6. Operational Semantics

A handled command has level ⊥. Otherwise the level is determined by the adap-
tor. The level of an adaptor is defined by the adaptor function bound to the
interface that contains the command c.

level(c,Θ) =

{
level(S → S′), if c ∈ I ∧ I(S → S′) ∈ Θ
0, if c ∈ I ∧ I /∈ Θ

The level of an adaptor function is given by the level of the last component of
the body in the pattern.

level(S → s) = level(s, S) level(S → S′ x) = level(x, S)

Finally, the level of a variable in a pattern is its position in the pattern counting
from right-to-left.

level(s, s) = 0 level(x, S x) = 0 level(x, S y) = 1 + level(x, S), if x 6= y

The semantics is given in Fig. 6. We define four reduction relations: top-
level use reduction (m  u m

′), top-level construction reduction (n  c n
′), full

use reduction (m −→u m′), and full construction reduction (n −→c n
′). We

write n[m/x] for n with m substituted for x and n[m/x] for n with each mi

simultaneously substituted for each xi. Similarly, we write n[(n′ : P )/f ] for n
with (n′ : P (R)) substituted for f R and the corresponding generalisation for
simultaneous substitution (writing P (R) for A[R/Z] where P = ∀Z.A).
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r : T ← t --[Σ] θ

B-Value
∆(Σ) defined
p :A← w a θ

p : 〈∆〉A← w --[Σ] θ

B-CatchAll
∆(Σ) = Σ′

〈x〉 : 〈∆〉A← t --[Σ] [({t} : {[Σ′]A})/x]

B-Request
∆(Σ) = Σ′ level(c, E) = 0

∆ = Θ|Ξ c : ∀Z.B → B′ ∈ Ξ (pi :Bi ← wi a θi)i
〈c p→ z〉 : 〈∆〉A← dE [c R w]e --[Σ] θ[({x 7→ E [x]} : {B′ → [Σ′]A})/z]

p :A← w a θ

B-Var

x :A← w a [↑(w : A)/x]

B-Data
k A ∈ D R (pi :Ai ← wi a θi)i

k p :D R← k w a θ

Fig. 7. Pattern Binding

The R-Handle rule depends on two auxiliary judgements (Figure 7). The
judgement r : T ← u --[Σ] θ states that computation pattern r of argument type
T at ability Σ matches normal form t yielding substitution θ. The judgement
p :A← w --[Σ] θ states that value pattern p of type A at ability Σ matches
construction value w yielding substitution θ. The R-Handle rule reduces an
application according to a first-match semantics. The R-Ascribe-Use and R-
Ascribe-Cons rules remove redundant type ascriptions from use and construc-
tion values respectively. The R-Let and R-LetRec rules are standard. The
R-Adapt rule removes an adaptor once the construction it contains is a value.
The R-Freeze-Comm rule freezes a command in the identity evaluation con-
text. The R-Freeze-Frame rule extends the evaluation context of a frozen
command by one frame. The R-Lift-UU, R-Lift-UC, R-Lift-CU, and R-
Lift-CC rules lift the top-level reduction relations to full reduction relations.

Reduction preserves typing.

Theorem 1 (Subject Reduction).

– If Γ [Σ]-- m⇒ A and m u m
′ then Γ [Σ]-- m′ ⇒ A.

– If Γ [Σ]-- n :A and n c n
′ then Γ [Σ]-- n′ :A.

– If Γ [Σ]-- m⇒ A and m −→u m
′ then Γ [Σ]-- m′ ⇒ A.

– If Γ [Σ]-- n :A and n −→u n
′ then Γ [Σ]-- n′ :A.

Programs are constructions. If a program stops reducing then it must be a
normal form, that is, either a value or a frozen evaluation context plugged with
a command (and the latter only if the ambient ability is non-empty).
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Definition 1. We say that normal form t respects Σ if it is either a value w or
a frozen evaluation context plugged with a command dE [c R w]e such that c ∈ I
and ⊥ < level(c, E) < |Σ@I|.

Theorem 2 (Type Soundness).
If · [Σ]-- n :A then either n is a normal form such that n respects Σ or there
exists · [Σ]-- n′ :A such that n −→c n

′. (In particular, if Σ = ∅ then either n is
a value w or there exists · [Σ]-- n′ :A such that n −→c n

′.)

6 Variations and Extensions

Adaptors are one particular solution to the effect pollution problem and we have
detailed one particular design for adaptors. In this section we discuss variations
and extensions of adaptors.

Adaptors Before Extensions. As spelled out in Sect. 5, the action of an adjust-
ment on an ability first applies the adaptor and then applies the extension. If we
were to switch the order then we could obtain a slightly more expressive system
in which one could handle an instance of an interface other than the rightmost
one. For example an argument type <Abort(s x y -> s y x)|Abort>Int would
handle the second instance of Abort rather than the first as it does now. A dis-
advantage of switching the order is that common cases such as mask become a
little more complicated.

Deep Extensions. We have implemented an extension to adaptors in Frank
whereby multiple instances of the same effect interface can be handled by the
same effect handler. We distinguish the instances by indexing by position in com-
mand patterns. For instance, the following handler is able to handle Reader Bool

and Reader Int effects at the same time.

readTwo : {<Reader Bool , Reader Int >X -> X}

readTwo { x -> x

| <ask.0 -> r> -> r 42

| <ask.1 -> r> -> r true }

The usual ask in a command pattern is syntactic sugar for ask.0. We might
further extend this syntax with a way of naming handled effect instances.

Extensible Adaptors. Another design that may be worth investigating would be
to roll extensions into adaptors. For instance, Reader(s -> s (Int)) would indi-
cate the adjustment |Reader Int and Reader(s x -> s (Int) x) an adjustment
that handles the second instance of Reader.

Adaptive Abilities. A nonuniformity in our current design is that both adaptors
and extensions appear in adjustments yet only extensions appear in abilities.
One obtains a more expressive system by changing the syntax of abilities to:

Σ ::= σ|∆
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The adaptor in an ability applies after the effect variable has been instantiated.
This requires some care because there is no guarantee that an adaptor pattern
will match. A solution is to change the semantics of pattern matching such that
variables are always bound to (possibly empty) lists of instances and the body
of an adaptor component concatenates all of the lists together. For instance,
suppose we apply the adaptor Reader(s x y -> s y) to the ability 0|Reader Int,
then y is bound to the singleton list containing the one instance of Reader Int

and x and s are both bound to the empty list. With adaptive abilities one can
define an adaptor that disables all instances of an interface. For instance, we
could disable all instances of Console with the adaptor: Console(s ->).

Inference. One might hope to automatically infer which inline adaptors need to
be inserted in order to make a program type check. This is possible up to a point,
but clearly not in general as there cannot be a unique or most general solution.
For instance, if we need to coerce a computation with ability Reader Int to one
with ability Reader Int, Reader Int, then we must choose between two possible
adaptors: Reader(s x -> s) and Reader(s x y -> s y).

7 Related Work

Effect Instances. Brady [5] provides a lightweight syntax for statically support-
ing multiple instances of the same effect. Early versions of the Eff programming
language [1,2] include a facility to dynamically generate fresh effect instances of-
fering an alternative way to encapsulate effects. We could consider adding a fresh
effect construct to Frank. In order to do so we would need to extend the effect
type system to provide interface variables (along the lines of a region type sys-
tem) and this may admit programming patterns that are awkward or impossible
with only adaptors. On the other hand fresh effect generation is not expressive
enough to define mask, so we would probably still want to keep adaptors. In
contrast, for row-based effect type system that do not allow effect shadowing,
such as the one employed by Links [9], a fresh effect construct would suffice, as
there is no need for mask anyway.

Inject, Lift, and Mask. Inject, lift, and mask are different names for the same
construct. Leijen’s Koka language [13] has a similar row-based effect type system
to Frank in which effects can shadow one another. When Koka was originally
conceived it had no effect handlers. Nevertheless, Leijen discusses inject [13] as
a way to address a particular instance of the effect pollution problem for hard-
coded exceptions. Koka now supports effect handlers [14] and a generalised inject
for arbitrary effects [15]. Biernacki et al. [3] introduce an effect handler calculus
λH/L, inspired by Koka. They construct a logical relation which they use for
reasoning about effect handler programs. Inspired by a desire for greater para-
metricity, they incorporate lift. They also observe that they can macro-express
a generalised lift operator and a swap operator using plain lift and effect han-
dlers. Extending λH/L, Biernacki et al. [4] introduce a calculus λHEL combining
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existential types, effect instances with a region-like type system, and a generali-
sation of lift similar to adaptors that they call coercions. Unlike adaptors which
are expressed as lambda expressions, coercions are constructed from four basic
combinators: lift, swap, cons, and compose. These coercions are not quite as ex-
pressive as adaptors as they do not support duplicating an effect (as in our state
actors example), though one can work around this limitation using a handler.

Modules. Multicore OCaml [8] supports effect handlers without effect types. The
OCaml module system provides a mechanism for simulating effect instances.
Biernacki et al.’s programming language Helium [4] also incorporates a module
system, which is elaborated into λHEL using existential types.

Negative Adjustments. In prior work [16] we proposed negative adjustments as
a means for masking effects from operator arguments; these correspond exactly
to the standard mask adaptor adjustment of our current design.

Effect Tunneling. Zhang and Myers [25] present an alternative approach to en-
sure handlers encapsulate effects. Their key idea is to extend types with handler
variables and handler polymorphism. The variables act as labels on effects in the
ambient context and determine which handlers interpret which effects. Handler
polymorphism is resolved by substituting the nearest lexically enclosing handler
for the handler variable. A capability region system ensures that computations
do not escape their handlers. Following Biernacki et al. [3], they develop a sound
logical relations model and prove their system satisfies an abstraction theorem.
While Zhang and Myers do not present an implementation, they claim that the
programmer need not deal with handler variables in practice. Rather, they out-
line a desugaring and rewriting pass which inserts the requisite variable bindings
and handler instantiations.

8 Conclusion

We have studied how to encapsulate effects in Frank and avoid the effect pol-
lution problem which manifests when composing operators whose intermediate
effects overlap with external effects. We addressed the problem using adaptors
which allow a flexible reconfiguration of effects and integrate smoothly in the
static and dynamic semantics of Frank. We have demonstrated the practical im-
portance of effect encapsulation through an implementation of actors, which
would egregiously leak its implementation details if written naively without
adaptors, but which keeps them completely hidden with judicious use of adap-
tors. We extended the implementation of Frank with adaptors and other features
needed for our actor case study such as polymorphic commands and ML-style
references. Finally, we have presented a formal type system and semantics for
Frank and proved type soundness.
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