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Abstract
Algebraic effects and effect handlers provide a modular abstraction
for effectful programming. They support user-defined effects, as in
Haskell, in conjunction with direct-style effectul programming, as
in ML. They also present a structured interface to programming
with delimited continuations.

In order to be modular, it is natural for an effect system to sup-
port extensible effects. Row polymorphism is a natural abstraction
for modelling extensibility at the level of types. In this paper we
argue that the abstraction required to implement extensible effects
and their handlers is exactly row polymorphism.

We use the Links functional web programming language as a
platform to substantiate this claim. Links is a natural starting point
as it uses row polymorphism for polymorphic variants, records, and
its built-in effect types. It also has infrastructure for manipulating
continuations. Through a small extension to Links we smoothly
add support for effect handlers, making essential use of rows in
the frontend and first-class continuations in the backend.

We evaluate the usability of our implementation by modelling
the mathematical game of Nim as an abstract computation. We in-
terpret this abstract computation in a variety of ways, illustrating
how rows and handlers support modularity and smooth composi-
tion of effectful computations.

We present a core calculus of row-polymorphic effects and han-
dlers based on a variant of A-normal form used in the intermediate
representation of Links. We give an operational semantics for the
calculus and a novel generalisation of the CEK machine that imple-
ments the operational semantics, and prove that the two coincide.

1. Introduction
Algebraic effects [26] and effect handlers [27] are a more modu-
lar alternative to monads for managing user-defined computational
effects [6, 13, 15]. Effect handlers generalise exception handlers,
providing a mechanism for interpreting arbitrary algebraic effects,
and they present a structured interface to programming with delim-
ited continuations.

As a simple example consider a choice effect given by a single
effectful operation:

choose : Bool

[Copyright notice will appear here once ’preprint’ option is removed.]

We can write an abstract computation M that invokes choose, in-
dependently of specifying the meaning of choose. We can then
handle M in multiple ways. For instance, we can define a handler
allResults that interprets choose as nondeterministic choice, re-
turning a list of all possible choices made in M. We can also define
a different handler coin that interprets choose as random choice,
returning a single value that depends on all of the random choices
made in M. Where effect handlers really come into their own as a
programming abstraction is when we start composing them: we can
handle some effects while forwarding all others, using row types to
statically track the forwarded effects. We make extensive use of
handler composition in Section 2.

Many existing implementations of effect handlers are Haskell
libraries. Notable examples include the effect handlers library of
Kammar et al. [13], the extensible effects library of Kiselyov et al.
[15] and Kiselyov and Ishii [14], and implementations based on
variants of Swierstra’s data types a la carte technique [31], such
as the work of Wu et al. [33] on scoped effect handlers. Another
notable effect handlers library is the Idris effects library [6]. Each of
these libraries uses its own sophisticated encoding of an abstraction
which amounts to a restricted form of row polymorphism. In this
work we present the first, to our knowledge, implementation of
effect handlers using genuine Remy-style row polymorphism [30].

Links [8] is a functional programming language for building
web applications. The defining feature of Links is that it provides
a single source language that targets all three tiers of a web ap-
plication: client, server, and database. Links source code is trans-
lated into an intermediate representation (IR) based on A-normal
form [11]. For the client, the IR is compiled to JavaScript. For
the server, the IR is interpreted using a variant of the CEK ma-
chine [10]. For the database, the IR is translated into an SQL query,
taking advantage of the effect type system and the subformula prop-
erty to guarantee query generation [20].

Links is a strict language with Hindley-Milner type inference.
Links has a row type system for polymorphic variants, records, and
its built-in effect types (for concurrency and database integration [8,
20]). It also has support for manipulating first-class continuations,
a feature which is helpful in implementing effect handlers.

The row-polymorphic effect type system and continuation sup-
port make Links a natural choice for experimenting with row-based
algebraic effects and effect handlers. We have implemented an ef-
fect handlers extension to Links. Currently, it is supported only on
the server-side. The frontend to our implementation makes essen-
tial use of row polymorphism, while backend is implemented as a
novel generalisation of the CEK machine.

Our main contributions are as follows:

• An implementation of effect handlers using Remy-style row
polymorphism [30].

• An evaluation of the usability of our implementation illustrating
how rows and handler support modularity and smooth compo-
sition of effectful computations.
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• A formalisation of our implementation including a small-step
call-by-value operational semantics and an abstract machine
semantics, based on a novel generalisation of the CEK machine
to account for effect handlers.

• A strong correspondence proof between the small-step and ab-
stract machine semantics: every reduction in the operational se-
mantics corresponds to a sequence of administrative steps fol-
lowed by a β-step in the abstract machine.

The rest of the paper is structured as follows: Section 2 gives a tu-
torial introduction to programming with handlers in Links. In Sec-
tion 3 we present a core calculus λρeff along with a type-and-effect
system and a small-step operational semantics. In Section 4 we re-
late the operational semantics to an abstract machine semantics,
that captures the essence of our implementation. In Section 5 we
discuss implementation details. Related work is discussed in Sec-
tion 6. Finally, in Section 7 we conclude and discuss future work.

2. Programming with Handlers in Links
To demonstrate that handlers and rows provide an elegant and
modular abstraction for effectful programming, we use a simplified
version of the mathematical game Nim [5] as a running example.

Starting from an abstract representation of the game, we itera-
tively extend it with cheat detection and high score tracking capa-
bilities through smooth composition of handlers, without needing
to change the initial representation.

2.1 The Game of Nim and Effect Rows
The game of Nim is played between two players: Alice and Bob.
The game is played with a heap of n sticks. The players take it in
turns to take one, two, or three sticks from the heap. Alice makes
the first move. The player who takes the last stick wins the game.

We abstract over the notion of making a move by defining it
as an abstract effectful operation Move:(Player,Int) {}-> Int,
where a value of Player is either Alice or Bob. The first parameter
to Move is the active player, the second parameter is the current
number of sticks on the heap. We refer to the pair (Player,Int) as
a game configuration. We discuss the meaning of the braces ({})
prefix on the arrow shortly. In Links, abstract operations like Move,
are invoked using the do primitive, for instance

do Move(Alice,3)

invokes the Move operation with values Alice and 3. Operation
names, data constructors, and type aliases all begin with a capital
letter. Records, variants, and effect signatures all have row types.
All typing is structural in Links, thus it is unnecessary to declare
a row occupant, such as an operation, before use. However, we
consider it good practice to wrap the invocation of operations as
functions, and we wrap Move as follows:

sig move :
(Player,Int) {Move:(Player,Int) {}-> Int|e}-> Int

fun move(p,n) {do Move(p,n)}

The syntax of Links is loosely based on that of JavaScript. The fun

keyword begins a function definition (like function in JavaScript).
Just as in JavaScript functions are n-ary, but they can also be
curried. Unlike in JavaScript, functions are statically typed and the
sig keyword begins a type signature. The function move invokes the
operation Move with the parameters p and n.

In the type signature, the function arrow (->) is prefixed by a
row enclosed in curly braces. This row is the effect signature, or
effect row, of the function. The presence of Move in the effect row
indicates that the function may perform the Move operation. Fur-
thermore, the effect row is equipped with an effect variable e, which
can be instantiated with additional operations. This means that move

may be invoked in the scope of additional effects. We say an effect
row is closed if it has no effect variable, and open if it does. In gen-
eral an effect row consists of an unordered collection of operation
specifications and an optional effect variable. An operation speci-
fication either specifies that an operation is admissible (or present)
and has a particular type signature, or that it is absent, or that it
is polymorphic in its presence. We discuss the use of absence in
Section 2.5.

The effect row on the type signature of the Move operation itself
is empty, denoted by a pair of braces ({}). This is always the
case for abstract operations as any effects they ultimately have are
conferred by their handlers.

The Nim game is modelled as two mutually recursive functions
aliceTurn and bobTurn. Here we show aliceTurn:

sig aliceTurn :
(Int) {Move:(Player,Int) {}-> Int|_}~> Player

fun aliceTurn(n) {
if (n <= 0) Bob
else bobTurn(n - move(Alice,n)) }

The parameter n is the number of sticks currently on the heap. If n
is zero then Bob wins. Otherwise, Alice makes a move and it is now
Bob’s turn. The definition of bobTurn is completely symmetric, so
we omit it here for brevity.

Two observations are worth making about the effect signature
of aliceTurn. First, the effect variable is anonymous (_): type
(or effect) variables need not be named when only appear once.
Second, the function arrow is squiggly (~>), which is syntactic
sugar for denoting that the computation has the wild effect. This
is a built-in effect in Links used for language integrated query
support [20], where a computation that cannot be translated into
SQL is said to be wild. The wild effect is unimportant here, but
will appear from time to time in our examples, as we build on top
of the existing system.

Links employs a strict evaluation strategy, so we thunk compu-
tations we wish to handle and define the following type alias:

typename Comp(e::Row,a) = () { |e}~> a;

The keyword typename is used to define type aliases. The Comp type
captures our notion of abstract computation, it is an alias for a thunk
with an empty, open effect row and return type a.

The game function begins a game with a given number of sticks.
Alice starts:

sig game : (Int) ->
Comp({Move:(Player,Int) {}-> Int|_}, Player)

fun game(n)() {aliceTurn(n)}

2.2 Strategies and Handlers
In general, algebraic effects come with equations [26], but as with
most other implementations of effect handlers, we do not consider
equations. Thus, on their own, abstract operations have no mean-
ing; handlers give them a semantics. We can use handlers to encode
particular strategies for Alice and Bob by interpreting the opera-
tion Move. We start by considering the perfect strategy, defined by
ps(n)

def
= max{1, n mod 4}, where n is the number of sticks left in

the game. If player p adopts the perfect strategy, then p is guaran-
teed to win if on p’s turn n is not divisible by 4. We define a handler
perfect

1 sig perfect:(Comp({Move:(Player,Int){}-> Int},a)) {}~> a
2 fun perfect(m) {
3 handle(m) {
4 case Return(x) -> x
5 case Move(p,n,k) -> k(maximum(1, n ‘mod‘ 4)) }}

which implements the perfect strategy for both players. We de-
scribe the handler line by line.
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Line 1 gives the type of perfect: it takes a computation that may
invoke the Move operation and returns a value of type a.

Lines 2 and 3 begin the definition. The function perfect wraps
the actual handler, which is applied to the argument m using the
handle construct, which specifies how to interpret abstract opera-
tions through a sequence of clauses.

Line 4 is a return clause. It defines how to handle the final return
value of the input computation. In this case, this value is simply
returned as is.

Line 5 is an operation clause. It expresses how to handle Move.
In general, an operation clause takes the form Op(p1, . . . , pn, k)→
M, where p1, . . . , pn are patterns that bind the operation parameters
and k is a pattern that binds the continuation of the computation in
M. In this case p and n are bound to the active player and number
of sticks in the heap, respectively. The continuation is invoked with
the perfect strategy, irrespective of the player.

We can now compute the winner of a game in which both
players play the perfect strategy:

links> perfect(game(7));
Alice : Player
links> perfect(game(12));
Bob : Player

In our restricted Nim game the perfect strategy is a winning strategy
for Alice iff the number of sticks n is not divisible by four.

Syntactic Sugar The input computation in perfect is immedi-
ately supplied to handle. This abstract-over-handle idiom arises
frequently, so Links provides syntactic sugar for it. We can give
a more succinct definition of perfect using the handler keyword:

handler perfect {
case Return(x) -> x
case Move(_,n,k) -> k(maximum(1,n ‘mod‘ 4)) }

The simplest possible handler, we can define is

sig run : (Comp({}, a)) {}~> a
handler run { case Return(x) -> x }

which simply runs a given computation. Although, it may seem
useless, but it proves to be useful in Section 2.4.

2.3 Game Trees and Multi-shot Continuations
The handler perfect computes the winner of a particular game. It
only considers one scenario in which both players play the same
strategy, but we can use handlers to compute other data about a
game. For instance, we can give an interpretation that computes the
game tree. Figure 1 shows an example game tree. Each node rep-
resents the active player, and each edge corresponds to a possible
move for that player We define a game tree inductively:

typename GTree = [|Take:(Player,[(Int,GTree)])
|Winner:(Player)|];

The syntax [|...|] denotes a (polymorphic) variant type in Links
in which components of the variant type are delimited by the pipe
symbol (|). A Take node includes the active player and a list of
possible moves, where each move is paired with the subsequent
game tree. A Winner leaf denotes the winner of a game.

We define a handler gametree that generates game trees:

sig gametree :
(Comp({Move:(Player,Int) {}-> Int}, Player)) {}~> GTree

handler gametree {
case Return(x) -> Winner(x)
case Move(p,n,k) ->

var subgames = map(k, validMoves(n));
var subtrees = zip([1,2,3], subgames);
Take(p, subtrees) }

Alice

Bob

Alice

Alice wins

1

1

Bob wins

2

1

Bob

Bob wins

1

2

Alice wins

3

Figure 1: Game Tree Generated by gametree(game(3)).

The effect signatures of gametree and perfect are identical, though
their interpretations of Move differ. The return clause wraps the
winning player x in a leaf node. The operation clause for Move

reifies the move as a node in the game tree. The var keyword
denotes a let binding. The crucial part is the invocation of map which
applies the continuation multiple times, once each for valid move,
enumerating every possible subgame. The function validMoves is
a simple filter:

fun validMoves(n)
{ filter(fun(m) {m <= n}, [1,2,3]) }

Figure 1 shows the game tree generated by the handler when n = 3.

2.4 Cheating and Forwarding
The handlers of Sections 2.2 and 2.3 are closed — closed handlers
are not composable. Open handlers, on the other hand, compose.
Open handlers cooperate to interpret an abstract computation, each
handler operates on a particular subset of the abstract operations,
leaving the remainder abstract for other handlers. Thus, open han-
dlers are flexible as we may write a collection of fine-grained han-
dlers which we can combine to fully interpret a computation. In
particular, this flexibility makes it possible to reinterpret computa-
tions by changing individual handlers.

In Links open handlers are defined using the open keyword. For
example, we can refine perfect as an open handler:

open handler pp {
case Return(x) -> x
case Move(_,n,k) -> k(maximum(1, n ‘mod‘ 4)) }

We may omit type signatures altogether as the type system infers
the appropriate effect rows. The extensibility of rows is absolutely
key to make this viable. We defer further discussion of type signa-
tures for open handlers until Section 2.5.

We demonstrate the flexibility of open handlers by augmenting
the game model with a cheat detection mechanism. A cheating
strategy might remove all remaining sticks from the heap, thus
winning in a single move. We introduce an additional operation
Cheat to signal that a cheater has been detected. The operation is
parameterised by the player, who was caught cheating:

sig cheat : (Player) {Cheat:(Player) {}-> Zero|_}-> _
fun cheat(p) { switch (do Cheat(p)) { } }

The Cheat operation can never return a value as its return type is
the empty type Zero. Thus invoking Cheat amounts to raising an ex-
ception. Concretely an operation clause for Cheat can never invoke
the continuation. The switch(e){...} construct pattern matches
on the expression e, through a possibly empty list of clauses. We
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define an open (exception) handler that interprets Cheat by out-
putting an error message and exiting the program:

open handler cheatReport {
case Return(x) -> x
case Cheat(Alice,_) -> error("Alice cheated!")
case Cheat(Bob,_) -> error("Bob cheated!")

}

We implement the heart of the cheat detection machinery as an
open handler:

open handler check {
case Return(x) -> x
case Move(p,n,k) -> var m = move(p,n);

if (m ‘elem‘ validMoves(n)) k(m)
else cheat(p) }

To detect cheating the handler analyses the active player’s move.
If it is legal, then the game continues. Otherwise, the Cheat opera-
tion is invoked to signal that cheating has occurred. We may com-
pose pp with cheatReport and check to give an interpretation of
a game in which no player may cheat. To make handler composi-
tion syntactically lightweight we define a pipeline operator (-<-)
for composing handlers and another operator (-<) for applying a
computation to a pipeline of handlers:

op f -<- g {fun(m) {f(g(m))}}
op f -< m {f(m)}

The keyword op is used to define infix binary operators. The opera-
tors are meant to indicate that unhandled operations are forwarded
from right to left in a pipeline. In order to run a pipeline of handlers,
we may apply the closed handler run:

links> run -<- pp -<- cheatReport -<- check -< game(7);
Alice : Player

The Cheat operation is never invoked as both players play the
same legal strategy. Let us define another handler that assigns the
perfect strategy to Alice and a cheating strategy to Bob

open handler pc {
case Return(x) -> x
case Move(Alice,n,k) -> k(maximum(1, n ‘mod‘ 4))
case Move(Bob,n,k) -> k(n) }

Now, the cheat detection handler catches Bob:

links> run -<- pc -<- cheatReport -<- check -< game(7);
*** Fatal error : Bob cheated!

The order of composition is important and pc and check both
handle moves. Bob gets away with cheating if we swap the two
handlers:

links> run -<- pp -<- cheatReport -<- check
-<- pc -< game(7);

Bob : Player

Here we also use pp, because the type system does not know that
check is not performing any Move operations.

2.5 Composition and Row Polymorphism
In this section we will discuss the typing of open handlers. For
example, the handler cheatReport has the following type:

sig cheatReport :
(Comp({Cheat:(Player) {}-> Zero|e},a)) ->

Comp({Cheat{p}|e},a)

In general, an open handler accepts a computation as input and
produces another computation as output. Moreover, open handlers
have open input and output effect rows, which both share the same

effect variable, as a consequence both rows mention the same
operation names. However, some of these operation names may be
marked as absent or polymorphic in their presence. In the output
effect row of cheatReport, the syntax Cheat{p} denotes that the
operation is presence polymorphic. The type variable p can be
instantiated to either present with a particular type (:A) or absent
(-). Presence polymorphism is useful for seamless composition of
handlers. We illustrate why by type checking the composition:

var f = run -<- (pp -<- cheatReport);

The inferred type for pp is

(Comp({Move:(Player,Int) {}-> Int|r}, a)) ->
Comp({Move{q} |r}, a)

The output effect row of cheatReport must be compatible with the
input effect row of pp, therefore the composition gives rise to the
following unification constraint:

{Move:(Player,Int) {}-> Int |r} ∼ {Cheat{p} |e}

The solution is to instantiate e with Move and r as Cheat to obtain:

{Move:(Player,Int) {}-> Int,Cheat:(Player) {}-> Int |r}

Note that with rows the order of operations is unimportant. The
new field propagates to the output effect row of pp which must be
compatible with the input row of run:

{} ∼ {Cheat{p},Move{q} |r}

The solution is to instantiate both p and q as −. Thus f has type:

(Comp({Move : (Player,Int) {}-> Int,
Cheat: (Player) {}-> Zero}, a)) {}~> a

The composite handler’s input effect row is the union of the respec-
tive input effects of pp, cheatReport and run.

The handler check has identical input and output effects:

sig check :
(Comp({Cheat:(Player) {}-> Zero,

Move: (Player,Int) {}-> Int|e},a)) ->
Comp({Cheat:(Player) {}-> Zero,

Move: (Player,Int) {}-> Int|e},a)

The reason Cheat appears in the input effect is that the shared row
variable dictates that it must at least be mentioned. To be sound,
if it is present it must have the same type as in the output effect.
We could alternatively have asserted that it be absent, which would
specify that the input computation must not have the Cheat effect.
What we actually require for soundness is that if the Cheat effect is
present then it must have type (Player) {}-> Zero, as that is the
type it has in the output. In a more refined system along the lines of
Remy’s ΠML′ [30], we could specify this as follows:

sig check :
(Comp({Cheat{_}: (Player) {}-> Zero,

Move: (Player,Int) {}-> Int|e},a)) ->
Comp({Cheat: (Player) {}-> Zero|e,

Move: (Player,Int) {}-> Int},a)

The {_} indicates that Cheat is polymorphic in its presence. But
now the type is independent of whether or not Cheat is present.

2.6 Choice and Built-in Effects
In this section we implement the choice effect described in the
introduction. We let Bob to choose which strategy he will adopt.
First, we define a wrapper for the choice operation.

sig choose : Comp({Choose:Bool|_}, Bool)
fun choose() {do Choose}
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Using this operation we define a strategy selecting function in
which Bob decides between playing the perfect or cheating strategy

fun bobChooses(m)()
{ if (choose()) pc(m)() else pp(m)() }

We can give a nondeterministic interpretation of Choose that in-
fuses Bob with oracular powers that enable him to explore both
alternatives. We define it as an open handler allResults

sig allResults : (Comp({Choose:Bool|e},a)) ->
Comp({Choose{_}|e},[a])

open handler allResults {
case Return(x) -> [x]
case Choose(k) -> k(true) ++ k(false) }

The handler wraps the result of the input computation into a single-
ton list. In the Choose-clause the handler accumulates the results of
either alternative by invoking the continuation twice.

Now, we can put everything together:

links> run -<- allResults -<- bobChooses -< game(7);
[Alice,Bob] : [Player]

Thus Bob only wins when he cheats.
Alternatively, we can replace Bob’s oracular powers with a fair

coin and let him perform a coin flip to decide which strategy to pick.
We use Links’ built-in random number generator, which returns a
float from the interval [0.0; 1.0]:

sig coin : (Comp({Choose:Bool|e}, a)) ->
Comp({Choose{_}|e}, a)

open handler coin {
case Return(x) -> x
case Choose(k) -> if (random() > 0.5) k(true)

else k(false) }

The handler uniformly interprets Choose as true or false. Thus,
using this handler Bob will be equally likely to either play the
perfect strategy or fall victim to cheating. The computation

links> run -<- coin -<- bobChooses -< game(7);

returns either Alice or Bob. Built-in effects interact smoothly with
the rest of the system.

2.7 A Scoreboard and Parameterised Handlers
As a final extension we add a scoreboard that accumulates the
number of wins for each player. The scoreboard is updated after
each game. We represent state as an effect with operations for
reading (Get : s) and updating (Put : s {}-> ()) state of type
s. We wrap them in the usual way:

sig get : () {Get:s|_}-> s
fun get() {do Get}

sig put : (s) {Put:(s) {}-> ()|_}-> ()
fun put(s) {do Put(s)}

We use an open, parameterised handler to give an interpretation of
state. In addition, to supplying a computation to a parameterised
handler, we also supply one or more parameter. In this instance we
pass the state as an additional parameter s

sig state : (s) -> (Comp({Get:s,Put:(s) {}-> ()|e},a))->
Comp({Get{_},Put{_} |e},a)

open handler state(s) {
case Return(x) -> x
case Get(k) -> k(s)(s)
case Put(p,k) -> k(())(p) }

The main difference compared to an unparameterised handler is
that the continuation k is a curried function which takes a return
value followed by the handler parameters. In the Get clause we

return the state and also pass it unmodified to any subsequent
invocations of the handler. Similarly, in the Put clause we return
unit, and update the state.

We represent high scores as an association list and refer to a
value of this type as the game state:

typename GState = [(Player,Int)];

We define an initial state s0 = [(Alice,0),(Bob,0)]. We now
need a mechanism to update the game state when a game finishes.
Recall that game(n) returns a computation whose type is:

Comp({Move:(Player,Int) {}-> Int|_}, Player).

The computation returns the winner of the game. We may exploit
the fact that the return clauses of handlers are invoked in the
order of composition, therefore we define a simple post-processing
handler, that contains only a Return case, to update the scoreboard:

sig scoreUpdater :
(Comp({Get:GState,Put:(GState) {}-> ()|e}, Player)) ->

Comp({Get:GState,Put:(GState) {}-> ()|e}, Player)
open handler scoreUpdater {

case Return(x) -> var s = updateScore(x, get());
put(s); x }

The function updateScore is pure, it simply returns a copy of the
given game state, in which the number of wins for the given player p
has been incremented by one. The handler the reads and updates the
game state. Accordingly, the composition scoreUpdater(game(n))

causes the effect row to grow:

Comp({Move:(Player,Int) {}-> Int,
Get:GState,Put:(GState) {}-> ()|_}, Player).

In a similar fashion, we define a handler that prints the scoreboard:

sig printer : (Comp({Get:GState|e}, a)) ->
Comp({Get:GState|e}, a)

open handler printer
{ case Return(x) -> printBoard(get()); x }

The function printBoard is impure as it prints an ASCII represen-
tation of the given game state to standard out. To make matters
more interesting we add replay functionality, which we implement
by invoking a handler recursively on its input computation:

sig replay : (Int) -> (Comp({ |e}, a)) -> Comp({ |e}, a)
open handler[m] replay(n)
{case Return(x) -> if (n <= 1) x else replay(n-1)(m)()}

Here, we used an additional bit of syntactic sugar to name the in-
put computation m. The replay handler reevaluates the computa-
tion m precisely n times. Note, that the handler’s effect signature is
an empty, open row. This means the handler forwards every oper-
ation that might occur to subsequent handlers. Now, we can wire
everything together:

links> run -<- state(s0) -<- printer -<- replay(10) -<-
coin -<- bobChooses -<- scoreUpdater -< game(7);

Figure 2 shows a possible output. In the same manner, we can ef-
fortlessly merge the cheating infrastructure into the pipeline, with-
out changing the underlying computation.

3. A Calculus of Handlers and Rows
In this section, we present a type and effect system and a small-
step operational semantics for λρeff (pronounced “lambda-eff-row”),
a Church-style row-polymorphic call-by-value calculus for effect
handlers. We prove that the operational semantics is sound with
respect to the type and effect system.
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/======================\
| NIM HIGHSCORE |
|======================|
| Player | #Wins |
|============|=========|
| Alice | 7 |
|============|=========|
| Bob | 3 |
\======================/

Figure 2: Print of the Nim scoreboard after 10 games with n = 7,
and where Alice played the perfect strategy and Bob chose between
the perfect and cheating strategies.

Types

Value types A,B ::= A→ C | ∀αK .C
| 〈R〉 | [R] | C⇒ D | α

Computation types C,D ::= A!E
Effect types E ::= {R}
Row types R ::= ` : P; R | ρ | ·
Presence types P ::= Pre(A) | Abs | θ
Kinds K ::= Type | RowL | Presence
Label sets L ::= ∅ | {`} ] L
Type environments Γ ::= · | Γ, x : A
Kind environments ∆ ::= · | ∆, α : K

Figure 3: Types, effects, kinds, and environments

A key advantage of row polymorphism is that it integrates rather
smoothly with Hindley-Milner type inference. We concern our-
selves only with the explicitly-typed core language, as the treatment
of type inference is quite standard.

The design of λρeff is inspired by the λ-calculi of Kammar et al.
[13], Pretnar [29], and Lindley and Cheney [20]. As in the work
of Kammar et al. [13], each handler can have its own effect sig-
nature. As in the work of Pretnar [29], the underlying formalism
is fine-grained call-by-value [18], which names each intermediate
computation like in A-normal form [11], but unlike A-normal form
is closed under β-reduction. As in the work of Lindley and Cheney
[20], the effect system is based on row polymorphism.

3.1 Types
The grammars of types, effects, kinds, and type and kind environ-
ments are given in Figure 3.

Value Types The function type A → C takes an argument of
type A and returns a computation of type C. The polymorphic type
∀αK .C is parameterised by a type variable α of kind K. The record
type 〈R〉 represents records with fields given by labels of row R.
Dually, the variant type [R] represents a sum of fields tagged by the
labels of row R. The handler type C⇒ D transforms a computation
of type C into a computation of type D.

Computation Types A computation type A!E is given by a value
type A and an effect E, which specifies the operations that the
computation may perform.

Row Types Effect types, records and variants are defined in terms
of rows. A row type embodies a collection of distinct labels, each of
which is annotated with a presence type. A presence type indicates
whether a label is present with some type A (Pre(A)), absent (Abs)
or polymorphic in its presence (θ).

Row types are either closed or open. A closed row type ends in
·, whilst an open row type ends with a row variable ρ. Furthermore,

Values V,W ::= x | λxA.M | ΛαK .M
| 〈〉 | 〈` = V; W〉 | (`V)R

Computations M,N ::= V W | V A
| let 〈` = x; y〉 ← V in N
| case V{` x 7→ M; y 7→ N} | absurdAV
| return V
| let x← M in N
| (do ` V)E

| handle M with H

Handlers H ::= {return x 7→ M}
| {` x k 7→ M} ] H

Figure 4: Term Syntax

a closed row term can have only the labels explicitly mentioned in
its type. Conversely, the row variable in an open row can be instan-
tiated with additional labels. We identify rows up to reordering of
labels, for instance, we consider the following two rows equivalent:

`1 : P1; · · · ; `n : Pn ≡ `n : Pn; · · · ; `1 : P1.

The unit and empty type are definable in terms of row types.
We define the unit type as the empty, closed record, that is, 〈·〉.
Similarly, we define the empty type as the empty, closed variant [·].
Usually, we usually omit the · for closed rows.

Kinds We have three kinds: Type, RowL and Presence which
classify value types, row types and presence types, respectively.
Row kinds are annotated with a set of labels L. The kind of a
complete row is Row∅. More generally, the kind RowL denotes a
partial row which cannot mention the labels in L.

Type Variables We let α, ρ and θ range over type variables. By
convention we use α for value type variables or for type variables
of unspecified kind, ρ for type variables of row kind, and θ for type
variables of presence kind.

Type and Kind Environments Type environments map term vari-
ables to their types and kind environments map type variables to
their kinds.

3.2 Terms
The terms are given in Figure 4. We let x, y, z, k range over term
variables. By convention, we use k to denote names of continua-
tions.

The syntax partitions terms into values, computations and
handlers. Value terms comprise variables (x), lambda abstraction
(λxA.M), type abstraction (ΛαK .M), and the introduction forms
for records and variants. Records are introduced using the empty
record 〈〉 and record extension 〈` = V; W〉, whilst variants are in-
troduced using injection (`V)R which injects a field with label `
and value V into a row whose type is R. We include the row type
annotation in order to support bottom-up type reconstruction.

All elimination forms are computation terms. Abstraction and
type abstraction are eliminated using application (V W) and type
application (V A) respectively. The record eliminator (let 〈` =
x; y〉 ← V in N) splits a record V into x, the value associated with
`, and y, the rest of the record. Non-empty variants are eliminated
using the case construct (case V {` x 7→ M; y 7→ N}), which
evaluates the computation M if the tag of V matches `, otherwise it
falls through to y and evaluates N. The elimination form for empty
variants is (absurdAV). A trivial computation (return V) returns
value V . The expression (let x ← M in N) evaluates M and binds
the result value to x in N.
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The construct (do ` V)E invokes an operation ` with value
argument V . The handle construct (handle M with H) runs a
computation M with handler definition H. A handler definition H
consists of a return clause return x 7→ M and a possibly empty set
of operation clauses {`i xi ki 7→ Mi}i. The return clause defines
how to handle the final return value of the handled computation,
which is bound to x in M. The i-th operation clause binds the
operation parameter to xi and a the continuation ki in Mi.

We write H(return) for the return clause of H and H(`) for
the set of either zero or one operation clauses in H that handle the
operation `. We write dom(H) for the set of operations handled
by H. We annotate various subterms with their types in order to
aid type reconstruction (injection, operations, empty cases, and
handlers); we sometimes omit these annotations.

3.3 Static Semantics
The kinding rules are given in Figure 5 and the typing rules are
given in Figure 6.

The kinding judgement ∆ ` α : K asserts that the type variable
α has kind K in kind environment ∆. The value typing judgement
∆; Γ ` V : A states that value term V has type A under kind
environment ∆ and type environment Γ. The computation typing
judgement ∆; Γ ` M : A!E states that the term M has type A
and effects E under kind environment ∆ and type environment Γ.
In typing judgements, we implicitly assume that Γ, E and A are
well-kinded with respect to ∆. We define the functions FTV(Γ) and
FTV(E) to be the set of free type variables in Γ and E, respectively.

The kind and typing rules are mostly straightforward. The inter-
esting typing rules are T-HANDLE and the two handler rules. The
T-HANDLE rule states that handle M with H produces a computa-
tion of type B given that the computation M is typeable under effect
context E, and that H is a handler which transforms a computation
of type A with effect signature E into another computation of type
B with effect signature E′.

The T-HANDLER rule is crucial. The input effect E and the out-
put effect E′ must share the same suffix R. This means that E′ must
explicitly mention each of the operations `i, whether that be to say
that an `i is present with a given type signature, absent, or polymor-
phic in its presence. The row R describes the operations that are for-
warded. It may include a row-variable, in which case an arbitrary
number of effects may be forwarded by the handler. The typing of
the return clause is straightforward. In the typing of each opera-
tion clause, the continuation returns the output computation type
D. Thus, we are here defining deep handlers [13] in which the han-
dler is implicitly wrapped around the continuation, such that any
subsequent operations are handled uniformly by the same handler.
The Links implementation also supports shallow handlers [13], in
which the continuation is instead annotated with the input effect
and one has to explicitly reinvoke the handler after applying the
continuation inside an operation clause.

3.4 Operational Semantics
We give a small-step operational semantics for λρeff. Figure 7 dis-
plays the operational rules. The reduction relation is defined on
computation terms. The statement M  M′ reads: term M reduces
to term M′ in a single step. Most of the rules are standard. We use
evaluation contexts to simplify the evaluation rules, by allowing us
to focus on an active expression. The interesting rules are the han-
dler rules.

We write BL(E) for the set of operation labels bound by E .

BL([ ]) = ∅
BL(let x← E in N) = BL(E)

BL(handle E with H) = BL(E) ∪ dom(H)

TYVAR

∆, α : K ` α : K

FORALL
∆, α : K ` A : Type ∆, α : K ` R : Row∅

∆ ` (∀αK .A!{R}) : Type

FUN
∆ ` A : Type ∆ ` R : Row∅ ∆ ` B : Type

∆ ` (A→ B!{R}) : Type

RECORD
∆ ` R : Row∅
∆ ` 〈R〉 : Type

VARIANT
∆ ` R : Row∅
∆ ` [R] : Type

PRESENT
∆ ` A : Type

∆ ` Pre(A) : Presence

ABSENT

∆ ` Abs : Presence

EMPTYROW

∆ ` · : RowL

EXTENDROW
∆,P : Presence ∆,R : RowL]{`}

∆ ` ` : P; R : RowL

Figure 5: Kinding Rules

The rule S-HANDLE-RET invokes the return clause of a han-
dler. The rule S-HANDLE-OP handles an operation by invoking the
appropriate operation clause. The constraint ` /∈ BL(E) ensures
that no inner handler inside the evaluation context is able to handle
the operation: thus a handler is able to reach past any other inner
handlers that do not handle `. In our abstract machine semantics
we realise this behaviour using explicit forwarding operations, but
more efficient implementations are perfectly feasible.

We write R+ for the transitive closure of relation R. Subject
reduction and type soundness for λρeff are standard.

Theorem 3.1 (Subject Reduction). If ∆; Γ ` M : A!E and M  
M′, then ∆; Γ ` M′ : A!E.

There are two ways in which a computation can terminate. It
can either successfully return a value, or it can get stuck on an
unhandled operation.

Definition 3.2. We say that computation term N is normal with
respect to effect E, if N is either of the form return V, or E [do ` W],
where ` ∈ E and ` /∈ BL(E).

If N is normal with respect to the empty effect {·}, then N has
the form return V .

Theorem 3.3 (Type Soundness). If ` M : A!E, then there exists
` N : A!E, such that M  + N 6 , and N is normal with respect to
effect E.

4. Abstract Machine Semantics
In this section we present an abstract machine semantics for λρeff,
which is closely related to the actual implementation of effect
handlers in Links. We prove that the abstract machine simulates the
operational semantics in the sense that each reduction in the small
step semantics corresponds exactly to a finite sequence of one or
more steps of the abstract machine.

The Links interpreter is based on a CEK-style abstract ma-
chine [10] and operates directly on ANF terms [11]. The standard
CEK machine operates on configurations which are triples of the
form 〈C | E | K〉.
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Values
T-VAR

x : A ∈ Γ

∆; Γ ` x : A

T-LAM
∆; Γ, x : A ` M : C

∆; Γ ` λxA.M : A→ C

T-POLYLAM
∆, α : K; Γ ` M : A!E α /∈ FTV(Γ)

∆; Γ ` ΛαK .M : ∀αK .A!E

T-UNIT

∆; Γ ` 〈〉 : 〈〉

T-EXTEND
∆; Γ ` V : A ∆; Γ ` W : 〈` : Abs; R〉

∆; Γ ` 〈` = V; W〉 : 〈` : Pre(A); R〉

T-INJECT
∆; Γ ` V : A

∆; Γ ` (`V)R : [` : Pre(A); R]

Computations

T-APP
∆; Γ ` V : A→ C ∆; Γ ` W : B

∆; Γ ` V W : C

T-POLYAPP

∆; Γ ` V : ∀αK .C ∆ ` A : K
∆; Γ ` V A : C[A/α]

T-SPLIT
∆; Γ ` V : 〈` : Pre(A); R〉

∆; Γ, x : A, y : 〈` : Abs; R〉 ` N : C
∆; Γ ` let 〈` = x; y〉 ← V in N : C

T-CASE
∆; Γ ` V : [` : Pre(A); R]

∆; Γ, x : A ` M : C
∆; Γ, y : [` : Abs; R] ` N : C

∆; Γ ` case V{` x 7→ M; y 7→ N} : C

T-ABSURD
∆; Γ ` V : []

∆; Γ ` absurdA V : C

T-RETURN
∆; Γ ` V : A

∆; Γ ` return V : A!E

T-LET
∆; Γ ` M : A!E ∆; Γ, x : A ` N : B!E

∆; Γ ` let x← M in N : B!E

T-DO
∆; Γ ` V : A E = {` : A→ B; R}

∆; Γ ` (do ` V)E : B!E

T-HANDLE
∆; Γ ` M : C ∆; Γ ` H : C⇒ D

∆; Γ ` handle M with H : D

Handlers
T-HANDLER
C = A!{(`i : Ai → Bi)i; R} D = B!{(`i : Pi)i; R} H = {return x 7→ M} ] {`i y k 7→ Ni}i

[∆; Γ, y : Ai, k : Bi → D ` Ni : D]i ∆; Γ, x : A ` M : D
∆; Γ ` H : C⇒ D

Figure 6: Typing Rules

S-APP (λxA.M)V  M[V/x]
S-TYAPP (ΛαK .M)A  M[A/α]
S-SPLIT let 〈` = x; y〉 ← 〈` = V; W〉 in N  N[V/x,W/y]
S-CASE1 case (`V)R{` x 7→ M; y 7→ N}  M[V/x]
S-CASE2 case (`V)R{`′ x 7→ M; y 7→ N}  N[(`V)R/y], if ` 6= `′

S-LET let x← return V in N  N[V/x]
S-HANDLE-RET handle (return V) with H  M[V/x], where {return x 7→ M} ∈ H
S-HANDLE-OP handle E [do ` V] with H  M[V/x, λy. handle E [return y] with H/k],

where ` /∈ BL(E) and {` x k 7→ M} ∈ H

Evaluation contexts E ::= [ ] | let x← E in N | handle E with H

S-LIFT
M  N

E [M] E [N]

Figure 7: Small-step Operational Semantics
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Configurations C ::= 〈M | γ | κ〉
| 〈M | γ | κ | κ′〉op

Value environments γ ::= ∅ | γ[x 7→ v]
Values v,w ::= λγxA.M | ΛγαK .M

| 〈〉 | 〈` = v; w〉 | (` v)R | κA

Continuations κ ::= [ ] | δ :: κ
Continuation frames δ ::= (σ, χ)
Pure continuations σ ::= [ ] | φ :: σ
Pure continuation frames φ ::= (γ, x,N)
Handlers χ ::= (γ,H)

Figure 8: Abstract Machine Syntax

• The control C is the expression currently being evaluated.
• The environment E binds the free variables.
• The continuation K instructs the machine what to do once it is

done evaluating the current term in the C component.

In order to accommodate handlers we generalise the CEK ma-
chine. The syntax of abstract machine states is given in Figure 8.
Just like in the standard CEK machine, a standard configuration
C = 〈M | γ | κ〉 of our abstract machine is a triple of a compu-
tation term M, an environment γ mapping free variables to values,
a continuation κ. However, our continuations differ from the stan-
dard machine. On the one hand, they are somewhat simplified, due
to our strict separation between computations and values. On the
other hand, they have considerably more structure in order to ac-
commodate effects and handlers. In order to account for forward-
ing of unhandled operations, configurations occasionally gain an
additional continuation argument.

Values consist of function closures, type function closures,
records, variants, and captured continuations. A continuation κ
consists of a stack of continuation frames [δ1, . . . , δn]. We choose
to annotate captured continuations with their input type in order
to make the results of Section 4.1 easier to state. Intuitively, each
continuation frame represents the pure continuation (a sequence
of let bindings) inside a particular handler. A continuation frame
δ = (σ, χ) consists of a pure continuation σ and a handler value χ.
A pure continuation is a stack of pure continuation frames. A pure
continuation frame (γ, x,N) closes a let-binding let x = [ ] in N
over environment γ. A handler value (γ,H) closes a handler defi-
nition H over environment γ.

We write [ ] for an empty stack, x :: s for the result of pushing x
on top of stack s, and s ++ s′ for the concatenation of stack s on top
of s′. We use pattern matching to deconstruct stacks. We write χ(`)
for H(`), where χ = (κ,H). Similarly, we write δ(`) for χ(`),
where δ = (σ, χ).

The abstract machine semantics is given in Figure 9. The tran-
sition function is given by −→. This depends on an interpretation
function J−K for values.

The machine is initialised (M-INIT) by placing a term in a
configuration alongside the empty environment and identity con-
tinuation κ0. The rules (M-APP), (M-TYAPP), (M-SPLIT), and
(M-CASE) enact the elimination of values. Note that (M-APP)
handles application of both closures and of captured continu-
ations. The rules (M-LET) and (M-HANDLE) extend the cur-
rent continuation with let bindings and handlers respectively.
The rule (M-RETCONT) binds a returned value if there is a
pure continuation in the current continuation frame. The rule
(M-RETHANDLER) invokes the return clause of a handler if there
is no pure continuation in the current continuation frame, but there
is a handler. The rule (M-RETTOP) returns a final value if the con-
tinuation is empty. The rule (M-OP) switches to a special four place

configuration in order to handle an operation. The fourth compo-
nent of the configuration is an auxiliary forwarding continuation,
which keeps track of the continuation frames through which the
operation has been forwarded. It is initialised to be empty. The rule
(M-OP-HANDLE) uses the current handler to handle an operation
if the label matches one of the operation clauses of the current han-
dler. The captured continuation is assigned the forwarding contin-
uation with the current continuation frame appended to the bottom
of it. The rule (M-OP-FORWARD) appends the current continua-
tion frame onto the bottom of the forwarding continuation. Notice
that if the main continuation is empty then the machine gets stuck.
This occurs when an operation is unhandled, and the forwarding
continuation describes the succession of handlers that have failed
to handle the operation along with any pure continuations that were
encountered along the way.

Assuming the input is a well-typed closed computation term
` M : A!E, the machine will either return a value of type A, or
it will get stuck failing to handle an operation appearing in E. We
now make the correspondence between the operational semantics
and the abstract machine more precise.

4.1 Correctness
The (M-INIT) rule immediately gives us a canonical way to map
a computation term onto the abstract machine. A more interesting
question is how to map an arbitrary configuration to a computation
term. Figure 10 describes such a mapping L−M from configurations
to terms via a collection of mutually recursive functions defined
on configurations, continuations, computation terms, handler defi-
nitions, value terms, and values. We write dom(γ) for the domain
of γ, and γ\{x1, . . . , xn} for the restriction of environment γ to
dom(γ)\{x1, . . . , xn}.

The L−M function enables us to classify the abstract machine
reduction rules in according to how they relate to the operational
semantics.

The rules (M-INIT) and (M-RETTOP) just concern initial in-
put and final output, neither of which is a feature of the opera-
tional semantics, so we can ignore them. The rules (M-APPCONT),
(M-LET), (M-HANDLE), (M-OP), and (M-OP-FORWARD) are ad-
ministrative in the sense that L−M is invariant under these rules. This
leaves the β-rules (M-APP), (M-TYAPP), (M-SPLIT), (M-CASE),
(M-RETCONT), (M-RETHANDLER), and (M-OP-HANDLE). Each
of these corresponds directly with performing a reduction in the op-
erational semantics.

We write −→a for administrative steps, −→β for β-steps, and
=⇒ for a sequence of steps of the form −→∗a−→β .

The following lemma describes how we can simulate each re-
duction in the operational semantics by a sequence of administra-
tive steps followed by one β-step in the abstract machine. The idea
is to represent a computation term M by the equivalence class of
configurations C such that LCM = M.

Lemma 4.1. If M  N, then for any C, such that LCM = M, there
exists C′, such that C =⇒ C′ and LC′M = N.

Proof. By induction on the derivation of M  N. If LCM = M, then
the underlying structure of the term in the configuration C must
be the same as M, as L−M is homomorphic on computation terms.
Some value subterms of M may appear in the environment, and
part of the evaluation context of M may appear in the continuation.
Administrative reductions update C by growing the continuation,
whilst maintaining the invariant that LCM = M. This process corre-
sponds directly to traversing an evaluation context. It is straightfor-
ward to see that only a finite number of administrative reductions
can occur consecutively as they either reduce the size of M or leave
it unchanged and reduce the size of κ in the case of forwarding.
Eventually the control part of the continuation will contain a redex
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Identity continuation
κ0 = [([ ], (∅, {return x 7→ x}))]

Transition function
M-INIT M −→ 〈M | ∅ | κ0〉

M-APP 〈V W | γ | κ〉 −→ 〈M | γ′[x 7→ JWKγ] | κ〉, if JVKγ = λγ
′
xA.M

M-APPCONT 〈V W | γ | κ〉 −→ 〈return W | γ | κ′ ++ κ〉, if JVKγ = (κ′)A

M-TYAPP 〈M A | γ | κ〉 −→ 〈M[A/α] | γ′ | κ〉, if JVKγ = Λγ
′
αK .M

M-SPLIT 〈let 〈` = x; y〉 ← V in N | γ | κ〉 −→ 〈N | γ[x 7→ v, y 7→ w] | κ〉, if JVKγ = 〈` = v; w〉

M-CASE 〈case V {` x 7→ M; y 7→ N} | γ | κ〉 −→
{
〈M | γ[x 7→ v] | κ〉, if JVKγ = ` v
〈N | γ[y 7→ `′ v] | κ〉, if JVKγ = `′ v and ` 6= `′

M-LET 〈let x← M in N | γ | (σ, χ) :: κ〉 −→ 〈M | γ | ((γ, x,N) :: σ, χ) :: κ〉
M-HANDLE 〈handle M with H | γ | κ〉 −→ 〈M | γ | ([ ], (γ,H)) :: κ〉
M-RETCONT 〈return V | γ | ((γ′, x,N) :: σ, χ) :: κ〉 −→ 〈N | γ′[x 7→ JVKγ] | (σ, χ) :: κ〉
M-RETHANDLER 〈return V | γ | ([ ], (γ′,H)) :: κ〉 −→ 〈M | γ′[x 7→ JVKγ] | κ〉,

if H(return) = {return x 7→ M}
M-RETTOP 〈return V | γ | [ ]〉 −→ JVKγ

M-OP 〈(do ` V)E | γ | κ〉 −→ 〈(do ` V)E | γ | κ | [ ]〉op
M-OP-HANDLE 〈(do ` V)E | γ | δ :: κ | κ′〉op −→ 〈M | γ′[x 7→ JVKγ, k 7→ (κ′ ++ [δ])B] | κ〉,

if ` : A→ B ∈ E and δ(`) = {` x k 7→ M}
M-OP-FORWARD 〈(do ` V)E | γ | δ :: κ | κ′〉op −→ 〈(do ` V)E | γ | κ | κ′ ++ [δ]〉op, if δ(`) = ∅

Value interpretation

JxKγ = γ(x)
J〈〉Kγ = 〈〉

JλxA.MKγ = λγxA.M
J〈` = V; W〉Kγ = 〈` = JVKγ; JWKγ〉

JΛαK .MKγ = ΛγαK .M
J(`V)RKγ = (` JVKγ)R

Figure 9: Abstract Machine Semantics

Configurations

L〈M | γ | κ〉M = LκM(M, γ) L〈M | γ | κ | κ′〉opM = Lκ′ ++ κM(M, γ) = Lκ′M(LκM(M, γ), ∅)
Continuations

L[]M(M, γ) = LMMγ
L((γ′, x,N) :: σ, χ) :: κM(M, γ) = L(σ, χ) :: κM(let x← M in LNM(γ′\{x}), γ)

L([], (γ′,H)) :: κM(M, γ) = LκM(handle M with LHMγ′, γ)

Computation terms
LV WMγ = LVMγ LWMγ
LV AMγ = LVMγ A

Llet 〈` = x; y〉 ← V in NMγ = let 〈` = x; y〉 ← LVMγ in LNM(γ\{x, y})
Lcase V {` x 7→ M; y 7→ N}Mγ = case LVMγ {` x 7→ LMM(γ\{x}); y 7→ LNM(γ\{y})}

Lreturn VMγ = return LVMγ
Llet x← M in NMγ = let x← LMMγ in LNM(γ\{x})

Ldo ` VMγ = do ` LVMγ
Lhandle M with HMγ = handle LMMγ with LHMγ

Handler definitions
L{return x 7→ M}Mγ = {return x 7→ LMM(γ\{x})}

L{` x k 7→ M} ] HMγ = {` x k 7→ LMM(γ\{x, k}} ] LHMγ
Value terms and values

LxMγ = LvM, if γ(x) = v
LxMγ = x, if x /∈ dom(γ)

LλxA.MMγ = λxA.LMM(γ\{x})
LΛαK .MMγ = ΛαK .LMMγ

L〈〉Mγ = 〈〉
L〈` = V; W〉Mγ = 〈` = LVMγ; LWMγ〉

L(` V)RMγ = (` LVMγ)R

LλγxA.MM = λxA.LMM(γ\{x})
LΛγαK .MM = ΛαK .LMMγ

L〈〉M = 〈〉
L〈` = v; w〉M = 〈` = LvM; LwM〉

L(` v)RM = (` LvM)R

LκAM = λxA.LκM(return x, ∅)

Figure 10: Mapping from Abstract Machine Configurations to Terms
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corresponding to the active redex in M and it will then transition
via a β-rule to a configuration C′, such that LC′M = N.

The correspondence here is rather strong: there is a one-to-
one mapping between  and =⇒. The inverse of the lemma
is straightforward as the semantics is deterministic. Notice that
Lemma 4.1 does not require that M be well-typed. We have chosen
here not to perform type-erasure, but it is straightforward to adapt
the results to semantics in which all polymorphism is erased and all
type annotations are erased.

Theorem 4.2 (Simulation). If ` M : A!E, and M  + N, such that
N is normal with respect to E, then M −→+ C, such that LCM = N.

Proof. By repeated application of Lemma 4.1.

5. Implementation
Our implementation of handlers is based on a mild syntactic ex-
tension to Links: the syntax is extended with the do construct for
invoking operations and the handle(m) {...} for handling abstract
computations.

Syntactic Sugar We provide syntactic sugar to make it more con-
venient to program with handlers. The function D desugars han-
dlers into their functional form. Figure 11 shows the cases for han-
dlers only;D is a homomorphism on the other syntax constructors.
The crucial difference between desugaring of closed and open han-
dlers is that the latter desugars into a curried function, which returns
a thunk after the variable m gets bound. This difference is important
to ensure that open handlers compose smoothly. For the same rea-
son a parameterised handler desugars into a curried function, where
the parameters precede the computation argument m. The param-
eters are passed around by enclosing each operation clause by a
function. Thus, the initial parameter values are applied directly to
the handle expression.

Backend The Links interpreter is based on a CEK machine for
ANF expressions. We have generalised this machine to support
handlers based on the abstract machine of Section 4. The interpreter
maintains a stack of handlers with first-in-last-out semantics, which
makes it straightforward to implement effect forwarding. The invo-
cation of an operation causes the interpreter to unwind the stack to
find a suitable handler for the operation.

Row Polymorphism We have extended Links with support for
user-defined operations, making use of the existing row type sys-
tem. The current row type system is based on that of Rémy [30],
adapted to support effect typing in a similar manner to the work
of Leroy and Pessaux [17] and Blume et al. [4] on typing excep-
tions. Fields in a record can be absent, present at a particular type,
or polymorphic in their presence. An earlier version of Links [20]
was based on a slightly more refined variant of Remy’s system,
ΠML′ [30], in which the type of a label is independent of whether
or not it is present. This system was abandoned because it seemed
somewhat counterintuitive for the purposes of record typing, but
(as discussed in Section 2.5) it does seems quite useful for effect
typing, so it may be worth reinstating.

Subtyping and Row Typing

Subtyping is in fact a poor man’s row polymorphism.
— Andreas Rossberg1

Subtyping (or subeffecting) and row typing address similar con-
cerns. However, they are not the same thing. Row polymorphism is
more expressive than subtyping and subtyping is more expressive

1 http://lambda-the-ultimate.org/node/3711#comment-52984

than row polymorphism. Row polymorphism allows part of an ef-
fect to be named and reused in several places. This is essential for
typing polymorphic functions such as map. Row polymorphism can
also be used whenever one might otherwise use subtyping in a first
order manner. In terms of effects, this amounts to always keeping
functions polymorphic in the effect, in order that the effect vari-
able can be instantiated in order to simulate an upcast. On the other
hand, subtyping applies at higher-order when row typing does not.

Links does not support subsumption (implicitly inferred subtyp-
ing), but it does support subtyping through explicit upcasts. How-
ever, such casts seem to be rarely needed in practice and can often
be avoided altogether by using first-class polymorphism (another
feature of Links) instead.

Shallow Handlers We have not covered them in much detail here,
but our implementation also supports shallow handlers [13]. These
are indicated by using the shallowhandler keyword in place of
handler. Whereas a deep handler performs a fold over a compu-
tation, a shallow handler merely performs a case-split. This means
that one must explicitly reinvoke the handler each time the contin-
uation is implied inside an operation clause. An advantage is that
it makes it easy to switch to a different handler midway through a
computation. A disadvantage is that shallow handlers are not much
use without an external notion of recursion, and they are less easy to
optimise than deep handlers [32]. The changes to the typing rules
and operational semantics to accommodate shallow handlers are
standard [13]. The modifications to the abstract machine are quite
modest. The M-OP-HANDLE should drop the current handler and
the pure continuation must be appended onto its successor, i.e.

〈(do ` V)E | γ | (σ, χ) :: (σ′, χ′) :: κ | κ′〉op
−→ 〈M | γ′[x 7→ JVKγ, k 7→ κ′ | (σ ++ σ′, χ′) :: κ〉.

6. Related Work
Faking Row Polymorphism in Haskell Haskell provides a rather
rich type system which allows one to simulate many aspects of
row polymorphism. Perhaps the biggest mismatch between row
polymorphism and most other typing features is that rows are
inherently unordered, whereas other typing features are usually
inherently ordered.

One approach is Swierstra’s data types a la carte technique [31].
This amounts to encoding a row type as a sum, and then leveraging
the type class system to automatically navigate through the sum
type as if it was unordered. In practice, this encoding is a little
fragile (e.g. sometimes additional type annotations are required),
although recent improvements can make it somewhat more ro-
bust [23], particularly if one adds support for instance chains [24].

Another approach is to take advantage of the fact that type class
constraints genuinely are unordered. Early work on monad trans-
formers [19] uses this idea to write modular abstract computations,
as do Kammar et al. [13], Kiselyov et al. [15], and Kiselyov and
Ishii [14] in their effect handlers libraries. However, without some
form of higher-order constraint solving (not supported by Haskell),
one must still materialise ordered lists of effects when composing
effect handlers. For many useful examples this is not a problem, but
suppose we wish to build a list of handlers, from disparate sources,
then we need to carefully ensure that their effects are composed in
the same order.

Orchard and Petricek [25] make some progress towards encod-
ing unordered effect rows, by performing a sorting algorithm at the
level of types, taking advantage of GHC’s support for dependently-
typed programming [34]. However, this approach can fail in prac-
tice as the type system cannot always infer that two types are equiv-
alent in the presence of effect polymorphism.

Implementations Any signature of abstract operations can be un-
derstood as a free algebra and represented as a functor. In particular,

11 2016/3/28

http://lambda-the-ultimate.org/node/3711#comment-52984


Handler

handler h(p) ≡ handler[m] h(p), where m is fresh.

D
(
handler[m] h(p) { c }

)
=

{
fun h(m) { handle(m) { D (c) }} if |(p)| = 0

fun h(p)(m) { handle(m) { D(p) (c) }(p) } otherwise

D
(
open handler[m] h(p) { c }

)
=

{
fun h(m)() { open handle(m) { D (c) }} if |(p)| = 0

fun h(p)(m)() { open handle(m) { D(p) (c) }(p) } otherwise

Handler cases
D(p) (c) = D(p) (c1) · · · D(p) (cn)

D(p) (case q) -> M) =

{
case q -> D (M) if |(p)| = 0

case q -> fun(p) { D (M) } otherwise

Figure 11: Desugaring Handlers

every such functor gives rise to a free monad. Thus, free monads
provide a natural basis for implementing effect handlers Many of
the library implementations of effect handlers include implementa-
tions based on free monads [6, 13–15, 33].

Kammar et al. [13] provide an implementation of effect han-
dlers using a continuation monad, which completely avoids materi-
alising any data constructors. Wu and Schrijvers [32] explain how it
works, by taking advantage of Haskell’s fusion optimisations. This
approach does appear to depend rather critically on the handlers be-
ing deep rather than shallow, and in Haskell it relies on them being
type classes, and hence not really first class.

The Idris effects library [6] takes advantage of dependent types
to provide effect handlers for a form of effects corresponding to
parameterised monads [1]. In the effects library, effects are repre-
sented as lists of types.

We are aware of three languages that are specifically designed
with effect handlers in mind.

• The Eff language [3] is a strict language with Hindley-Milner
type inference similar in spirit to ML, but extended with effect
handlers. It includes a novel feature for supporting fresh gen-
eration of effects in order to support effects such as ML-style
higher-order state (which has an operation for generating new
references). The original version of Eff [3] does not include an
effect type system. However, an effect type system has subse-
quently been experimented with [2, 28]. This effect type system
is considerably more complicated than ours. It makes essential
use of subtyping, includes a region system, and a form of effect
polymorphism, which one might reasonably cast as a form of
row polymorphism.

• Frank [21] takes the idea of effect handlers to the extreme, hav-
ing no primitive notion of function, only handlers. In Frank a
function is but a special case of a handler. Frank is built on a
bidirectional type system. It includes an effect type system and
a novel form of effect polymorphism in which the programmer
never needs to read or write any effect variables. Frank’s effect
system can be viewed as implementing a form of row polymor-
phism. Unlike Links, but much like Koka [16], Frank allows
multiple occurrences of the same label in a row. In contrast rows
in Links are based on Remy’s design in which duplicates are not
allowed, but negative information is.

• Shonky [22] amounts to a dynamically-typed variant of Frank.
Though it is not statically typed, handlers must be annotated
with the names of the effects that they handle. The implemen-
tation of Shonky is quite similar to ours in that it uses a gen-
eralisation of the CEK machine. The main differences are that

Shonky does not use an ANF representation, so has more forms
of continuation to handle, and where our continuations have
a nested structure, Shonky uses a completely flat structure for
continuations.

Although OCaml itself has no support for effect handlers, a
development branch, Multicore OCaml [9], does. Multicore OCaml
does not include an effect type system, and handlers are restricted
so that continuations are affine, that is. they can be invoked at most
once. This design admits a particularly efficient implementation, as
continuations need never be copied, so can simply be stored on the
stack.

7. Conclusions and Future Work
We have implemented algebraic effects and handlers using row
polymorphism and demonstrated that the extensibility of rows en-
ables us to compose effectful computations seamlessly. We have
formalised our system as the core calculus λρeff for which we pre-
sented and proved a correspondence between two semantics: a
small-step operational semantics and an abstract machine seman-
tics, the latter of which is close to the actual implementation. We
conclude by discussing some areas of future work.

Effects are pervasive in modern web applications, thus we
would like to extend our implementation to the client back-
end of Links. The client backend already produces JavaScript in
continuation-passing style in order to support concurrency. We plan
to extend this representation to incorporate handlers.

The overhead incurred by the Links interpreter is signifi-
cant [12]. Thus, compilation of handlers into efficient, low-level
code would be interesting to explore. One performance bottleneck
of the handler abstraction is the need to support copying of contin-
uations. But, it is well-known that one-shot continuations can be
implemented efficiently [7]. Links now has a linear type system.
We envisage taking advantage of this to track the linearity of han-
dlers. Then during code generation we can specialise the run-time
representation of handlers according to their linearity.

Furthermore, Links employs a message-passing concurrency
model, similar to Erlang, but typed. Taking ideas from Multicore
OCaml [9], we would like to investigate whether we can rebuild the
Links concurrency implementation directly in terms of handlers.
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[31] W. Swierstra. Data types à la carte. J. Funct. Program.,
18(4):423–436, 2008. URL http://dx.doi.org/10.1017/
S0956796808006758.

[32] N. Wu and T. Schrijvers. Fusion for free - efficient algebraic ef-
fect handlers. In R. Hinze and J. Voigtländer, editors, Mathemat-
ics of Program Construction - 12th International Conference, MPC
2015, Königswinter, Germany, June 29 - July 1, 2015. Proceed-
ings, volume 9129 of Lecture Notes in Computer Science, pages
302–322. Springer, 2015. URL http://dx.doi.org/10.1007/
978-3-319-19797-5_15.

[33] N. Wu, T. Schrijvers, and R. Hinze. Effect handlers in scope. In Pro-
ceedings of the 2014 ACM SIGPLAN Symposium on Haskell, Haskell
’14, pages 1–12, New York, NY, USA, 2014. ACM. ISBN 978-
1-4503-3041-1. URL http://doi.acm.org/10.1145/2633357.
2633358.

13 2016/3/28

http://dx.doi.org/10.2168/LMCS-10(4:9)2014
http://dx.doi.org/10.1016/j.jlamp.2014.02.001
http://dx.doi.org/10.1007/978-3-540-89330-1_20
http://dx.doi.org/10.1007/978-3-540-89330-1_20
http://dx.doi.org/10.1007/978-3-540-74792-5_12
http://doi.acm.org/10.1145/155090.155113
http://doi.acm.org/10.1145/155090.155113
http://doi.acm.org/10.1145/2500365.2500590
http://doi.acm.org/10.1145/2500365.2500590
http://doi.acm.org/10.1145/2804302.2804319
http://doi.acm.org/10.1145/2804302.2804319
http://doi.acm.org/10.1145/2503778.2503791
http://doi.acm.org/10.1145/2503778.2503791
http://dx.doi.org/10.4204/EPTCS.153.8
http://doi.acm.org/10.1145/349214.349230
http://doi.acm.org/10.1145/349214.349230
http://doi.acm.org/10.1145/199448.199528
http://doi.acm.org/10.1145/199448.199528
http://doi.acm.org/10.1145/2103786.2103798
http://doi.acm.org/10.1145/2103786.2103798
http://homepages.inf.ed.ac.uk/slindley/papers/frankly-draft-march2014.pdf
http://homepages.inf.ed.ac.uk/slindley/papers/frankly-draft-march2014.pdf
https://github.com/pigworker/shonky
https://github.com/pigworker/shonky
http://doi.acm.org/10.1145/2804302.2804320
http://doi.acm.org/10.1145/1863543.1863596
http://doi.acm.org/10.1145/1863543.1863596
http://doi.acm.org/10.1145/2633357.2633368
http://doi.acm.org/10.1145/2633357.2633368
http://dx.doi.org/10.1007/3-540-45315-6_1
http://dx.doi.org/10.1007/3-540-45315-6_1
http://dx.doi.org/10.2168/LMCS-9(4:23)2013
http://dx.doi.org/10.2168/LMCS-9(4:23)2013
http://dx.doi.org/10.2168/LMCS-10(3:21)2014
http://dx.doi.org/10.2168/LMCS-10(3:21)2014
http://dx.doi.org/10.1016/j.entcs.2015.12.003
http://dl.acm.org/citation.cfm?id=186677.186689
http://dx.doi.org/10.1017/S0956796808006758
http://dx.doi.org/10.1017/S0956796808006758
http://dx.doi.org/10.1007/978-3-319-19797-5_15
http://dx.doi.org/10.1007/978-3-319-19797-5_15
http://doi.acm.org/10.1145/2633357.2633358
http://doi.acm.org/10.1145/2633357.2633358


[34] B. A. Yorgey, S. Weirich, J. Cretin, S. L. P. Jones, D. Vytiniotis, and
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