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Abstract

Algebraic effects and effect handlers provide a modular abstraction
for effectful programming. They support user-defined effects, as in
Haskell, in conjunction with direct-style effectul programming, as
in ML. They also present a structured interface to programming
with delimited continuations.

In order to be modular, it is natural for an effect system to sup-
port extensible effects. Row polymorphism is a natural abstraction
for modelling extensibility at the level of types. In this paper we
argue that the abstraction required to implement extensible effects
and their handlers is exactly row polymorphism.

We use the Links functional web programming language as a
platform to substantiate this claim. Links is a natural starting point
as it uses row polymorphism for polymorphic variants, records, and
its built-in effect types. It also has infrastructure for manipulating
continuations. Through a small extension to Links we smoothly
add support for effect handlers, making essential use of rows in
the frontend and first-class continuations in the backend.

We evaluate the usability of our implementation by modelling
the mathematical game of Nim as an abstract computation. We in-
terpret this abstract computation in a variety of ways, illustrating
how rows and handlers support modularity and smooth composi-
tion of effectful computations.

We present a core calculus of row-polymorphic effects and han-
dlers based on a variant of A-normal form used in the intermediate
representation of Links. We give an operational semantics for the
calculus and a novel generalisation of the CEK machine that imple-
ments the operational semantics, and prove that the two coincide.

1. Introduction

Algebraic effects [26] and effect handlers [27] are a more modu-
lar alternative to monads for managing user-defined computational
effects [0, [13| [15]. Effect handlers generalise exception handlers,
providing a mechanism for interpreting arbitrary algebraic effects,
and they present a structured interface to programming with delim-
ited continuations.

As a simple example consider a choice effect given by a single
effectful operation:

choose : Bool
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We can write an abstract computation M that invokes choose, in-
dependently of specifying the meaning of choose. We can then
handle M in multiple ways. For instance, we can define a handler
allResults that interprets choose as nondeterministic choice, re-
turning a list of all possible choices made in M. We can also define
a different handler coin that interprets choose as random choice,
returning a single value that depends on all of the random choices
made in M. Where effect handlers really come into their own as a
programming abstraction is when we start composing them: we can
handle some effects while forwarding all others, using row types to
statically track the forwarded effects. We make extensive use of
handler composition in Section 2}

Many existing implementations of effect handlers are Haskell
libraries. Notable examples include the effect handlers library of
Kammar et al. [13]], the extensible effects library of Kiselyov et al.
[15] and Kiselyov and Ishii [14], and implementations based on
variants of Swierstra’s data types a la carte technique [31], such
as the work of Wu et al. [33] on scoped effect handlers. Another
notable effect handlers library is the Idris effects library [6]. Each of
these libraries uses its own sophisticated encoding of an abstraction
which amounts to a restricted form of row polymorphism. In this
work we present the first, to our knowledge, implementation of
effect handlers using genuine Remy-style row polymorphism [30].

Links [8] is a functional programming language for building
web applications. The defining feature of Links is that it provides
a single source language that targets all three tiers of a web ap-
plication: client, server, and database. Links source code is trans-
lated into an intermediate representation (IR) based on A-normal
form [11]. For the client, the IR is compiled to JavaScript. For
the server, the IR is interpreted using a variant of the CEK ma-
chine [10]. For the database, the IR is translated into an SQL query,
taking advantage of the effect type system and the subformula prop-
erty to guarantee query generation [20].

Links is a strict language with Hindley-Milner type inference.
Links has a row type system for polymorphic variants, records, and
its built-in effect types (for concurrency and database integration [|8,
20]). It also has support for manipulating first-class continuations,
a feature which is helpful in implementing effect handlers.

The row-polymorphic effect type system and continuation sup-
port make Links a natural choice for experimenting with row-based
algebraic effects and effect handlers. We have implemented an ef-
fect handlers extension to Links. Currently, it is supported only on
the server-side. The frontend to our implementation makes essen-
tial use of row polymorphism, while backend is implemented as a
novel generalisation of the CEK machine.

Our main contributions are as follows:

* An implementation of effect handlers using Remy-style row
polymorphism [30].

* An evaluation of the usability of our implementation illustrating
how rows and handler support modularity and smooth compo-
sition of effectful computations.
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* A formalisation of our implementation including a small-step
call-by-value operational semantics and an abstract machine
semantics, based on a novel generalisation of the CEK machine
to account for effect handlers.

* A strong correspondence proof between the small-step and ab-
stract machine semantics: every reduction in the operational se-
mantics corresponds to a sequence of administrative steps fol-
lowed by a [3-step in the abstract machine.

The rest of the paper is structured as follows: Section [2| gives a tu-
torial introduction to programming with handlers in Links. In Sec-
tion we present a core calculus A%, along with a type-and-effect
system and a small-step operational semantics. In Section ] we re-
late the operational semantics to an abstract machine semantics,
that captures the essence of our implementation. In Section 5] we
discuss implementation details. Related work is discussed in Sec-
tion[6] Finally, in Section[7]we conclude and discuss future work.

2. Programming with Handlers in Links

To demonstrate that handlers and rows provide an elegant and
modular abstraction for effectful programming, we use a simplified
version of the mathematical game Nim [5] as a running example.

Starting from an abstract representation of the game, we itera-
tively extend it with cheat detection and high score tracking capa-
bilities through smooth composition of handlers, without needing
to change the initial representation.

2.1 The Game of Nim and Effect Rows

The game of Nim is played between two players: Alice and Bob.
The game is played with a heap of n sticks. The players take it in
turns to take one, two, or three sticks from the heap. Alice makes
the first move. The player who takes the last stick wins the game.

We abstract over the notion of making a move by defining it
as an abstract effectful operation Move: (Player,Int) {}-> Int,
where a value of Player is either Alice or Bob. The first parameter
to Move is the active player, the second parameter is the current
number of sticks on the heap. We refer to the pair (Player,Int) as
a game configuration. We discuss the meaning of the braces ({})
prefix on the arrow shortly. In Links, abstract operations like Move,
are invoked using the do primitive, for instance

do Move(Alice,3)

invokes the Move operation with values Alice and 3. Operation
names, data constructors, and type aliases all begin with a capital
letter. Records, variants, and effect signatures all have row types.
All typing is structural in Links, thus it is unnecessary to declare
a row occupant, such as an operation, before use. However, we
consider it good practice to wrap the invocation of operations as
functions, and we wrap Move as follows:

sig move :
(Player,Int) {Move:(Player,Int) {}-> Int|e}-> Int
fun move(p,n) {do Move(p,n)}

The syntax of Links is loosely based on that of JavaScript. The fun
keyword begins a function definition (like function in JavaScript).
Just as in JavaScript functions are n-ary, but they can also be
curried. Unlike in JavaScript, functions are statically typed and the
sig keyword begins a type signature. The function move invokes the
operation Move with the parameters p and n.

In the type signature, the function arrow (->) is prefixed by a
row enclosed in curly braces. This row is the effect signature, or
effect row, of the function. The presence of Move in the effect row
indicates that the function may perform the Move operation. Fur-
thermore, the effect row is equipped with an effect variable e, which
can be instantiated with additional operations. This means that move
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may be invoked in the scope of additional effects. We say an effect
row is closed if it has no effect variable, and open if it does. In gen-
eral an effect row consists of an unordered collection of operation
specifications and an optional effect variable. An operation speci-
fication either specifies that an operation is admissible (or present)
and has a particular type signature, or that it is absent, or that it
is polymorphic in its presence. We discuss the use of absence in
Section

The effect row on the type signature of the Move operation itself
is empty, denoted by a pair of braces ({}). This is always the
case for abstract operations as any effects they ultimately have are
conferred by their handlers.

The Nim game is modelled as two mutually recursive functions
aliceTurn and bobTurn. Here we show aliceTurn:

sig aliceTurn :

(Int) {Move:(Player,Int) {}-> Int|_}~> Player
fun aliceTurn(n) {

if (n <= 0) Bob

else bobTurn(n - move(Alice,n)) }

The parameter n is the number of sticks currently on the heap. If n
is zero then Bob wins. Otherwise, Alice makes a move and it is now
Bob’s turn. The definition of bobTurn is completely symmetric, so
we omit it here for brevity.

Two observations are worth making about the effect signature
of aliceTurn. First, the effect variable is anonymous (_): type
(or effect) variables need not be named when only appear once.
Second, the function arrow is squiggly (~>), which is syntactic
sugar for denoting that the computation has the wild effect. This
is a built-in effect in Links used for language integrated query
support [20], where a computation that cannot be translated into
SQL is said to be wild. The wild effect is unimportant here, but
will appear from time to time in our examples, as we build on top
of the existing system.

Links employs a strict evaluation strategy, so we thunk compu-
tations we wish to handle and define the following type alias:

typename Comp(e::Row,a) = () { le}~> a;

The keyword typename is used to define type aliases. The Comp type
captures our notion of abstract computation, it is an alias for a thunk
with an empty, open effect row and return type a.

The game function begins a game with a given number of sticks.
Alice starts:

(Int) ->
Comp ({Move: (Player,Int) {}-> Int|_}, Player)
fun game(n) () {aliceTurn(n)}

sig game :

2.2 Strategies and Handlers

In general, algebraic effects come with equations [26]], but as with
most other implementations of effect handlers, we do not consider
equations. Thus, on their own, abstract operations have no mean-
ing; handlers give them a semantics. We can use handlers to encode
particular strategies for Alice and Bob by interpreting the opera-
tion Move. We start by considering the perfect strategy, defined by

ps(n) < max{1,n mod 4}, where n is the number of sticks left in
the game. If player p adopts the perfect strategy, then p is guaran-
teed to win if on p’s turn 7 is not divisible by 4. We define a handler
perfect

sig perfect: (Comp({Move: (Player,Int){}-> Int},a)) {}~> a
fun perfect(m) {
handle(m) {
case Return(x)
case Move(p,n,k) -> k(maximum(l, n ‘mod‘ 4)) }}

-> X

which implements the perfect strategy for both players. We de-
scribe the handler line by line.
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Line 1 gives the type of perfect: it takes a computation that may
invoke the Move operation and returns a value of type a.

Lines 2 and 3 begin the definition. The function perfect wraps
the actual handler, which is applied to the argument m using the
handle construct, which specifies how to interpret abstract opera-
tions through a sequence of clauses.

Line 4 is a return clause. It defines how to handle the final return
value of the input computation. In this case, this value is simply
returned as is.

Line 5 is an operation clause. It expresses how to handle Move.
In general, an operation clause takes the form Op(p1, . . ., pa, k) —
M, where p1, . . ., p, are patterns that bind the operation parameters
and k is a pattern that binds the continuation of the computation in
M. In this case p and n are bound to the active player and number
of sticks in the heap, respectively. The continuation is invoked with
the perfect strategy, irrespective of the player.

We can now compute the winner of a game in which both
players play the perfect strategy:

links> perfect(game(7));
Alice : Player

links> perfect(game(12));
Bob : Player

In our restricted Nim game the perfect strategy is a winning strategy
for Alice iff the number of sticks 7 is not divisible by four.

Syntactic Sugar The input computation in perfect is immedi-
ately supplied to handle. This abstract-over-handle idiom arises
frequently, so Links provides syntactic sugar for it. We can give
a more succinct definition of perfect using the handler keyword:

handler perfect {
case Return(x) -> x
case Move(_,n,k) -> k(maximum(1l,n ‘mod‘ 4)) }

The simplest possible handler, we can define is

sig run : (Comp({}, a)) {}~> a
handler run { case Return(x) -> x }

which simply runs a given computation. Although, it may seem
useless, but it proves to be useful in Section @

2.3 Game Trees and Multi-shot Continuations

The handler perfect computes the winner of a particular game. It
only considers one scenario in which both players play the same
strategy, but we can use handlers to compute other data about a
game. For instance, we can give an interpretation that computes the
game tree. Figure [T] shows an example game tree. Each node rep-
resents the active player, and each edge corresponds to a possible
move for that player We define a game tree inductively:

typename GTree = [|Take:(Player, [(Int,GTree)])
|Winner: (Player) |1;

The syntax [|...|] denotes a (polymorphic) variant type in Links
in which components of the variant type are delimited by the pipe
symbol (). A Take node includes the active player and a list of
possible moves, where each move is paired with the subsequent
game tree. A Winner leaf denotes the winner of a game.

We define a handler gametree that generates game trees:

sig gametree :
(Comp ({Move: (Player,Int) {}-> Int}, Player)) {}~> GTree
handler gametree {
case Return(x) -> Winner (x)
case Move(p,n,k) ->
var subgames = map(k, validMoves(n));
var subtrees = zip([1,2,3], subgames);
Take(p, subtrees) }

Bob Bob

ST

Alice Bob wins Bob wins

Alice wins

1

Alice wins

Figure 1: Game Tree Generated by gametree (game(3)).

The effect signatures of gametree and perfect are identical, though
their interpretations of Move differ. The return clause wraps the
winning player x in a leaf node. The operation clause for Move
reifies the move as a node in the game tree. The var keyword
denotes a let binding. The crucial part is the invocation of map which
applies the continuation multiple times, once each for valid move,
enumerating every possible subgame. The function validMoves is
a simple filter:

fun validMoves(n)
{ filter(fun(m) {m <= n}, [1,2,3]) }

Figure[T]shows the game tree generated by the handler when n = 3.

2.4 Cheating and Forwarding

The handlers of Sections and 23]are closed — closed handlers
are not composable. Open handlers, on the other hand, compose.
Open handlers cooperate to interpret an abstract computation, each
handler operates on a particular subset of the abstract operations,
leaving the remainder abstract for other handlers. Thus, open han-
dlers are flexible as we may write a collection of fine-grained han-
dlers which we can combine to fully interpret a computation. In
particular, this flexibility makes it possible to reinterpret computa-
tions by changing individual handlers.

In Links open handlers are defined using the open keyword. For
example, we can refine perfect as an open handler:

open handler pp {
case Return(x) -> x
case Move(_,n,k) -> k(maximum(1l, n ‘mod‘ 4)) }

We may omit type signatures altogether as the type system infers
the appropriate effect rows. The extensibility of rows is absolutely
key to make this viable. We defer further discussion of type signa-
tures for open handlers until Section[2.3]

We demonstrate the flexibility of open handlers by augmenting
the game model with a cheat detection mechanism. A cheating
strategy might remove all remaining sticks from the heap, thus
winning in a single move. We introduce an additional operation
Cheat to signal that a cheater has been detected. The operation is
parameterised by the player, who was caught cheating:

sig cheat : (Player) {Cheat:(Player) {}-> Zerol|_}->
fun cheat(p) { switch (do Cheat(p)) { } }

The Cheat operation can never return a value as its return type is
the empty type Zero. Thus invoking Cheat amounts to raising an ex-
ception. Concretely an operation clause for Cheat can never invoke
the continuation. The switch(e){...} construct pattern matches
on the expression e, through a possibly empty list of clauses. We
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define an open (exception) handler that interprets Cheat by out-
putting an error message and exiting the program:

open handler cheatReport {
case Return(x) -> x
case Cheat(Alice,_) -> error("Alice cheated!")
case Cheat(Bob,_) -> error("Bob cheated!")

}

We implement the heart of the cheat detection machinery as an
open handler:

open handler check {
case Return(x) -> x
case Move(p,n,k) -> var m = move(p,n);
if (m ‘elem‘ validMoves(n)) k(m)
else cheat(p) }

To detect cheating the handler analyses the active player’s move.
If it is legal, then the game continues. Otherwise, the Cheat opera-
tion is invoked to signal that cheating has occurred. We may com-
pose pp with cheatReport and check to give an interpretation of
a game in which no player may cheat. To make handler composi-
tion syntactically lightweight we define a pipeline operator (-<-)
for composing handlers and another operator (-<) for applying a
computation to a pipeline of handlers:

op f -<- g {fun(m) {f(g(m))}}
op f =< m {f(m)}

The keyword op is used to define infix binary operators. The opera-
tors are meant to indicate that unhandled operations are forwarded
from right to left in a pipeline. In order to run a pipeline of handlers,
we may apply the closed handler run:

links> run -<- pp -<- cheatReport -<- check -< game(7);
Alice : Player

The Cheat operation is never invoked as both players play the
same legal strategy. Let us define another handler that assigns the
perfect strategy to Alice and a cheating strategy to Bob

open handler pc {
case Return(x) -> x
case Move(Alice,n,k) -> k(maximum(1l, n ‘mod‘ 4))
case Move(Bob,n,k) -> k(n) }

Now, the cheat detection handler catches Bob:

links> run -<- pc -<- cheatReport -<- check -< game(7);
**% Fatal error : Bob cheated!

The order of composition is important and pc and check both
handle moves. Bob gets away with cheating if we swap the two
handlers:

links> run -<- pp -<- cheatReport -<- check
-<- pc -< game(7);
Bob : Player

Here we also use pp, because the type system does not know that
check is not performing any Move operations.

2.5 Composition and Row Polymorphism

In this section we will discuss the typing of open handlers. For
example, the handler cheatReport has the following type:

sig cheatReport :
(Comp ({Cheat: (Player) {}-> Zerole},a)) ->
Comp ({Cheat{p}|e},a)

In general, an open handler accepts a computation as input and
produces another computation as output. Moreover, open handlers
have open input and output effect rows, which both share the same

effect variable, as a consequence both rows mention the same
operation names. However, some of these operation names may be
marked as absent or polymorphic in their presence. In the output
effect row of cheatReport, the syntax Cheat{p} denotes that the
operation is presence polymorphic. The type variable p can be
instantiated to either present with a particular type (:A) or absent
(-). Presence polymorphism is useful for seamless composition of
handlers. We illustrate why by type checking the composition:

var £ = run -<- (pp -<- cheatReport);
The inferred type for pp is

(Comp ({Move: (Player,Int) {}-> Intlr}, a)) —->
Comp ({Move{q} Ir}, a)

The output effect row of cheatReport must be compatible with the
input effect row of pp, therefore the composition gives rise to the
following unification constraint:

{Move: (Player,Int) {}-> Int |r} ~ {Cheat{p} le}
The solution is to instantiate e with Move and r as Cheat to obtain:
{Move: (Player,Int) {}-> Int,Cheat:(Player) {}-> Int |r}

Note that with rows the order of operations is unimportant. The
new field propagates to the output effect row of pp which must be
compatible with the input row of run:

{} ~ {Cheat{p},Move{q} Ir}
The solution is to instantiate both p and q as —. Thus £ has type:

(Comp ({Move :
Cheat: (Player)

(Player,Int) {}-> Int,
{}-> Zero}, a)) {}~> a

The composite handler’s input effect row is the union of the respec-
tive input effects of pp, cheatReport and run.
The handler check has identical input and output effects:

sig check :
(Comp ({Cheat: (Player) {}-> Zero,
Move: (Player,Int) {}-> Intle},a)) ->
Comp ({Cheat: (Player) {}-> Zero,
Move: (Player,Int) {}-> Intlel},a)

The reason Cheat appears in the input effect is that the shared row
variable dictates that it must at least be mentioned. To be sound,
if it is present it must have the same type as in the output effect.
We could alternatively have asserted that it be absent, which would
specify that the input computation must not have the Cheat effect.
What we actually require for soundness is that if the Cheat effect is
present then it must have type (Player) {}-> Zero, as that is the
type it has in the output. In a more refined system along the lines of
Remy’s TIML’ [30], we could specify this as follows:

sig check :
(Comp({Cheat{_}: (Player) {}-> Zero,
Move: (Player,Int) {}-> Intle},a)) ->
Comp ({Cheat: (Player) {}-> Zerole,
Move: (Player,Int) {}-> Int},a)

The {_} indicates that Cheat is polymorphic in its presence. But
now the type is independent of whether or not Cheat is present.

2.6 Choice and Built-in Effects

In this section we implement the choice effect described in the
introduction. We let Bob to choose which strategy he will adopt.
First, we define a wrapper for the choice operation.

sig choose : Comp({Choose:Booll_}, Bool)
fun choose() {do Choose}
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Using this operation we define a strategy selecting function in
which Bob decides between playing the perfect or cheating strategy

fun bobChooses(m) ()
{ if (choose()) pc(m) () else pp(m)() }

We can give a nondeterministic interpretation of Choose that in-
fuses Bob with oracular powers that enable him to explore both
alternatives. We define it as an open handler allResults

sig allResults : (Comp({Choose:Boolle},a)) —->

Comp ({Choose{_}Ie}, [al)
open handler allResults {
case Return(x) -> [x]
case Choose(k) -> k(true) ++ k(false) }

The handler wraps the result of the input computation into a single-
ton list. In the Choose-clause the handler accumulates the results of
either alternative by invoking the continuation twice.

Now, we can put everything together:

links> run -<- allResults -<- bobChooses -< game(7);
[Alice,Bob] [Player]

Thus Bob only wins when he cheats.

Alternatively, we can replace Bob’s oracular powers with a fair
coin and let him perform a coin flip to decide which strategy to pick.
We use Links’ built-in random number generator, which returns a
float from the interval [0.0; 1.0]:

(Comp ({Choose:Boolle}, a)) ->

Comp ({Choose{_}le}, a)
open handler coin {

case Return(x) -> x

case Choose(k) -> if (random() > 0.5) k(true)
else k(false) }

sig coin :

The handler uniformly interprets Choose as true or false. Thus,
using this handler Bob will be equally likely to either play the
perfect strategy or fall victim to cheating. The computation

links> run -<- coin -<- bobChooses -< game(7);

returns either Alice or Bob. Built-in effects interact smoothly with
the rest of the system.

2.7 A Scoreboard and Parameterised Handlers

As a final extension we add a scoreboard that accumulates the
number of wins for each player. The scoreboard is updated after
each game. We represent state as an effect with operations for
reading (Get : s) and updating (Put : s {}-> ()) state of type
s. We wrap them in the usual way:

sig get : O {Get:s|_}-> s
fun get() {do Get}

sig put : (s) {Put:(s) {}-> OI_}> O
fun put(s) {do Put(s)}

We use an open, parameterised handler to give an interpretation of
state. In addition, to supplying a computation to a parameterised
handler, we also supply one or more parameter. In this instance we
pass the state as an additional parameter s

sig state : (s) -> (Comp({Get:s,Put:(s) {}-> (le},a))->
Comp ({Get{_},Put{_} |le},a)
open handler state(s) {
case Return(x) -> x
case Get (k) -> k(s) (s)

case Put(p,k) -> k(O)(p) }

The main difference compared to an unparameterised handler is
that the continuation k is a curried function which takes a return
value followed by the handler parameters. In the Get clause we

return the state and also pass it unmodified to any subsequent
invocations of the handler. Similarly, in the Put clause we return
unit, and update the state.

We represent high scores as an association list and refer to a
value of this type as the game state:

typename GState = [(Player,Int)];

We define an initial state sO = [(Alice,0),(Bob,0)]. We now
need a mechanism to update the game state when a game finishes.
Recall that game (n) returns a computation whose type is:

Comp ({Move: (Player,Int) {}-> Int|_}, Player).

The computation returns the winner of the game. We may exploit
the fact that the return clauses of handlers are invoked in the
order of composition, therefore we define a simple post-processing
handler, that contains only a Return case, to update the scoreboard:

sig scoreUpdater :
(Comp ({Get:GState,Put: (GState) {}-> ()l|e}, Player)) ->
Comp ({Get:GState,Put: (GState) {}-> ()|e}, Player)
open handler scoreUpdater {
case Return(x) -> var s = updateScore(x, get());
put(s); x }

The function updateScore is pure, it simply returns a copy of the
given game state, in which the number of wins for the given player p
has been incremented by one. The handler the reads and updates the
game state. Accordingly, the composition scoreUpdater (game (n))
causes the effect row to grow:

Comp ({Move: (Player,Int) {}-> Int,
Get:GState,Put: (GState) {}-> ()|_}, Player).

In a similar fashion, we define a handler that prints the scoreboard:

sig printer : (Comp({Get:GStatele}, a)) —->
Comp ({Get:GStatele}, a)
open handler printer

{ case Return(x) -> printBoard(get()); x }

The function printBoard is impure as it prints an ASCII represen-
tation of the given game state to standard out. To make matters
more interesting we add replay functionality, which we implement
by invoking a handler recursively on its input computation:

sig replay : (Int) -> (Comp({ le}, a)) -> Comp({ le}, a)
open handler[m] replay(n)
{case Return(x) -> if (n <= 1) x else replay(n-1) (m) O}

Here, we used an additional bit of syntactic sugar to name the in-
put computation m. The replay handler reevaluates the computa-
tion m precisely n times. Note, that the handler’s effect signature is
an empty, open row. This means the handler forwards every oper-
ation that might occur to subsequent handlers. Now, we can wire
everything together:

links> run -<- state(s0) -<- printer -<- replay(10) -<-
coin -<- bobChooses -<- scoreUpdater -< game(7);

Figure 2] shows a possible output. In the same manner, we can ef-
fortlessly merge the cheating infrastructure into the pipeline, with-
out changing the underlying computation.

3. A Calculus of Handlers and Rows

In this section, we present a type and effect system and a small-
step operational semantics for A%; (pronounced “lambda-eff-row™),
a Church-style row-polymorphic call-by-value calculus for effect
handlers. We prove that the operational semantics is sound with
respect to the type and effect system.
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/ \
| NIM HIGHSCORE |
| |
| Player | #Wins |
| | |
| Alice | 7 |
| | |
| Bob | 3|
\ /

Figure 2: Print of the Nim scoreboard after 10 games withn = 7,
and where Alice played the perfect strategy and Bob chose between
the perfect and cheating strategies.

Types
Value types A,B:=A— C|VYoX.C
| (R)|[R]|C=D|a
Computation types C,D ::= AlE
Effect types E::={R}
Row types R:=/{:P;R|p |
Presence types P ::=Pre(A) | Abs | 0
Kinds K ::= Type | Row, | Presence
Label sets La=0|{twL
Type environments Fa=-|T,x:A
Kind environments Auz=-|Aja:K

Figure 3: Types, effects, kinds, and environments

A key advantage of row polymorphism is that it integrates rather
smoothly with Hindley-Milner type inference. We concern our-
selves only with the explicitly-typed core language, as the treatment
of type inference is quite standard.

The design of A% is inspired by the A-calculi of Kammar et al.
[[13], Pretnar [29]], and Lindley and Cheney [20]. As in the work
of Kammar et al. [13]], each handler can have its own effect sig-
nature. As in the work of Pretnar [29]], the underlying formalism
is fine-grained call-by-value [18]], which names each intermediate
computation like in A-normal form [11], but unlike A-normal form
is closed under 3-reduction. As in the work of Lindley and Cheney
[20], the effect system is based on row polymorphism.

3.1 Types

The grammars of types, effects, kinds, and type and kind environ-
ments are given in Figure[3]

Value Types The function type A — C takes an argument of
type A and returns a computation of type C. The polymorphic type
VaX. C is parameterised by a type variable o of kind K. The record
type (R) represents records with fields given by labels of row R.
Dually, the variant type [R] represents a sum of fields tagged by the
labels of row R. The handler type C = D transforms a computation
of type C into a computation of type D.

Computation Types A computation type A!E is given by a value
type A and an effect E, which specifies the operations that the
computation may perform.

Row Types Effect types, records and variants are defined in terms
of rows. A row type embodies a collection of distinct labels, each of
which is annotated with a presence type. A presence type indicates
whether a label is present with some type A (Pre(A)), absent (Abs)
or polymorphic in its presence (0).

Row types are either closed or open. A closed row type ends in
-, whilst an open row type ends with a row variable p. Furthermore,

| WA M | Ad®. M

Values X
Ol e=v;wy|@v)k

VW=
|

Computations M,N :=VW | VA
| let ({ =x;y) < VinN
| case V{{x+— M;y+— N} | absurd*V
| returnV
| letx<«+ MinN
| (do ¢ V)E

| handle M with H

Handlers H ::= {return x — M}

| {{xk—M}wH

Figure 4: Term Syntax

a closed row term can have only the labels explicitly mentioned in
its type. Conversely, the row variable in an open row can be instan-
tiated with additional labels. We identify rows up to reordering of
labels, for instance, we consider the following two rows equivalent:

by P13 by i Pu =4y : Py;--- ;41 P1.

The unit and empty type are definable in terms of row types.
We define the unit type as the empty, closed record, that is, (-).
Similarly, we define the empty type as the empty, closed variant [-].
Usually, we usually omit the - for closed rows.

Kinds We have three kinds: Type, Rows and Presence which
classify value types, row types and presence types, respectively.
Row kinds are annotated with a set of labels £. The kind of a
complete row is Rowp. More generally, the kind Row, denotes a
partial row which cannot mention the labels in L.

Type Variables We let «, p and 6 range over type variables. By
convention we use « for value type variables or for type variables
of unspecified kind, p for type variables of row kind, and 6 for type
variables of presence kind.

Type and Kind Environments Type environments map term vari-
ables to their types and kind environments map type variables to
their kinds.

3.2 Terms

The terms are given in Figure 4] We let x,y, z, k range over term
variables. By convention, we use k to denote names of continua-
tions.

The syntax partitions terms into values, computations and
handlers. Value terms comprise variables (x), lambda abstraction
(M. M), type abstraction (AaX. M), and the introduction forms
for records and variants. Records are introduced using the empty
record () and record extension (¢ = V; W), whilst variants are in-
troduced using injection (£ V)® which injects a field with label ¢
and value V into a row whose type is R. We include the row type
annotation in order to support bottom-up type reconstruction.

All elimination forms are computation terms. Abstraction and
type abstraction are eliminated using application (V W) and type
application (V A) respectively. The record eliminator (let (¢ =
x;y) < Vin N) splits a record V into x, the value associated with
£, and y, the rest of the record. Non-empty variants are eliminated
using the case construct (case V {¢ x — M;y — N}), which
evaluates the computation M if the tag of V matches ¢, otherwise it
falls through to y and evaluates N. The elimination form for empty
variants is (absurd® V). A trivial computation (return V) returns
value V. The expression (let x < M in N) evaluates M and binds
the result value to x in N.
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The construct (do ¢ V)F invokes an operation ¢ with value
argument V. The handle construct (handle M with H) runs a
computation M with handler definition H. A handler definition H
consists of a return clause return x — M and a possibly empty set
of operation clauses {{; x; ki — M;};. The return clause defines
how to handle the final return value of the handled computation,
which is bound to x in M. The i-th operation clause binds the
operation parameter to x; and a the continuation &; in M;.

We write H(return) for the return clause of H and H(¢) for
the set of either zero or one operation clauses in H that handle the
operation . We write dom(H) for the set of operations handled
by H. We annotate various subterms with their types in order to
aid type reconstruction (injection, operations, empty cases, and
handlers); we sometimes omit these annotations.

3.3 Static Semantics

The kinding rules are given in Figure [5] and the typing rules are
given in Figure [6]

The kinding judgement A F « : K asserts that the type variable
« has kind K in kind environment A. The value typing judgement
A;T' F V : A states that value term V has type A under kind
environment A and type environment I'. The computation typing
judgement A;T" + M : AlE states that the term M has type A
and effects E under kind environment A and type environment I'.
In typing judgements, we implicitly assume that I', £ and A are
well-kinded with respect to A. We define the functions FTV(T") and
FTV(E) to be the set of free type variables in I" and E, respectively.

The kind and typing rules are mostly straightforward. The inter-
esting typing rules are T-HANDLE and the two handler rules. The
T-HANDLE rule states that handle M with H produces a computa-
tion of type B given that the computation M is typeable under effect
context E, and that H is a handler which transforms a computation
of type A with effect signature E into another computation of type
B with effect signature E’.

The T-HANDLER rule is crucial. The input effect E and the out-
put effect E’ must share the same suffix R. This means that E’ must
explicitly mention each of the operations ¢;, whether that be to say
that an ¢; is present with a given type signature, absent, or polymor-
phic in its presence. The row R describes the operations that are for-
warded. It may include a row-variable, in which case an arbitrary
number of effects may be forwarded by the handler. The typing of
the return clause is straightforward. In the typing of each opera-
tion clause, the continuation returns the output computation type
D. Thus, we are here defining deep handlers [13] in which the han-
dler is implicitly wrapped around the continuation, such that any
subsequent operations are handled uniformly by the same handler.
The Links implementation also supports shallow handlers [13], in
which the continuation is instead annotated with the input effect
and one has to explicitly reinvoke the handler after applying the
continuation inside an operation clause.

3.4 Operational Semantics

We give a small-step operational semantics for \;. Figure dis—
plays the operational rules. The reduction relation ~~ is defined on
computation terms. The statement M ~» M’ reads: term M reduces
to term M’ in a single step. Most of the rules are standard. We use
evaluation contexts to simplify the evaluation rules, by allowing us
to focus on an active expression. The interesting rules are the han-
dler rules.
We write BL(E) for the set of operation labels bound by £.

BL()) =0
BL(let x +— £ in N) = BL(E)
BL(handle £ with H) = BL(E) U dom(H)

TYVAR
Aa:KFa: K
FORALL
A,a:KFA: Type A,a: KFR: Rowy
A+ (VX A{R}Y) : Type

FuN
AFA: Type A F R : Rowy AF B: Type
At (A — BY{R}): Type
RECORD VARIANT
A F R : Rowy A F R : Rowy
A (R) : Type A+ [R] : Type
PRESENT
A A: Type ABSENT
A+ Pre(A) : Presence A+ Abs : Presence
EXTENDROW
EMPTYROW A, P : Presence AR : Row (s
AF - :Rowg At £:P;R:Rowg

Figure 5: Kinding Rules

The rule S-HANDLE-RET invokes the return clause of a han-
dler. The rule S-HANDLE-OP handles an operation by invoking the
appropriate operation clause. The constraint £ ¢ BL(E) ensures
that no inner handler inside the evaluation context is able to handle
the operation: thus a handler is able to reach past any other inner
handlers that do not handle ¢. In our abstract machine semantics
we realise this behaviour using explicit forwarding operations, but
more efficient implementations are perfectly feasible.

We write RT for the transitive closure of relation R. Subject
reduction and type soundness for A\ are standard.

Theorem 3.1 (Subject Reduction). If A;T' = M : AIE and M ~
M, then A;T' =M’ : AIE.

There are two ways in which a computation can terminate. It
can either successfully return a value, or it can get stuck on an
unhandled operation.

Definition 3.2. We say that computation term N is normal with
respect to effect E, if N is either of the formreturn V, or E[do £ W),
where £ € E and { ¢ BL(E).

If N is normal with respect to the empty effect {-}, then N has
the form return V.

Theorem 3.3 (Type Soundness). If = M : AlE, then there exists
- N : A'E, such that M ~1 N ~, and N is normal with respect to
effect E.

4. Abstract Machine Semantics

In this section we present an abstract machine semantics for A\,
which is closely related to the actual implementation of effect
handlers in Links. We prove that the abstract machine simulates the
operational semantics in 