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Abstract. We propose >>-lifting as a technique for extending opera-
tional predicates to Moggi’s monadic computation types, independent of
the choice of monad. We demonstrate the method with an application to
Girard-Tait reducibility, using this to prove strong normalisation for the
computational metalanguage λml . The particular challenge with redu-
cibility is to apply this semantic notion at computation types when the
exact meaning of “computation” (stateful, side-effecting, nondetermin-
istic, etc.) is left unspecified. Our solution is to define reducibility for
continuations and use that to support the jump from value types to
computation types. The method appears robust: we apply it to show
strong normalisation for the computational metalanguage extended with
sums, and with exceptions. Based on these results, as well as previous
work with local state, we suggest that this “leap-frog” approach offers a
general method for raising concepts defined at value types up to observ-
able properties of computations.

1 Introduction

Moggi’s computational metalanguage λml is a typed calculus for describing pro-
gramming languages with real-world features like exceptions, nondeterminism
and side-effects. It refines the pure simply-typed lambda-calculus by explicitly
distinguishing values from computations in the type system: for each type A of
values, there is a type TA of programs that compute a value of type A. The cal-
culus specifies that the type constructor T be a strong monad, which is enough
to support a wide range of notions of computation [5, 20, 21, 32].

In this paper we present >>-lifting : a method for reasoning about properties
of computations in λml , independent of the underlying monad, by raising up
concepts defined explicitly on values.

We demonstrate the technique with a type-directed proof of strong normal-
isation for λml , extending Girard-Tait reducibility to handle computation types.
We also apply it to some extensions of λml , and observe that >>-lifting gives a
smooth treatment of reducibility for commuting conversions.

Section 2 provides a brief review of the computational metalanguage and related
systems. Reduction in λml properly extends that in the simply-typed lambda-
calculus, with three reductions specific to computations. One of these, T.assoc,
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is a commuting conversion; another, T.β, involves substituting one term within
another; which may make a term grow larger, and create subterms not present
before. As usual with these kinds of reduction, the consequence is that straight-
forward induction over the structure of terms or types is not enough to prove
termination of λml reduction.

In earlier work, Benton et al. proved strong normalisation for λml terms by
translating them into a lambda-calculus with sums, and then invoking Prawitz’s
result for that system [4]. Our alternative is to use >>-lifting to give a standalone
proof of strong normalisation, inductively on the structure of λml types.

Section 3 sets out the details. We define an auxiliary notion of reducibility at
every type, that is linked to strong normalisation but amenable to induction over
the structure of types. This is a standard technique from the lambda-calculus:
roughly, reducibility is the logical predicate induced by strong normalisation at
ground types. We show that all reducible terms are strongly normalising, and
go on to prove the fundamental theorem of logical relations, that in fact all
definable terms are reducible.

The challenge, and the chief technical contribution of this paper, is to find
a suitable definition for reducibility at computation types. Some such definition
is essential, as the type constructor T is intentionally left unspecified. A first
informal attempt might be to echo the definition for functions, and look at the
immediate application of a computation:

(Bad 1) Term M of type TA is reducible if for all reducible N of type TB,
the term let x⇐M in N is reducible.

This is not inductive over types, as the definition of reducibility at type TA
depends on reducibility at type TB, which may be more complex. We can try
to patch this:

(Bad 2) Term M of type TA is reducible if for all strongly normalising N of
type TB, the term let x⇐M in N is strongly normalising.

However, this turns out to be too weak to prove properties of M in any larger
context. Examining the structure of such contexts, we define a continuation K
as a nested sequence of let xi ⇐ (−) in Ni, and use these for our definition of
reducibility:

(Good 1) Term M of type TA is reducible if for all reducible continuations K,
the application K @ M is strongly normalising.

Here application means pasting term M into the hole (−) within K. Of course,
we now have to define reducibility for continuations:

(Good 2) Continuation K accepting terms of type TA is reducible if for all re-
ducible V of type A, the application K @[V ] is strongly normalising.

The term [V ] is the trivial computation returning value V . By moving to the
simpler value type A we avoid a potential circularity, and so get a notion of



reducibility defined by induction on types. What is more, the characterisation by
continuations is strong enough to treat both the commuting conversion T.assoc
and substitution in T.β, and the strong normalisation proof goes through without
undue difficulty.

Looking beyond reducibility, this jump over continuations offers a quite general
method to raise concepts from value type A up to computation type TA, whether
or not we know the nature of T . Suppose that we write K > M when K applied
to M strongly normalises, and for any predicate φ ⊆ A define in turn:

φ> = {K | K > [V ] for all V ∈ φ }
φ>> = {M | K > M for all K ∈ φ> } ⊆ TA .

This is our operation of >>-lifting: to take a predicate φ on value type A and
return another φ>> on the computation type TA, by a “leap-frog” over φ> on
continuations.

We believe that the use of >>-lifting in the metalanguage λml is original. It
was inspired by similar constructions applied to specific notions of computation;
it is also related to Pitts’s >>-closure, and that in turn has analogues in earlier
work on reducibility. Section 5.1 discusses this further.

In Sect. 4 we demonstrate >>-lifting for reducibility in some variations of λml ;
treating sums, exceptions, and Moggi’s λc. For each case we vary our notion of
continuation, but leave the definition of (−)>> unchanged. Notably, this includes
the commuting conversions introduced by sums. Section 5 discusses related work,
and concludes with some possible future directions.

2 The Computational Metalanguage

We start with a standard simply-typed lambda-calculus with ground type 0,
product A × B and function space A → B for all types A and B. The com-
putational metalanguage extends this with a type constructor T and two term
constructions:

– For each A there is a type TA, of computations that return an answer in A.
– The lifted term [M ] is the computation which simply returns the answer M .
– The composition term let x ⇐ M in N denotes computing M , binding the

answer to x and then computing N .

Fig. 1 presents typing1 and reduction rules for this language λml . It corresponds
to Moggi’s λMLT [20]. In categorical terms, this is the internal language for a
cartesian closed category with a strong monad T . More concretely, it is also what
lies behind the use of monads in the Haskell programming language, where the

1 Our presentation of typing follows Girard et al. [14], in that we assume a global
assignment of types to variables. This is in contrast to typing “à la Curry” and
typing “à la Church” [2], which use local typing contexts.



type constructor T is any monad and the term formers are return M for lifting
and do {x<-M; N} for composition [23].

Often we do not require the full power of λml , and there are two common
simplifications: first, that all functions must return computations, thus having
type A → TB; and second, that this is the only place where T can occur.
These constrain the calculus to represent computations and only computations,
disallowing pure functions of type A → B as well as metacomputations like those
with type TA → TB and T (TA).

With both of these restrictions in place we obtain the sub-calculus λml∗. This
contains the call-by-value embedding [16] of the simply-typed lambda-calculus
into the computational metalanguage; with the attention on functions of type
A → TB embodying call-by-value semantics.

It turns out that the terms of λml∗ are so restricted that we can dispense
with explicit lifting and computation types, replacing them by a simple syntactic
separation of values V from non-values M . This leaves only the let-construction,
and we have a subset λc∗ of Moggi’s computational lambda-calculus λc [19].
Sabry and Wadler discuss in detail the correspondences between λml , λml∗, λc∗
and λc [27]. We revisit λc in §4.3; otherwise, for the rest of this paper we shall
concentrate on the most general version λml .

The reductions for λml appear in the last part of Fig. 1. These extend those
for the simply-typed lambda-calculus with three reductions that act only on
terms of computation type: T.β, T.η and T.assoc. We review some standard
properties of typed reduction, and the notion of strong normalisation.

Proposition 1. Reduction in the computational metalanguage preserves types
and is itself preserved under substitution.

(i) If M : A and M → M ′ then M ′ : A.
(ii) If M → M ′ then M [x := N ] → M ′[x := N ].

Proof. Induction on the derivation of M : A and the structure of M respectively.

Definition 2. A term M in some calculus is strongly normalising (it is SN) if
there is no infinite reduction sequence M → M1 → · · · . In this case we write
max (M) for the length of the longest reduction sequence starting from M . A
calculus itself is strongly normalising if every term in it is strongly normalising.

It is standard that under β-reduction the untyped lambda-calculus is not strongly
normalising. For example, the term Ω = (λx.xx)(λx.xx) β-reduces to itself,
leading to the infinite reduction sequence Ω →β Ω →β . . . . On the other hand,
the simply-typed lambda-calculus is strongly normalising with respect to β-
reduction [14]: in particular, Ω has no simple type.

We shall be investigating strong normalisation with the additional terms and
reductions of λml from Fig. 1. The reductions to watch are T.β and T.assoc:
like →.β, a T.β step performs substitution, and so may enlarge the term at
hand; while T.assoc is a commuting conversion, also termed a permutation or



Syntax

Types A, B ::= 0 | A → B | A×B | TA

Terms L, M, N, P ::= xA | λxA.M | MN | 〈M, N〉 | π1(M) | π2(M)

| [M ] | let xA ⇐M in N

Typing

xA : A

M : B

λxA.M : A → B

M : A

[M ] : TA

M : A → B N : A

MN : B

M : TA N : TB

let xA ⇐M in N : TB

M : A N : B

〈M, N〉 : A×B

M : A1 ×A2

πi(M) : Ai
i = 1, 2

Reductions

→.β (λx.M)N −→ M [x := N ]

→.η λx.Mx −→ M if x /∈ fv(M)

× .βi πi(〈M1, M2〉) −→ Mi i = 1, 2

× .η 〈π1(M), π2(M)〉 −→ M

T.β let x⇐ [N ] in M −→ M [x := N ]

T.η let x⇐M in [x] −→ M

T.assoc let y ⇐ (let x⇐ L in M) in N −→ let x⇐ L in (let y ⇐M in N) if x /∈ fv(N)

Fig. 1. The computational metalanguage λml .

permutative conversion. Commuting conversions are so named for their trans-
forming action, via the Curry-Howard isomorphism, on derivation trees in nat-
ural deduction (indeed, the counterpart in logic of T.assoc is described in [4]).
They also arise when the lambda-calculus is extended with sums, and are known
for the issues they can cause in proofs over reduction systems. Prawitz origin-
ally addressed this in [26]; see [17] for a discussion and further references. As
we shall see below, >>-lifting uses structured continuations to handle proof over
commuting conversions.

3 Reducibility

We develop >>-lifting with the concrete example of a proof of strong normalisa-
tion in λml , by extending the type-directed reducibility approach originally due
to Tait [28]. We follow closely the style of Girard et al. [14, Chap. 6]; although
in this short presentation we focus on the proof parts specific to λml , with full



details appearing elsewhere [18]. As explained earlier, the key step is to find
an appropriate definition of reducibility for computation types, which we do by
introducing a mechanism for managing continuations.

3.1 Continuations

Informally, a continuation should capture how the result of a computation might
be used in a larger program. Our formal definition is structured to support
inductive proof about these uses.

– A term abstraction (x)N of type TA ( TB is a computation term N of
type TB with a distinguished free variable x of type A.

– A continuation K is a finite list of term abstractions, with length |K|.

K ::= Id | K ◦ (x)N
|Id | = 0

|K ◦ (x)N | = |K|+ 1

– Continuations have types assigned using the following rules:

Id : TA ( TA
(x)N : TA ( TB K : TB ( TC

K ◦ (x)N : TA ( TC
.

– We apply a continuation of type TA ( TB to a computation term M of
type TA by wrapping M in let-statements that use it:

Id @ M = M

(K ◦ (x)N) @ M = K @ (let x⇐M in N)

Notice that when |K| > 1 this is a nested stack of computations, not simple
sequencing: i.e.

let x1 ⇐ (let x2 ⇐ (. . . (let xn ⇐M in Nn)) . . . in N2) in N1

rather than

let x1 ⇐M1 in let x2 ⇐M2 in . . . in let xn ⇐Mn in N .

Although these two are interconvertible by a sequence of T.assoc rewrites, we
cannot identify them while we are looking to confirm strong normalisation
in the presence of substituting rewrites like →.β and T.β.
In fact, it is exactly this nesting structure that we use to tackle T.assoc in
our key Lemma 6; essentially, the stack depth of a continuation tracks the
action of the commuting conversion.

– We define a notion of reduction on continuations:

K → K ′ def⇐⇒ ∀M . K @ M → K ′ @ M

⇐⇒ K @ x → K ′ @ x

where the right-hand equivalence follows from Prop. 1(ii). A continuation K
is strongly normalising if all reduction sequences starting from K are finite;
and in this case we write max (K) for the length of the longest.



Lemma 3. If K → K ′, for continuations K and K ′, then |K ′| ≤ |K|.

Proof. Suppose K = Id ◦ (x1)Nn ◦ · · · ◦ (xn)Nn. Then its application K @ x =
let x1⇐ (. . . (let xn ⇐ x in Nn) . . . ) in N1 and there are only two reductions that
might change the length of K.

– T.η where Ni = [xi] for some i. Then K → K ′ where K ′ = Id ◦ (x1)N1 ◦
· · · ◦ (xi−1)Ni−1 ◦ (xi+1)Ni+1 ◦ · · · ◦ (xn)Nn and |K ′| = |K| − 1.

– T.assoc may occur at position i for 1 ≤ i < n to give K ′ = (x1)N1 ◦
· · · ◦ (xi−1)Ni ◦ (xi+1)(let xi⇐Ni+1 in Ni) ◦ (xi+2)Ni+2 ◦ · · · ◦ (xn)Nn. Again
|K ′| = |K| − 1.

Hence |K ′| ≤ |K| as required. ut

3.2 Reducibility and Neutrality

Figure 2 defines two sets by induction on the structure of types: reducible terms
redA of type A, and reducible continuations red>A of type TA ( TB for some B.
As described in the introduction, for computations we use redTA = red>>A .

We also need to classify some terms as neutral ; we do this by decomposing
every reduction into a rewrite context with a hole that must be plugged with a
term of a particular form (see Fig. 2 again). From this we define:

– Term M is active if R[M ] is a redex for at least one of the rewrite contexts.
– Term M is neutral if R[M ] is not a redex for any of the rewrite contexts.

The neutral terms are those of the form x, MN , π1(M) and π2(M); i.e. compu-
tation types add no new neutral terms. The basic properties of reducibility now
follow (CR 1)–(CR 4) of [14].

Theorem 4. For every term M of type A, the following hold.

(i) If M ∈ redA, then M is strongly normalising.
(ii) If M ∈ redA and M → M ′, then M ′ ∈ redA.
(iii) If M is neutral, and whenever M → M ′ then M ′ ∈ redA, then M ∈ redA.
(iv) If M is neutral and normal then M ∈ redA.

Proof. Part (iv) is a trivial consequence of (iii), so we only need to prove (i)–(iii),
which we do by induction over types. The proof for ground, function and product
types proceeds as normal [14]. Here we expand the details for computation types:

(i) Say M ∈ redTA. By the induction hypothesis (i), for every N ∈ redA we have
that N and hence [N ] are SN. This sufficient to show that Id :TA ( TA is
reducible, and this gives that M is SN as required.

(ii) Suppose M ∈ redTA and M → M ′. For all K ∈ red>A, application K @ M is
SN, and K @M → K @M ′, so K @M ′ is SN too and hence M ′ is reducible.

(iii) Take M : TA neutral with M ′ ∈ redTA whenever M → M ′. We have to
show that K @ M is SN for each K ∈ red>A. First, we have that K @ [x] is
SN as x ∈ redA by the induction hypothesis (iv). Hence K itself is SN, and
we can work by induction on max (K). Application K @ M may reduce as
follows:



Reducible terms and continuations

M ∈ red0 if the ground term M is strongly normalising

F ∈ redA→B if FM ∈ redB for all M ∈ redA

P ∈ redA×B if π1(P ) ∈ redA and π2(P ) ∈ redB

M ∈ redTA if K @ M is strongly normalising for all K ∈ red>A

K ∈ red>A if K @ [N ] is strongly normalising for all terms N ∈ redA.

Reduction Rewrite context Active term

→.β −N λx.M

→.η − λx.Mx

×.βi πi(−) 〈M, N〉
×.η − 〈π1(M), π2(M)〉

T.β let x⇐− in M [N ]

T.η let x⇐M in − [x]

T.assoc let y ⇐− in N let x⇐ L in M

Fig. 2. Reducibility and neutrality for λml

• K @ M ′, where M → M ′, which is SN by reducibility of K and M ′.
• K ′@ M , where K → K ′. Now given any N ∈ redA, K @ [N ] → K ′@ [N ]

which is SN by reducibility of K. Thus K ′ is reducible with max (K ′) <
max (K), and by the induction hypothesis K ′ @ M is SN.

There are no other possibilities as M is neutral. Hence K @ M is SN, and
M is reducible. ut

3.3 Reducibility Theorem

We show that all terms are reducible, and hence strongly normalising, by induc-
tion on their syntactic structure. This requires an appropriate lemma for each
term constructor. Here we set out proofs for the new constructors associated
with computation: lifting [−] and let . The other cases follow as normal from the
properties of Thm. 4, and are set out in [18].

Lemma 5. If N : A is reducible, then so is [N ].

Proof. Let K be a reducible continuation. By definition, K @ [N ] is SN as N is
reducible. Hence [N ] is reducible. ut

We now wish to show that formation of let-terms preserves reducibility. That
will be Lemma 7, but we first need a result on the strong normalisation of let-
terms in context. This is the key component of our overall proof, and is where



our attention to the stack-like structure of continuations pays off: the challenging
case is the commuting conversion T.assoc, which does not change its component
terms; but it does alter the continuation stack length, and this gives enough
traction to maintain the induction proof.

Lemma 6. Let x : A be a variable, M : A,N : TB be terms and K : TB ( TC
a continuation, such that M and K @N [x := M ] are strongly normalising. Then
K @ (let x⇐ [M ] in N) is strongly normalising.

Proof. We show by induction on |K|+max (K @N)+max (M) that the reducts
of K @ (let x⇐ [M ] in N) are all SN. The interesting reductions are as follows:

– T.β giving K @ N [x := M ], which is SN by hypothesis.
– T.η when N = [x], giving K @ [M ]. But K @ [M ] = K @ N [x := M ], which

is again SN by hypothesis.
– T.assoc in the case where K = K ′ ◦ (y)P with x /∈ fv(P ); giving the re-

duct K ′ @ (let x⇐ [M ] in (let y ⇐N in P )). We aim to apply the induction
hypothesis with K ′ and (let y ⇐N in P ) for K and N . Now

K ′ @ (let y ⇐N in P )[x := M ] = K ′ @ (let y ⇐N [x := M ] in P )
= K @ (N [x := M ])

which is SN by hypothesis. Also

|K ′|+max (K ′@(let y ⇐N in P ))+max (M) < |K|+max (K@N)+max (M)

as |K ′| < |K| and (K ′@(let y ⇐N in P )) = (K@N). Applying the induction
hypothesis gives that K ′@(let x⇐ [M ] in (let y ⇐N in P )) is SN as required.

Other reductions are confined to K@N or M , and can be treated by the induction
hypothesis, decreasing max (K @ N) or max (M) respectively. ut

We are now in a position to state and prove a lemma on reducibility for let-terms.

Lemma 7. If M : TA is reducible and N : TB with N [x := P ] reducible for all
reducible P : A, then (let x⇐M in N) is reducible.

Proof. Let K : TB ( TC be a reducible continuation. We need to show that
K @ (let x⇐M in N) is SN. Now for any P : A reducible, K @ N [x := P ] is
SN by reducibility of K and N [x := P ]. But P is also SN, by Thm. 4(i), and so
Lemma 6 shows that K@(let x⇐ [P ] in N) is SN too. Thus K◦(x)N is reducible
and applying to reducible M gives that K @ (let x⇐M in N) is SN. ut

We finally move towards the desired result via a stronger result on substitutions
into open terms.

Theorem 8. Let M be any term, with free variables x1 : A1, . . . , xk : Ak. If
N1 : A1, . . . , Nk : Ak are reducible then M [x1 := N1, . . . , xk := Nk] is reducible.



Proof. By induction on the structure of terms. For computation terms:

– [P ]: By the induction hypothesis P [~x := ~N ] is reducible, and by Lemma 5 so
is [P ][~x := ~N ] = [P [~x := ~N ]].

– let x ⇐ L in M : By the induction hypothesis L[~x := ~N ] is reducible and
M [~x := ~N, x := P ] is reducible for all reducible P . Lemma 7 then gives
that (let x⇐ L in M)[~x := ~N ] = let x⇐ L[~x := ~N ] in M [~x := ~N ] is reducible
too. ut

Theorem 9. Each term M of λml is reducible, and hence strongly normalising.

Proof. Apply Thm. 8 with Ni = xi, where the xi are all reducible by Thm. 4(iv).
This tells us that M is reducible, and by Thm. 4(i) also strongly normalising. ut

4 Extensions

In this section we apply >>-lifting to some extensions of λml : with sum types,
with exceptions; and to the variant computational lambda-calculus λc. Both
sums and exceptions have existing normalisation results in the standard lambda-
calculus (for example, [10, 11]); we know of no prior proofs for them in λml . More
important, though, is to see how >>-lifting adapts to these features. The key step
is to extend our formalized continuations with new kinds of observation. Once
this is done, we can use these to lift predicates to computation types. The case
of reducibility, and hence a proof of strong normalisation, then goes through as
usual. Here we can only summarize, and full details appear in [18].

4.1 Reducibility for Sums

Prawitz first showed how to extend reducibility to sums [26]. His method is
quite intricate: for a term M of sum type to be reducible, not only must the
immediate subterms of M be reducible, but also a certain class of subterms
of M ′ must be reducible whenever M reduces to M ′. We avoid this complexity
by defining reducibility for sums as we do for computations, by a leap-frog over
continuations.

We begin by extending λml with sum types and a case construct where each
branch must be a computation (we later lift this constraint):

M : A

ι1(M) : A + B

M : B

ι2(M) : A + B

M : A + B N1 : TC N2 : TC

case M of ι1(x1
A)⇒N1 | ι2(x2

B)⇒N2 : TC

To record possible uses of sum terms, we introduce sum continuations:

S ::= K ◦ 〈(x1)N1, (x2)N2〉
(K ◦ 〈(x1)N1, (x2)N2〉) @ M = K @ (case M of ι1(x1)⇒N1 | ι2(x2)⇒N2).



We can now define reducibility for sum continuations, and thence for sums.

– Sum continuation S : A + B ( TC is reducible if:
• S @ (ι1(M)) is strongly normalising for all reducible M : A and
• S @ (ι2(N)) is strongly normalising for all reducible N : B.

– Sum term P : A + B is reducible if S @ P is reducible for all reducible sum
continuations S of type (A + B) ( TC.

This is then sufficient to prove strong normalisation for λml with sums in the
manner of Sect. 3.3.

To apply this to a more general case construction, we can move to frame
stacks: nested collections of elimination contexts for any type constructor [25].
Frame stacks generalise continuations, and we have been able to use them to
give a leap-frog definition of reducibility not just for computations, but also
for sums, products and function types. This in turn gives a proof of strong
normalisation for λml with full sums, as well as the simply-typed lambda-calculus
with sums [18, §3.5].

One special case of this brings us full circle: λml trivially embeds into the
simply-typed lambda-calculus with unary sums.

[M ] 7−→ ι(M) let x⇐M in N 7−→ case M of ι(x)⇒N

The two languages are essentially the same, except that λml has tighter typing
rules and admits fewer reductions. Frame stacks and >>-reducibility then provide
strong normalisation for both calculi.

4.2 Reducibility for Exceptions

Benton and Kennedy propose a novel syntax for incorporating exceptions into
λml , which they use within the SML.NET compiler [9]. They combine excep-
tions and let into the single construction try xA ⇐ M in N unless H. This first
evaluates M , then binds the result to x and evaluates N ; unless an exception
was raised in M , in which case it evaluates the handler H instead. A handler
H : TB here is a list of pairs (E,P ) of exceptions and computations of type TB:
evaluation comprises picking out the first pair where E matches the exception
to be handled; unmatched exceptions are re-raised. Typing rules are as follows:

raise(E ) : TA

M : TA N : TB H : TB

try xA ⇐M in N unless H : TB
.

The original let is now a special case of try , with empty handler: let x⇐M in N =
try x⇐M in N unless {}. Notice that we are not fixing our choice of monad T ;
it must support exceptions, but it may incorporate other effects too.

For >>-lifting in this calculus, we generalise continuations to cover the new
observable behaviour of exception raising, by associating a handler to every step
of the continuation.

K ::= Id | K ◦ 〈(x)N, H〉
(K ◦ 〈(x)N, H〉) @ M = K @ (try x⇐M in N unless H)



We now say that continuation K : TA ( TB is reducible if:

– K @ [V ] is strongly normalising for all reducible V : A, and in addition
– K @ (raise(E )) is strongly normalising for all exceptions E

Building >>-reducibility on this is enough to give strong normalisation for λml

with exceptions, with a proof in the manner of Sect. 3.3.

4.3 Reducibility for the Computational Lambda-Calculus

Strong normalisation for λml immediately gives strong normalisation for its sub-
calculus λml∗. However, despite the close correspondence between λml∗ and λc,
described in [27], we do not immediately get strong normalisation for λc. The
reason is the existence of two additional reduction rules in λc:

let .1 PM −→ let x⇐ P in xM if x /∈ fv(M)
let .2 V Q −→ let y ⇐Q in V y if y /∈ fv(V )

where P,Q range over non-values, and V ranges over values.
We can adapt our proof, again using continuations in a leap-frog definition

of reducibility:

Ground value V ∈ red0 if V is strongly normalising

Function value V ∈ redA→B if, for all M ∈ redA ∪ red>>A , V M ∈ red>>B

Continuation K ∈ red>A if, for all V ∈ redA, K @ V is strongly normalising

Non-value P ∈ red>>A if, for all K ∈ red>A, K @ P is strongly normalising

The distinction between values and non-values is crucial. There is no explicit
computation type constructor in λc, but non-values are always computations.
Thus redA is reducible values of type A, and red>>A is reducible non-values of
type A, playing the role of redTA. This >>-reducibility leads as before to a proof
of strong normalisation for λc, accounting for both additional reductions.

5 Conclusion

We have presented the leap-frog method of >>-lifting as a technique for raising
operational predicates from type A to type TA; which is independent of the
nature of computations T , and introducing the opportunity of proof by induction
on the structure of continuations.

As a concrete example, we demonstrated this in a definition of reducibility
for λml , and thence a type-directed proof of strong normalisation. We have ex-
tended this to some extensions of λml , addressing in particular the robustness
of the method in treating systems with commuting conversions.

In this final section we expand on the relation to other work on this topic,
and comment on some possibilities for future research.



5.1 Related Work

We believe that our use of >>-lifting for computation types in λml is new. It is,
however, inspired by similar constructions applied to specific notions of compu-
tation. Pitts and Stark [24] apply the method to give a structurally inductive
characterisation of observational equivalence for a functional language with local
state. They then use this to validate certain proof techniques for reasoning about
dynamically-allocated reference cells. Direct validation of these techniques had
proved fruitless, because even though the precise form of computational effects
was known — non-termination, state, and dynamic allocation — the interaction
between them was intractable.

In [25], Pitts employs >>-closure to define an operational form of relational
parametricity for a polymorphic PCF. Here the computational effect is nonter-
mination, and (−)>> leads to an operational analogue of the semantic concept of
“admissible” relations. Abadi in [1] investigates further the connection between
>>-closure and admissibility.

The notion of >>-closed is different from our lifting: it expresses a property of
a set of terms at a single type, whereas we lift a predicate φ on terms of type A to
φ>> on terms of a different type TA. However, the concept is clearly related, and
the closure operation makes some appearance in the literature on reducibility, in
connection with saturation and saturated sets of terms. Loosely, saturation is the
property one wishes candidates for reducibility to satisfy; and this can sometimes
be expressed as >>-closure. Examples include Girard’s reducibility candidates
for linear logic [13, pp. 72–73] and Parigot’s work on λµ and classical natural
deduction [22, pp. 1469–1471]. For Girard the relevant continuations are the lin-
ear duals A⊥, while for Parigot they are applicative contexts, lists of arguments
in normal form N<ω. We conjecture that in their style our >>-lifting could be
presented as an insertion { [V ] | V : redA } followed by saturation (although we
then lose the notion of reducible continuations).

Melliès and Vouillon use biorthogonality in their work on ideal models for
types; this is a closure operation based on an orthogonality relation matching
our K > M [30, 31]. They make a case for the importance of orthogonality,
highlighting the connection to reducibility. They also deconstruct contexts into
frame stacks for finer analysis: elsewhere, Vouillon notes the correspondence
between different forms of continuation and possible observations [29].

There are evident echoes of continuation-passing style in the leap-frog character
of >>-lifting; and its independence from the choice of monad recalls Filinski’s
result that composable continuations can simulate all definable monads [12]. The
apparent connection here is appealing, but we have not been able to make any
formal link.

Goubault-Larrecq et al. investigate logical relations for computation types,
proposing a distributivity law that these should satisfy [15]. They give a number
of examples of logical relations lifted to specific monads; and, again, their chosen
relation for the continuations monad has a similar structure to our >>-lifting.



As mentioned in the introduction, existing proofs of strong normalisation for λml

are based on translations into other calculi that are already known to be strongly
normalising. We have said how Benton et al., working from a logical perspective,
used a translation into a lambda-calculus with sums [4]. In a report on monadic
type systems — a generalisation of pure type systems and the computational
metalanguage — Barthe et al. [3] prove strong normalisation by translation into
a lambda-calculus with an extra reduction β′. Finally, Hatcliff and Danvy [16]
state that T -reductions are strongly normalising, although they do not indicate
a specific proof method.

5.2 Further Work

Following the work described here, we have developed a normalisation by evalu-
ation algorithm for λml , which we prove correct using the strong normalisation
result. Normalisation by evaluation (NBE) then leads to further results on the
theory of λml : namely, that convertibility of terms is decidable, and reduction
is confluent. This is described in detail in the first author’s PhD thesis [18],
which implements NBE for the version of λml used as an intermediate language
in the SML.NET compiler [7, 8], and evaluates its performance compared to
conventional rewriting.

There is an extensive and growing body of work on the problem of norm-
alisation for many varieties of typed lambda-calculi, with reducibility as just
one approach. Joachimski and Matthes have proposed an alternative induction
method, that characterises the strongly normalisable terms in a calculus [17].
This is proof theoretically simpler, and it would be interesting to see how this
applies to computation types in λml . Their method covers sum types, commuting
conversions and, most interestingly for us, generalized applications of the form
s(t, y.r). These have some resemblance to our decomposition of continuations:
here y.r is a term abstraction, to which will be passed the result of applying
function s to argument t.

A further test of >>-lifting is to investigate its application to other predicates
or relations on λml terms. We are interested in trying to make precise, and
confirm, an informal conjecture of Kennedy and Benton that (−)>> captures
“observation”: if φ is some predicate on values, then φ>> is a “best observable
approximation” to it on computations [6].
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